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Abstract. In the paper, a comparative analysis and a search for the optimal machine learning
model have been conducted. The model should predict the values of unobservable centrality-
related quantities based on the experimental data for observable quantities, namely, the number
of charged particles and the number of neutral ones born in the interactions of both heavy and
light ultrarelativistic nuclei. The sought-for unobservable values were the numbers of wounded
nucleons involved in the interactions and of the binary nucleon-nucleon collisions. Linear
and polynomial regressions of various degrees, a decision tree (DT), a random forest (RF),
and a multilayer perceptron (MP) were chosen and considered as machine learning models.
The prediction accuracy of the models was characterized and tested by the coefficient of
determination. The DT, RF, and MP models were found to predict the desired values with the
highest accuracy, i.e., they gave equally good results.
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AnHotanusa. B paGore mpoBeneH CpaBHUTEIbHBIA aHAIW3 M MOUCK ONTMUMAaJIbHOM MOIEIN
MaIlIMHHOTO OOYyYeHHUs, KOTOopasl MO3BOJMIa Obl MpeacKa3biBaTh 3HAUYECHUs HEHaOJI0IaeMbIX
BEJIMYMH, XapaKTepU3YIOIINX LIEHTPAJIbHOCTh, OCHOBBIBASICH Ha 3KCIICPUMEHTAIBHBIX TaHHBIX
IJIsT HAOMIOJAeMBbIX BEIMYMH: YMCJIA 3apsKEHHBIX YaCcTUIl M 4YKMCiIa HEUTPaJIbHBIX YACTHIIL,
POXIAIOIIMXCS BO B3aMMOACHCTBMU KaK TSDKENIBIX, TaK U JIETKUX YJIbTPapessITUBUCTCKUX
saaep. VIckOMbIMM HEHaOIIOZAaeMbIMM BEJIMYMHAMU OBLIM YMCJIO pPaHEHbIX HYKJIOHOB,
YUYaCTBYIOIIMX BO B3aMMOJAEWCTBUM, M YMCIO0 OMHAPHBIX HYKJIOH-HYKJIOHHBIX CTOJTKHOBEHUIA.
B xauecTtBe Mopeseil MalIMHHOTO OOy4YeHMST OBLIM BHIOpAHBI W PACCMOTPEHBI JIMHEHHasT U
TMOJMHOMUAJIBHBIE PETPECCUM PA3IMYHBIX CTereHell, aepeBo peuieHuit (JAP), cayuaitHblii
nec (CJI) w wmHorocnoitubiii nepuentpoH (MIT). TouHocTs mnpenckazaHusi Mojaeseit
XapakTepUu3oBajach M TPOBEpsSIach—KO3(PUIMEHTOM [IeTepMUHALUU. YCTaHOBJIEHO, UTO
moaenau AP, CJI u MII ¢ HauboblIeit TOYHOCTBIO MpeAcKa3bIiBalOT UCKOMbIE 3HAUYEHUS, T. €.
JIal0T OJIMHAKOBO XOPOIIIME Pe3yJIbTaThl.

KioueBbie ciioBa: MalllMHHOE 00y4YeHME, CTOJIKHOBEHME SIAEP, PErPeccus, 1epeBO PEeIIeHUIA,
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Introduction

There is much interest towards machine learning methods, as they yield good results in
diverse fields ranging from speech models to image generation.

For this reason, it seems worthwhile to apply existing machine learning algorithms in nuclear
physics, elementary particle physics and high-energy physics, as well as develop new algorithms.

The physics of ultrarelativistic heavy-ion collisions is a fascinating field of research, holding
immense potential for exploring the unusual state of matter that is quark-gluon plasma [1].

The high-energy interactions of nuclei are generally studied in collider experiments, measuring
the characteristics of particles produced in ion beam collisions [2].

The energy of an ion beam is commonly expressed by the amount of energy per nucleon. This
allows comparing the nucleus—nucleus collisions with proton-proton ones; it is assumed that the
moving nuclei are a nucleon beam, while the collision of nuclei is a combination of nucleon pair
collisions from different nuclei.

© JlobanoB A. A., bepnuukos S. A., MurpankoB 0. M., 2023. Uznarenn: CaHkT-IleTepOyprckuili MmoOJUTEXHUUECKUI
yHuBepcuteT Ilerpa Benukoro.
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It was established in [3] that an important property of nucleus—nucleus collisions is a significant
increase in the average multiplicity (calculated per colliding nucleon pair inside the nucleus) relative
to the average multiplicity observed in a collision of free nucleon pairs (outside the nucleus).

The number of interacting nucleon pairs N, , and the number of wounded nucleons N, o in

nucleus—nucleus collisions characterizes the colhs1on centrality [4]. Centrality determines the
overlap volume of colliding nuclei and is related to the impact parameter of the collision (Fig. 1).

