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Abstract. The effect of the type of doping (surface (I) or bulk (II) doping) on the character 

of the dipole plasmon mode in semiconductor CdSe nanocrystals has been studied. It was 
found that in case I (donors located on the surface of the nanocrystal) the collective mode had 
a rotational character and only the angular degrees of freedom were excited. On the contrary, in 
case II the charge of the dopant impurities was distributed throughout the system and plasmon 
excitation was the oscillation of delocalized charge carriers in the direction normal to the 
surface. It was shown that the position of the resonance line was determined not only by the 
concentration of free charges, but also by the character of their collective motion determining 
by the type of doping.
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Аннотация. Исследовано влияние типа легирования (поверхностное (I) либо 
объемное (II)) на характер дипольной плазмонной моды в полупроводниковых 
нанокристаллах CdSe. Установлено, что в I случае (доноры расположены на поверхности 
нанокристалла) коллективная мода имеет вращательный характер и возбуждаются 
только угловые степени свободы. Напротив, во II случае заряд легирующих примесей 
распределен по всему объему системы и плазмонное возбуждение – суть колебание 
делокализованных носителей заряда в направлении нормали к поверхности. Показано, 
что положение резонансной линии обусловлено не только концентрацией свободных 
зарядов, но и характером их коллективного движения, который определяется типом 
легирования.
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Introduction

Recent decades have seen rapid advances in nanotechnology, nanoelectronics and nanopho-
tonics, with the pressing need for novel materials whose physical and chemical properties differ 
from those of the corresponding bulk components. A burgeoning field is quantum plasmonics 
focused on studying the quantum properties of light and the mechanisms of its interaction with 
matter at the nanoscale level [1–3]. A distinct characteristic of nanoscale conducting particles 
is the presence of dipole resonances in their optical spectra [2, 4–8]. In particular, doped semi-
conductor nanocrystals are a promising class of materials [4, 5, 9–15]. Importantly, the position 
of the resonance line in the spectra of semiconductor nanoparticles depends not only on the 
concentration of carriers, but also on the doping method, which can be provisionally defined as 
either bulk or surface [16–20]. In the first case, the charge density of free carriers is distributed 
over the entire volume of the crystal and is at the same time neutralized by the charge of dopant 
impurities, while in the second case, free carriers are injected into the bulk of the semiconduc-
tor nanoparticle by donors/acceptors located on its surface [21, 22]. In the case of bulk-doped 
semiconductor nanoparticles [18–20, 23], a dipole plasmon can be described in the adiabatic 
approximation [24, 25] as a quasi-particle making harmonic oscillations of a system of delocalized 
electrons as a whole relative to the center of the positively charged core in the direction normal 
to its surface. 
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On the other hand, it was established in [26, 27] that the situation turns out to be fundamen-
tally different for surface-doped nanocrystals. The characteristics of the electronic configuration 
induced by the surface doping mechanism generate excitation states of only angular degrees of 
freedom in the collective dipole mode upon interaction with an external electromagnetic field. 
The motion of electrons in the radial direction is not included, and the electrons oscillate tan-
gentially with respect to the boundary of the system within a relatively thin spherical layer. The 
described phenomenon is similar to dipole plasmon oscillations in fullerenes [28–30].

The goal of the study was to detect and analyze the influence of the doping type, the number 
of delocalized charge carriers, as well as the geometric dimensions of the system on the nature of 
multiparticle excitations in the electron system of doped semiconductor nanocrystals, focusing on 
cadmium selenide CdSe nanocrystals. 

Our approach to analysis of the phenomenon is based on a self-consistent quantum mechani-
cal description of multiparticle excitations in a system of delocalized charge carriers. Calculations 
of the system’s ground state were carried out in the Hartree–Fock approximation, taking into 
account the nonlocal interparticle exchange interaction. For comparison, the calculations were 
complemented by calculations performed in the local density approximation; the photoabsorption 
spectra of nanocrystals containing a different number of free charge carriers were obtained within 
the random phase approximation (RPA) both with nonlocal (RPAE) and local (RPAX) exchange 
interactions [31, 32].

Theoretical approach

We examine n-doped CdSe nanocrystals in a dielectric environment with different types of 
doping, as, according to the approach to the problem outlined in [19, 20], it determines the form 
of effective external potential where delocalized charge carriers move, and, accordingly, their 
distribution across the bulk of the nanocrystal. 