PP

Fig. 1. Schematic representation of nuclear reaction:
spectators (Sp)s; participants (Prt)s; impact parameter 1P
Interacting nucleons (black circles) and non-interacting
nucleons (gray circles) are shown; p are protons, n are neutrons

The overlap volume is in turn related to the number of nucleons participating in the interaction
N_, and the number of wounded nucleons N .. located in this volume and experiencing inelastic
scatterlng The values of N, and N cannot be determined experimentally for each collision of
nuclei (event). However, even carlier data obtained at the RHIC (Relativistic Heavy lon Collider)
and SPS (Super Proton Synchrotron) accelerators [5, 6] showed that the multiplicities of particles
(or their total transverse energies) are directly proportional to N_, and N . This means that N_,
and N . can be determined for the given multiplicities (or total transverse energles)

The goal of this study was to develop an optimal machine learning model allowing to predict
the unobservables characterizing centrality.

These unobservable quantities are the number of wounded nucleons involved in the interaction
and the number of binary nucleon—nucleon collisions.

The prediction should be based on the quantities observed in the experiment: the number of charged
particles and the number of neutrons generated in each individual nucleus—nucleus interaction.

Simulation and computational technique

The machine learning model should predict the number of wounded nucleons Np .. and the
number of binary nucleon—nucleon collisions N _, in a nucleus—nucleus collision at a given initial
energy. The numbers of charged and neutral partlcles in each event in the pseudo-rapidity ranges
3<[q<4and5 <[y <8, respectively, were chosen as the model parameters. The ranges were
selected based on the experimental data, taken close to those used in experiments [2, 7]. The
number of protons and the number of neutral particles in interacting nuclei were added to the
above parameters to extend the functionality of the model for various collision systems.

Because it is impossible to determine the quantities N .and N_ experimentally, N .and N,
taken for training were preliminarily obtained in this study using “the PYTHIAS/Angantyr 8.307
Monte Carlo generator [8].

The center-of-mass energy per nucleon pair was chosen equal to % = 200 GeV for all
nucleus—nucleus collisions considered. This energy is used in a large number of experiments at
the RHIC collider [2].
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The number of nucleus—nucleus collisions generated was 100,000.

From the standpoint of machine learning, prediction of N and N_, depending on the multi-
plicity of charged particles N, and neutrons N isa regressmn problem [9] (supervised training).
For this reason, the methods most commonly used for this type of problems were selected and
considered as machine learning models: linear regression [10], polynomial regressions of different
degrees [10], decision tree [11], random forest [12] and multilayer perceptron [13].

Hyperparameters of the models (the parameters that are not determined during train-
ing) were selected using the Optuna library [14]. Tree Parzen Estimators was chosen as the
algorithm [15].

The determination coefficient R*> [16] characterized the prediction accuracy of the models,
following the expression

>

Z(yi _j}i)z

2 i=
RP=1-=

Z in
i=1

where y, are the reference values (for example, N_ ), y, are the values of N, predicted by the
model, N is the number of values.

The maximum value of the determination coefficient R? is equal to 1. The closer it is to 1, the
closer the values obtained using the model are to the reference values. The model’s prediction
quality for N_, and Np . was characterized by the arithmetic mean of their determination coef-
ficients (smce we intended to predict the values of two quantities). R? refers to this arithmetic
mean from now on.

The confidence intervals and errors of the determination coefficient R?> were found by the
bootstrap method [17].

This numerical method allows to analyze statistical distributions. It is based on repeated Monte
Carlo generation based on the available sample (introduced in 1977 by Bradley Efron and con-
sisting in generating an empirical distribution [18] based on the available sample). Using the
empirical distribution as a theoretical probability distribution allows generating a large number of
pseudo-samples of arbitrary size via a random number generator. The resulting set of pseudo-sam-
ples is used to estimate the mean value and the error, constructing a confidence interval for the
considered random variable with a confidence probability p = 0.997.

o N e N, values can be obtained for each nucleus—nucleus interaction (100,000 collisions
generated in PYTHIA8/Angantyr were taken). This is used to construct the dependence of N,
Np .. on the multiplicity of charged particles N, for the collision of gold nuclei (Au + Au) at an
energy \s,, = 200 GeV (initial data).

Fig. 2, a shows the dependence of N, on N ,, obtained in the manner described here. Evidently,
N_,N, have certain distributions that occur during simulation in the PYTHIAS/Angantyr pack-
age. To accelerate the training and optimize the performance of the models, these distributions of
quantities were divided into 50 intervals, each characterized by a specific average value of a phys-
ical quantity. Fig. 2,b shows such an averaged dependence for the number of nucleon—nucleon
collisions <N_,> on the average multiplicity of charged particles <N >.

The resultlng 50 intervals were randomly divided into 80% for trammg the models and 20%
for testing them.