Consider an electroneutral system of interacting fermions related by the Coulomb interaction. 
Negative particles in the conduction band are referred to as electrons with an effective mass me 
from now on.

The total Hamiltonian of the described system is an operator of the total energy of a system 
of N electrons interacting with each other by means of the Coulomb potential V in the external 
potential Uext(r), whose radial dependence is determined by the doping type:

,

ˆ 1ˆ ( ) ( ).
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Since the motion of electrons within the nanoparticle bulk is limited by the edge of the con-
duction band near the surface [13], we describe Uext(r) as a spherical potential well, whose geo-
metric parameter R is determined by the dimensions set for the nanocrystal and the profile by 
the selected type of doping. The Coulomb pair interaction between electrons at points ra and rb 
is shielded due to polarization of both the semiconductor material itself and the environment, so 
that the multipole expansion of the interparticle interaction potential at ri,rj < R can be written as 
follows [33, 34]:
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where r>,< are the largest and the smallest of the radii ri,j, respectively; ε1, ε2 are the permittivity 
of nanocrystal materials and its surrounding environment, respectively; L, M are the total angular 
momentum and its projection, respectively; YLM, YLM

* are complex conjugate spherical functions; 
ri, rj are the radius vectors of interacting particles.
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It was assumed in the numerical calculations that the dielectric constant of cadmium selenide 
is equal to its value for the corresponding bulk material: ε1 = 6.25, and the permittivity of the 
nanoparticle environment was chosen typical for a number of experimental and theoretical works 
[19, 21, 22]: ε2 = 2.25. For comparison with some conclusions drawn in [19], numerical calcula-
tions were carried out at a value of R = 2 nm. 

Importantly, since the effective electron mass of the electrons in cadmium selenide is relatively 
small relative to the mass of the free electron, namely me = 0.11 m0, and the effective Bohr radius 
a0 turns out to be larger than the radius of the considered nanoparticles R,

a0 = h2ε1/mee
2 = 3 nm,

this is fundamentally different from the situation with ZnO nanocrystals whose optical properties 
were discussed in [21, 22, 26, 27].

The interparticle interaction in the ground state of the system was described using, the Hartree–
Fock (HF) approximation where the single-particle wave functions of the electrons ϕ(ri) satisfy 
the self-consistent equations [35–37]:
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where Ei are single-particle electron energies, UH(r) is the corresponding Hartree potential.
In the case of a system with filled shells, they are written as [37]
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where the bulk electron density
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is calculated by summing over all filled single-particle states. 
In this case, the contribution of the nonlocal exchange potential Ux(r) is defined as
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The computational results were compared with the corresponding values obtained in the local 
density approximation (LDA), implying that single-particle wave functions of electrons ϕi(r) sat-
isfy the Kohn–Sham equations [38], where, unlike Eq. (3), local exchange potentials Ux(r) are 
used in the Dirac–Slater approximation [38]:

( )( )1/32
1( ) / 3 ( ) / .x eU e= − ε ρ πr r (6)

In the case of spherically symmetric systems with closed electron shells and isotropic angular 
dependencies p(r) and Uext(r), the collective index i is equal to i = (n,l,m,σ), where n is the radial 
quantum number; l, m are the orbital angular momentum and its projection; σ is the spin pro-
jection, while the actual single-particle wave functions are written as the product of the radial, 
angular and spin components [39]:

( )( ) ( , ) .nl
nlm lm

P r Y
rσ σφ = θ ϕ χr (7)

The random phase approximation with nonlocal exchange interaction was used to describe 
multielectron correlations. The wave function of the excited state |Φk⟩ is represented within this 
approach as a superposition of single-particle excitations of the particle–vacancy type:
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where |Φ0⟩ is the ground state of the complex; â+, â are single-particle operators of creation and 
annihilation; the indices i, m are used (here and below) to denote filled and unfilled single-particle 
states of the electronic subsystem; the coefficients X (k)

im, Y
(k)
im are the forward-in-time and backward-

in-time amplitudes, respectively (determining the contributions of the corresponding particle–
vacancy pair to the multiparticle excited state (8)).

The excited states of a multiparticle system with filled shells possessing spherical symmetry are 
characterized in the Russell–Saunders (LS) coupling approximation by the total angular momen-
tum L and its projection M [41], therefore all single-particle particle–vacancy excitations have 
the same multipole in superposition (8). 