A similar computational pattern appears for the dependence of N .onN_.

Comparison of linear and polynomial machine learnlng models for
predicting the dependence N_,(N,,) in Aut+Au collisions

coll
As mentioned above, the following machine learning models were used: linear regression,
polynomial regressions of various degrees, decision tree, random forest and multilayer perceptron.
Linear and polynomial regression. Let us start our consideration with the simplest of the above
models. Quadratic and cubic functions were chosen as models of polynomial regression to avoid
overfitting the model at higher degrees of the polynomial [19]. For comparison, a collision system
of gold nuclei (Au+Au) was considered at the interaction energy \/_ = 200 GeV.
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Fig. 2,a shows the dependence of the number of nucleon—nucleon collisions on the multiplic-
ity of charged particles approximated by linear, quadratic and cubic functions. Fig. 2,6 shows the
dependence of the average number of wounded nucleons <N_ > on the average multiplicity of
charged particles <N,> approximated by the same three functions.

Analyzing the data in Fig. 2, we can conclude that the approximation by a linear function
systematically overestimates the number of wounded nucleons at high multiplicities of charged
particles. For this reason, we only consider the computational results for polynomials of the 2nd
and 3rd degrees.

a) b)
N coll (N coll)

250 250

Y

200 200

150 150
100 100

50 50

0 0

0 200 400 600 800 1000 R, 0 200 400 600 800 1000 (N

Fig. 2. Initial (gray area) (a) and averaged (symbols) (b) computational dependences
for the number of nucleon—nucleon collisions of gold nuclei versus the initial (a)
and averaged (b) multiplicity of charged particles; data approximation by various functions:
linear (solid lines), quadratic (dashes) and cubic (dash-dotted lines)

Predictions made by machine learning models
for the N_, (IV,) dependence for heavy ion collisions

To estimate the capabilities that the models have for generalizing the dependences and deter-
mining them, let us consider training on symmetric collision systems: copper (Cu + Cu), xenon
(Xe + Xe), gold (Au + Au), lead (Pb + Pb) and uranium (U + U), subsequently testing them on
asymmetric systems (see Table 1).

Here we give a dependence of R? for various models and various collisions systems on which
the models were not trained. As follows from analysis of the data in Table 1, the results produced
by the 3rd degree polynomial dependence are noticeable worse for most heavy ion collision sys-
tems, and differ from those given by other models. The determination coefficient R> in many
systems is significantly less than unity for such a model. Therefore, it seems ill-advised to further
consider this model.

The obtained values of the determination coefficient coincide within the error for all models
(except for the 3rd degree polynomial) within the same system (see Table 1). An exception is
observed for polynomial regression of the 3rd degree, for which the value of R? is statistically
significantly different from other models.

Predictions for collisions of light-heavy nuclei
This section considers training of the models on light-heavy ion collisions
p+Au,p+Cu,d+Au,d+ Cu, He + Au, He + Cu,
where p are protons, d are deuterium nuclei.
The models are also verified on asymmetric systems given in Table 2. This situation is inter-

esting as it allows to carry out further generalization to various (different from the ones previously
considered) collision systems and to check how well the models can perform in this case.
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Table 1

Determination coefficients for various models and non-symmetric collision systems

.. Determination coefficient R
Collision Polynomial Decision Random Multilayer
system 2nd degree | 3rd degree tree forest perceptron
Cu + Xe | 0.990+0.025 | 0.175+0.005 | 0.9794+0.030 | 0.981+0.021 | 0.967+0.023
Cu+Au | 0.986+0.023 [-2.301+£0.328| 0.9634£0.024 | 0.969+0.028 | 0.934+0.025
Cu+Pb | 0.984+0.026 |—0.087+0.442| 0.960+0.027 | 0.9634+0.026 | 0.926+0.024
Cu+U [0.982+0.029 | 0.460+0.769 | 0.960+0.026 | 0.9614+0.031 | 0.921+0.024
Xe +Au | 0.997+£0.028 | 0.155+0.004 | 0.991+0.027 | 0.9924+0.030 | 0.987+0.029
Xe +Pb | 0.996+0.026 |-0.284+0.013| 0.990+0.026 | 0.991+0.027 | 0.984+0.029
Xe+U [0.996+0.028 |-0.224+0.119| 0.987+0.029 | 0.989+0.026 | 0.977+0.022
Au+Pb | 1.000+£0.031 | 0.999+0.025 | 0.9984+0.024 | 0.999+0.026 | 0.999+0.030
Au+U | 0.999+0.024 | 0.901+0.024 | 0.998+0.030 | 0.998+0.027 | 0.996+0.027
Pb+U | 0.999+0.027 | 0.96340.026 | 0.998+0.027 | 0.998+0.031 | 0.997+0.028

Note. Data are given for verification of the models for collision systems on which the models were

not trained.