To describe the optical properties of the given complexes, it is sufficient to consider only dipole 
transitions from the ground state |Φ0⟩ to excited multiparticle states |Φk⟩ with L = 1, M = 0.

The amplitude coefficients X(k) and Y(k) in superposition (8) are determined by solving the 
RPAE matrix equation:

( ) ( ) ,k k
k= ΩUZ Z (9)

where Ωk are the eigenvalues of the matrix U,
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The elements of Hermitian matrices A, B are expressed in terms of single-particle energies Ei 
and Coulomb matrix elements of interparticle pair interaction, which are expressed as
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with single-particle functions obtained by solving Eqs. (3), where the potential V(r,r′) is deter-
mined from expansion (2).

Matrices A and B relate the single-particle excitations inside the electronic system [31, 37]:
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and include both direct (Hartree) and nonlocal exchange interactions, i.e.,

| | 2 | | | | ,U V Vαβ γη = αβ γη + αβ ηγ (13)

where the multiplier 2 before the direct component in this equality appears as a result of summa-
tion over spin variables.

The term containing the nonlocal exchange interaction in Eq. (13) was replaced by a matrix 
element in calculations of the excited states of the system in the random phase approximation 
with local exchange kernel (RPAX) [38], 
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where

[ ]( )
( , ') ( '),

( )
x

x

U
V

δ ρ
= δ −

δρ
r

r r r r
r

(15)

(here the local exchange potential Ux is determined in accordance with expression (6)).
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Positive eigenvalues Ωk are the energies of transitions between the ground state |Φ0⟩ and cor-
related excited states |Φk⟩. The energy spectra of excited states and the corresponding wave func-
tions obtained by solving Eqs. (9), (10) allow to describe the processes associated with excitation 
of the system under various external influences. In particular, the response of the system to an 
external electromagnetic field is determined by the spectrum of dipole excitations.

The oscillator strengths fk for dipole transitions between the ground and the kth excited state 
are equal to

22 ,k e k kf m D= Ω (16)

and satisfy the Thomas–Reich–Kuhn sum rule [37], i.e., ∑
k
fk = N.

Dipole matrix elements Dk (in the length form) are calculated by summing over all single-particle 
excitations [35, 36, 40]: 

( )( ) ( ) ,k k
k im im im mi

im
D X d Y d= +∑ (17)

where dαβ = ⟨α|z|β⟩ are the single-particle dipole amplitudes for the particle–vacancy pair.
The amplitude coefficients X(k) and Y(k) are normalized in accordance with the condition from 

[37], namely,

( )2 2( ) ( ) 1.k k
im im

im
X Y− =∑ (18)

Results and discussion
Free charge carriers in semiconductor nanoparticles form electron shells regardless of the dop-

ing mechanism [42, 43]. On the other hand, it was established in [19], analyzing the distribution 
of electron densities of the ground states in cadmium selenide and cadmium sulfide nanocrystals 
(CdSe and CdS), that the type of doping determines the shell structure and its filling order, and, 
therefore, the density distribution of free charge carriers in the crystal bulk. 

Coulomb repulsion between free electrons under surface doping shifts them towards the outer 
boundary of the system, and the characteristics of the electronic configuration induced by the 
surface doping mechanism ensure that only the angular degrees of freedom are excited during the 
formation of a collective dipole mode due to interaction with an external electromagnetic field. 
The motion of electrons in the radial direction is not included, since there is no effective restoring 
force acting on delocalized electrons from the positively charged core [26].

On the contrary, bulk-doped semiconductor nanocrystals are characterized by a more uniform 
distribution of electron density throughout the bulk, and the oscillation of free charges is transla-
tional in nature, similar to the situation in metal nanoparticles.

Surface doping

The step potential model [44, 45], replacing the potentials of individual atoms with an effective 
potential where delocalized conduction electrons move [46–48], implies that the electrons are 
strongly confined in their motion within the bulk of the nanoparticle under surface-type doping. 

An example of surface-type doping is the method for photodoping nanocrystals used in [21, 22]. 
In this case, the external potential can be represented as a spherical potential well with imper-

meable walls [19, 22, 26]:
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where U0 is some phenomenological parameter with the same order of magnitude as the electron 
work function of the semiconductor bulk material.
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Calculations of the ground state of systems with closed electron shells with a different number 
of electrons N indicate that the distribution of electron density in surface-doped nanocrystals is 
considerably non-uniform, shifted towards the surface (see Fig. 1), which is qualitatively consis-
tent with the predictions made in [19] based on the results of calculations performed in accor-
dance with the density functional theory. This is due both to interelectronic Coulomb repulsion 
and to the peculiarities of the electronic structure of the system.

In the ground state, initial filling of electron shells with maximum orbital moments occurs, 
producing the following structure:

( )max2 2 12 6 10
max max1 2 3 ,ls p d n l +



that is, all single-particle wave functions (7) of closed shells at N ≲ 102 correspond to radial quan-
tum numbers nr = n – l = 1, for which the radial parts of the wave functions Pnl(r) have no roots.

This electronic structure corresponds to the ‘magic’ numbers N for systems with closed elec-
tronic shells: 

( )2
max2 1 ,N l= +

where lmax is the angular momentum of the highest occupied molecular orbital (HOMO).

Fig. 1. Distributions of reduced electron charge density ρe(r)/N in the bulk 
of surface-doped CdSe crystal for different numbers of electrons N

Fig. 2. Reduced displacement of the average radius of electronic system Δr = ⟨r⟩/R 
and reduced effective width of electron layer δr = √⟨r2⟩–⟨r⟩2/R in the bulk 

of surface-doped CdSe crystal as functions of number of electrons
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Fig. 2 shows the displacement ratio of the average electron radius to the nanocrystal radius 
Δr = R – ⟨r⟩/R and the reduced effective width of electron density distribution δr = √⟨r2⟩–⟨r⟩2/R. It 
can be seen that the dispersion of electron radius decreases with increasing number of electrons 
N, and the electronic system acquires a relatively narrow radial distribution, which determines its 
optical properties. At the same time, the distribution functions ρe(r) calculated in the Hartree–
Fock approximation (3) and using the local Dirac exchange potential (6) turned out to be almost 
identical for all selected values of N.

It was hypothesized in [19] that the dipole resonance observed in the photoabsorption spec-
trum of CdSe nanocrystals is transformed with an increase in the number of free charge carriers 
in the system from an excited state whose parameters are determined by size quantization into 
plasmon-type excitation, even with a relatively small crystal radius (R = 2 nm). Indeed, the har-
monic plasmon resonance of rotational type also dominated in the spectra of dipole excitations of 
photodoped ZnO nanocrystals [21, 22] with a similar radial distribution of electron density. The 
collective nature of this resonance has been well described both within the quantum fluid oscilla-
tion model and within the quantum mechanical approach based on RPAE [26, 27].

However, the situation with cadmium selenide is radically different. As established in [27], a 
necessary condition for harmonic oscillations of electron density by the rotational plasmon type is 
that the size of the nanoparticle exceed the value of the effective Bohr radius a0, which was satis-
fied for all nanoparticles considered in [21, 22]. On the other hand, this condition is not satisfied 
for CdSe nanocrystals, since R = 2 nm.

In view of this difference, we conducted an analysis of the optical properties of CdSe nano-
crystals, which is presented below. The analysis provided conclusions about the nature of the 
dominant dipole resonance in CdSe photoabsorption spectra.

As established in the next section, the contribution to the collective excited state described 
by the wave function |Ψk⟩ (see Eq. (8)) for nanoparticles with a uniform distribution of electron 
density, such as bulk-doped semiconductor nanocrystals, produces a sufficiently large number 
of particle–vacancy pairs, and the distribution of oscillator strengths in the optical spectrum is 
obtained as a result of numerical solutions of Eq. (10) taking into account the contribution of all 
single-particle excitations. 

However, the situation is fundamentally different for surface-doped nanocrystals. Calculations 
indicate that a dominant expansion term appears in superposition (8) due to effective separation 
of the radial and angular motion of electrons, corresponding to the dipole transition between 
single-particle states on the lowest unoccupied (LUMO) and the highest occupied (HOMO) 
molecular orbitals with the excitation energy Δ:

Δ = ELUMO – EHOMO.
In other words, only the states with the smallest radial quantum numbers nr = 1 participate 

in the photoabsorption process, and only the transition between HOMO and LUMO electronic 
levels with the maximum angular moments lmax and lmax + 1, respectively, is effectively allowed 
for dipole excitations, while correlations between HOMO-LUMO single-particle excitation and 
other electron–hole pairs are negligible. This allows to describe the plasmon mode using the two-
level model (proposed in [27]), where all single-particle transitions appear to be negligible, with 
the exception of the single HOMO-LUMO excitation. 