Table 2
Determination coefficients for four models
and for systems of light-heavy ion collisions
Collision Determ'in‘ation coefficient R? ‘
2nd degree Decision Random Multilayer
system .
polynomial tree forest perceptron
p+U 0.511+£0.016 0.988+0.031 | 0.965+0.026 | 0.953+0.026
p+Xe 0.978+0.029 0.990+0.028 | 0.973+0.026 | 0.947+0.026
d+Pb 0.856+0.022 0.996+0.028 | 0.987+0.027 | 0.983+0.027
d+U 0.507+0.015 0.996+0.023 | 0.983+0.027 | 0.983+0.026
d+ Xe 0.990+0.031 0.988+0.024 | 0.982+0.024 | 0.973+0.022
He + Pb 0.863+0.023 0.996+0.033 | 0.990+0.026 | 0.991+0.024
He + U 0.597+0.016 0.993+0.026 | 0.977+0.026 | 0.992+0.024
He + Xe 0.989+0.030 0.989+£0.026 | 0.982+0.024 | 0.983+0.023

Note. Data are given for verification of the models for collision systems on which the models were
not trained.

Table 2 shows the dependence of the determination coefficient for the models considered in
this paper and various nuclear systems on which the models were not trained. It follows from the
data in the table that the 2nd degree polynomial dependence gives noticeably worse (statistically
validated) results, unlike other models. The determination coefficient for this model is signifi-
cantly different from unity in many systems. As in the first case, it seems impractical to consider
it further.

The obtained values of the determination coefficient coincide within the error for all other
models (except for the results for the 2nd degree polynomial) within the same system.

Generalized case

It is of the greatest interest to apply the models to interactions of both light-heavy and heavy-
heavy nuclei. The models were trained for such situations on a range of collision systems of both
light and heavy nuclei, considered in the previous two sections:
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Cu + Cu, Xe + Xe, Au + Au, Pb + Pb, U + U;

p+Au, p+Cud+Au,d+ Cu, He + Au, He + Cu.

The prediction accuracy was verified on the collision systems listed in Table 3. The Table also
gives values of R? for different models, depending on the collision system. Analyzing the obtained
results, we can conclude that all models yield similar values of the dtermination coefficient within
the error.

Table 3

Generalized computations of determination coefficients for three models
and various collision systems that did not participate in the training

. Determination coefficient R
Collision — -
system Decision Random Multilayer
tree forest perceptron
p+U 0.984+0.030 0.954+0.026 0.955+0.026
p+Xe 0.984+0.029 0.960+0.024 0.956+0.025
d+Pb 0.996+0.027 0.982+0.024 0.990+0.026
d+U 0.990+0.024 0.974+0.025 0.987+0.025
d+ Xe 0.984+0.022 0.971+0.023 0.971+0.026
He + Pb 0.997+0.026 0.985+0.024 0.991+0.029
He +U 0.993+0.026 0.981+0.029 0.990+0.030
He + Xe 0.985+0.024 0.987+0.032 0.987+0.026
Cu + Xe 0.980+0.025 0.982+0.031 0.990+0.027
Cu+Au 0.969+0.023 0.965+0.025 0.983+0.023
Cu + Pb 0.965+0.027 0.961+0.025 0.981+0.029
Cu+U 0.959+0.024 0.959+0.023 0.980+0.027
Xe + Au 0.991+0.023 0.992+0.029 0.996+0.024
Xe +Pb 0.991+0.027 0.991+0.029 0.995+0.028
Xe+U 0.988+0.026 0.987+0.025 0.993+0.026
Au +Pb 0.999+0.027 0.999+0.027 0.999+0.023
Au+U 0.997+0.028 0.998+0.026 0.998+0.025
Pb+U 0.998+0.025 0.999+0.030 0.999+0.028
Conclusion

We carried out a comparative analysis of machine learning models to determine the opti-
mal algorithm for obtaining experimentally unobservable parameters characterizing the collision
centrality, specifically, the number of wounded nucleons and the number of binary nucleon
collisions, based observable quantities, i.e., the multiplicity of charged particles and the number
of neutrons produced in the collision. We adopted models of polynomial regression of different
degrees, decision tree, random forest and multilayer perceptron.

It was established in the analysis that the decision tree, the random forest and the multilayer
perceptron predict the values of N —and N_, with the greatest accuracy (R? = 0.95), which is
to say that these models yield equaﬁy good results (within uncertainty) for a fixed initial energy.

We propose an additional parameter that is the initial energy of colliding nuclei \/mv to be
introduced as a natural continuation of this study to expand the applicability range of the consid-
ered models to an arbitrary range of initial energies.

The computations were run on an Intel® Core™ i9-9980XE processor and an NVIDIA GeForce
RTX™ 2080 Ti video card. RAM was 64 GB.
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