In this case, the RPAE equation (10) is reduced to a system of two linear equations:
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0,
TF TR
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V X V Y
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∆ + − Ω + =

∆ + + Ω + =





(20)

where VTF = ⟨in|v|mj⟩ is the forward-in-time matrix element between two single-particle 
particle–hole dipole excitations; VTR = ⟨ij|v|mn⟩ is the backward-in-time matrix element between 
the ground state and the two-particle–two-hole excitation. 

In the case of local exchange interaction (15), these matrix elements turn out to be equal to each 
other, VTF = VTR = V, and the RPAX 2×2 system of equations (20) has a simple analytical solution:

2 2 ,VΩ = ∆ + ∆

(21)
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As already mentioned, [19] discussed the transformation of dipole resonance in CdSe nano-
crystals from size quantization to classical plasmon oscillations with increasing number of charge 
carriers in the system, even with its relatively small geometric dimensions (R = 2 nm). As demon-
strated in [26, 27], the influence of Coulomb interaction determining the contribution of inter-
particle correlations to the collective excited state can be estimated by a dimensionless parameter 
written using the notations in Eq. (20) in the form:

2 / 2 / 2 .V Vλ = ∆ ∆ = ∆

In the classical limit, with the system sizes significantly exceeding the Bohr radius, i.e., R ≫ a0, 
the Coulomb interaction dominates, and λ ≪ 1. Conversely, in the size quantization mode, when 
R ≪ a0, the frequency Ω is mainly determined by the single-particle energy Δ (λ ≫ 1). At the same 
time, analyzing Eq. (21), we can see that taking into account Coulomb correlations 2ΔV causes the 
plasmon resonance to shift towards higher values compared with the energy of single-particle exci-
tation Δ. Importantly, the shift of the excitation energy is not accompanied by any transformation 
of the wave function |Ψν⟩, since it contains only electron–hole HOMO-LUMO pairs, which does 
not contradict the collective nature of this excited state. Indeed, superposition (8) contains a large 
number of terms, although the radial quantum numbers nr = 1 and angular momenta lh = lp – 1 
remain fixed, and summation is carried out over the angular momentum projections. Thus, the 
dipole excited state can be regarded as a collective mode if the number of free electrons in the 
filled HOMO shell participating in oscillatory motion is sufficiently large: 2(2lmax + 1) ≫ 1.

Another important parameter that allows to estimate the contribution of Coulomb correlations 
to excitation of the dipole mode is the ratio of the backward-in-time and forward-in-time ampli-
tudes (Y and X, respectively):

2 .
2

Y V
X V

Ω−∆ ∆ + − ∆
= − = −

Ω+ ∆ ∆ + + ∆




(23)

In the case of small sizes of nanocrystals, when R ≪ a0 (λ ≫ 1), the role of Coulomb cor-
relations is negligible, X ≃ 1, Y ≪ 1, because the energy of interelectronic interaction is small 
compared with the kinetic energy of electrons localized near an impenetrable potential barrier 
at the particle surface. The role of these correlations is especially important in the case of CdSe 
nanocrystals considered, when the effective mass of charge carriers is small compared with the 
free electron mass.

The approximation of independent single-particle electronic states describes both the ground 
state and the spectrum of dipole excitations sufficiently well in this size quantization mode. In 
another limiting case, at R ≫ a0 (λ ≪ 1), the interelectronic interaction plays a significant role, 
which is confirmed by the relation X ≃ –Y ≃ 1. The increase in the back-in-time amplitude points 
to significant influence of Coulomb correlations in the ground state |0⟩. The transformation of the 
uncorrelated ground state of the system formed from filled single-particle electronic states below 
the Fermi level into a correlated multiparticle ground state consists in simultaneous production of 
excited electron–hole pairs, corresponding in the case of a two-level model to transitions between 
single-particle HOMO and LUMO states. This transformation leads both to a noticeable shift in 
the excitation energy ℏΩ and to a change in the dipole matrix element D that is the transition from 
the ground state to |0⟩ the collective excited state |1⟩. According to Eq. (21), Coulomb correlations 
lead to a significant increase in the transition energy ℏΩ compared with its single-particle value Δ. 
Their ratio can be estimated as ℏΩ/Δ ≃ 2V/Δ ≃ 1/λ. 

At the same time, as follows from Eq. (16), the dipole matrix element itself decreases. Since 
the ratio X ≃ –Y holds true in the presence of correlations, the two terms on the right-hand side 
of this equation compensate for each other, which leads to a decrease in the multiparticle matrix 
element D compared with its single-particle value d. According to Eq. (21), the sum of the ampli-
tudes X and Y is equal to



St. Petersburg Polytechnic University Journal. Physics and Mathematics. 2023. Vol. 16. No. 2

36

.X Y ∆
+ =

Ω
(24)

Thus, a simultaneous decrease in the dipole matrix element and an increase in the transition 
energy |0⟩ → |1⟩ preserve the value of the oscillator strength, i.e.,

2 2
2

2 2 2 .
3

e em mf D d NΩ ∆
= = =

 

(25)

The strength of the transition oscillator |0⟩ → |1⟩ is 2/3 of the sum rule, which is a character-
istic sign that this transition describes the contribution of the rotational dipole plasmon to the 
optical spectrum of the system. This conclusion is based on the property of the rotational mode: 
it includes only the angular motion of electrons; the radial degrees of freedom remain unexcited.

For the same reason, the square frequency of rotational plasmon is 2/3 of the square frequency 
of translational plasma oscillations observed in the case of bulk-type doping.

As an example, Fig. 3 shows the distribution of oscillator strengths in the vicinity of the dipole 
resonance for CdSe nanocrystal containing 98 delocalized electrons (N = 98) with a closed 
shell configuration

2 6 10 14 18 22 261 2 3 4 5 6 7s p d f g h i

and the maximum orbital moment lmax = 6 for the HOMO orbital. The figure illustrates the 
computational results obtained within the RPAE approximation by solving Eq. (10) with a com-
plete set of particle–vacancy pairs. For comparison, the dashed line in the same figure shows 
the spectral position of the oscillator strength corresponding to the two-level model (20) for the 
HOMO → LUMO 7i → 8j transition. The thin red line roughly corresponds to the profile of 
the photoabsorption cross section, generated by artificially broadening the spectral lines with 
Lorentzian profiles at a width of 0.2Ω. The energy position of the dominant resonance line on the 
spectrum (numbered 1) coincides with the analytical solution (21) with high accuracy, confirming 
the hypothesis that the resonance mode can be described as a correlated excited state including 
only transitions between HOMO and LUMO orbitals taking into account summation over all 
possible angular momentum projections. 

Fig. 3. Energy distribution of oscillator strengths in the vicinity of dipole resonance in CdSe nanocrystal 
(N = 98) according to different models: RPAE and single-particle Hartree–Fock approximations 
(bold solid red and dotted black lines, respectively), the two-level model (bold dashed black line). 

The spectral lines are numbered: k = 1, 2, 3
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Notably, the oscillator strength includes 2/3 of the sum rule with a sufficiently high accu-
racy in both cases, allowing to classify the resonance mode as purely rotational oscillations. The 
graph in Fig. 3 also shows the oscillator strength, calculated in the single-particle approximation. 
According to Eq. (21), the shift of the resonance line 1 towards higher energies compared with 
the initial position of the energy Δ7i→8j, indicates the contribution of interparticle correlations to 
the formation of the resonance mode and confirms its collective nature. Dipole transitions whose 
lines are numbered 2 and 3 (containing 6 and 5% of the sum rule, respectively) correspond to 
transitions with excitation of radial degrees of freedom and bear a single-particle nature, judging 
by the small difference in their energies from the values in the Hartree–Fock approximation.

As an addition to analysis of the dipole spectrum in Fig. 3, Fig. 4 shows for comparison the 
radial distribution of electron density for the ground state of the system ρe(r) and the radial distri-
butions of transition density for spectral lines 1, 2 and 3, illustrating the fundamental difference 
between the two types of excited states. The given radial distributions for lines 1, 2 and 3 are 
defined as

( )( ) ( ) * ( ) *( ) ( ) ( ) ( ) ( ) .k k k
tr im i m im i m

im
r X r r Y r rρ = φ φ + φ φ∑ (26)

The same graph (see Fig. 4) shows the density of the dipole transition for the two-level model, 
which in this case is defined as

7 8| ( ) ( ).i jHOMO LUMO P r P r=

As seen from the presented dependences, the transition density of resonance line 1 almost 
completely coincides with the data of the two-level model and is concentrated on the outer 
boundary of the electron density distribution, while the densities of single-particle transitions 2 
and 3 are more evenly distributed throughout the entire bulk of the system, since they correspond 
to excitation of radial degrees of freedom.

On the other hand, in our opinion, the transformation of resonant dipole mode in CdSe 
nanocrystals as the number of electrons increases with relatively small geometric dimensions of 
the system cannot be characterized as a transition from the quantum to the classical mode, as 
suggested in [19]. Despite the increase in the shift of the position of the resonance line relative 
to the energy of the single-particle transition Δ observed in Fig. 5,a, the values of the parameter 
λ and the amplitude ratio –Y/X (see Fig. 5, b, c) obtained for all N ≲ 102 still do not satisfy the 

Fig. 4. Radial distributions of electron density ρe(r) and transition density ρ(k)
tr(r) 

for spectral lines with k = 1, 2, 3 (see Fig. 3), as well as the overlap of wave functions 
Pnl(r) for molecular orbitals 1i(HOMO) and 1j(LUMO) 
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conditions λ ≪ 1 and X ≃ –Y ≃ 1, characteristic of classical plasmon oscillation, when the energy 
of the Coulomb interelectronic interaction prevails in the correlated multiparticle excitation over 
the single-particle energy of size quantization Δ. This is a consequence of the relatively small 
effective electron mass in the CdSe and, accordingly, the large effective Bohr radius. While the 
relative increase in the back-in-time amplitude observed in Fig. 5,c indicates a corresponding 
increase in the contribution of Coulomb correlations to the ground state |Φ0⟩ as the number of 
particles N increases, it turns out to be insufficient for transition to the classical oscillations of 
the electronic system.

In this case, the transition of resonant excitations from the quantum to the classical mode is 
achieved by increasing the geometric dimensions of the nanocrystal so that at least the condition 
R > a0 is satisfied. Fig. 6 shows the dependences for the main parameters of the resonant excited 
state on the radius R in a nanocrystal containing 98 electrons (N = 98) for the resonance mode 
corresponding to spectral line 1 in Fig. 3. Evidently, the transition of the rotational plasmon mode 
to the classical regime in the case of CdSe is achieved at values of R above 6 nm, i.e., at least 
for R ≳ a0. 

Fig. 5. Main parameters of resonant excited state in a nanocrystal as functions 
of the number of electrons N: plasmon energies ℏΩ obtained in different 

approximations (a); parameter λ (b) and amplitude ratios –Y/X (c). 
RPAE approximations, two-level model (2×2) and one-particle approximation (Δ) (Fig. 5,a) are used

a)

b) c)
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Bulk doping

In the case of bulk doping of semiconductor nanocrystals, the positive charge is assumed to 
be uniformly distributed throughout the entire bulk of the system [19] and the external potential 
it generates within the model used should take the form of the potential of a uniformly charged 
sphere with the charge Z = Ne in a dielectric environment:

2
2 21

3
1 2

2

0
2

21 ,  0 ,
2

( )

,  .
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Ne r R r R
R

U r
Ne U r R

r

   ε
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− + > ε

(27)

Transformation of the external potential in the case of bulk-type doping compared with the 
surface-type leads to a significant change in the structure of the electronic shells of the sys-
tem, their filling order and, consequently, the distribution of electron density in the bulk of the 

Fig. 6. Main parameters of resonant excited state in CdSe nanocrystal (N = 98) 
as function of potential well radius R: dipole resonance energy ℏΩ 

and energy difference of single-particle levels Δ (a), ratio ℏΩ/Δ (b), parameter λ (c) 
and ratio –Y/X for resonant line 1 (see Fig. 3) (d)

a) b)

c) d)
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nanocrystal. The calculations show that the order of shell filling in bulk-doped systems both in 
the Hartree–Fock approximation and using the local exchange potential (6) should be similar to 
this order for delocalized electrons in clusters of alkali metal atoms within the jellium model [6, 9, 
46, 49, 50], when delocalized conduction electrons move in the field of the effective potential of 
a uniformly charged ion core. Thus, the electronic structure of the ground state of a bulk-doped 
nanocrystal containing 124 electrons is written as follows:

2 6 10 2 14 6 18 10 22 2 26 61 2 3 2 4 3 5 4 6 3 7 4 .s p d s f p g d h s i p

In other words, unlike the situation with surface-type doping discussed in the previous section, 
as shells are filled, orbitals whose radial wave functions Pnl(r) have no roots alternate with orbitals 
whose wave functions have roots, which, in turn, leads to a more uniform distribution of elec-
tron density ρe(r) over the bulk of the system (Fig. 7). Fig. 8 shows a noteworthy non-monotonic 
dependence of the average radius of the electronic system on the number of particles. The reason 
why steps appear, accompanied by a slow increase in ⟨r⟩, is that the filled shells alternately have 
radial wave functions Pnl(r) with no roots, characterized by greater average radii, and wave func-
tions with roots (this was not observed in the case of surface-doped systems).

Fig. 7. Reduced radial distributions of electron density ρe(r)/N 
in bulk-doped CdSe nanocrystals with a different number of electrons N 

Fig. 8. Ratio of average radius of electronic system to radius 
of nanocrystal ⟨r⟩/R as function of system particle number
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As in the case of surface doping, the resonance mode dominates in the spectrum of dipole 
excitations of bulk-doped nanocrystals; its frequency significantly shifted relative to the positions 
of the frequencies of single-particle transitions. 

Fig. 9 shows the distributions of oscillator strengths in the CdSe crystal with 90 electrons 
(N = 90) and the ground state configuration

2 6 10 2 14 6 18 10 221 2 3 2 4 3 5 4 6s p d s f p g d h

in the vicinity of dipole resonance, calculated in the random phase approximation both taking 
into account the nonlocal exchange interaction (RPAE) and the local exchange potential (15) 
(RPAX). It should be noted that unlike surface doping, in the case of bulk doping, electrons 
under dipole resonance move in the direction normal to the system surface with minor deviations 
in the distribution of electron density relative to its ground state. On the other hand, oscillations 
of the electronic system under surface-type doping have a compressive nature, with significant 
variation in the charge density occurring during motion [27]. As established above, the reason for 
this is that only angular (rotational) degrees of freedom participate in excitation of the collective 
mode under surface-type doping. 

Fig. 9. Energy distributions of oscillator strengths in the vicinity of dipole resonance 
in the spectrum of bulk-doped CdSe nanocrystal (N = 90) obtained in different 
approximations: RPAE and RPAX (vertical red and blue segments, respectively), 

single-particle Hartree–Fock approximation (vertical black dotted lines).
The spectral lines are numbered: k = 1, 2, 3

Fig. 10. Radial distributions of electron density ρe(r) and transition 
density ρ(k)

tr (r) for spectral lines with k = 1, 2, 3 (see Fig. 9)
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The motion of electrons in the direction normal to the system surface in the case of bulk dop-
ing is due to the fact that an effective restoring force acting on delocalized electrons arises in the 
parabolic potential generated by the bulk distribution of the positive charge in the nanocrystal.

Within the adiabatic approximation [24, 25], such collective excitation is identical in nature 
to the surface plasmon in the spectra of metal clusters [6, 9, 46] and can be described as har-
monic oscillations in the center of mass of an electron cloud in the parabolic potential of a 
positively charged core. At the same time (see Fig. 9), pronounced fragmentation is observed in 
the resonance line due to the interaction of the harmonic mode with single-particle excitations. 
In contrast with the situation discussed in the previous section, a difference appeared in the posi-
tion of the lateral maxima, associated with different exchange potentials, preserving an almost 
unchanged position of the central peak and its oscillator strength. This result confirms the link 
between the fragmentation of the resonance line and the interparticle interaction involving the 
exchange component.

Fig. 10 shows the radial distributions of electron density of the ground state ρe(r) and the 
density of dipole transitions for the spectral lines numbered in Fig. 9. Importantly, the transition 
density dramatically differs from zero over the entire bulk of the system for all three spectral 
lines, including the main one numbered 1. This means that at least several particle–vacancy 
pairs participate in the formation of collective modes (8) and the two-level model (20) is no 
longer applicable.

The table gives the values of the forward-in-time and backward-in-time amplitudes for the 
main single-particle transitions that contribute to the corresponding lines in the spectrum of 
excited states in a cadmium selenide nanocrystal with the number of electrons N = 90, shown 
in Fig. 9. As can be seen from the data in the table, all three dipole perturbations (including the 
main resonance line 1 with an energy of ℏΩ = 2.8 eV and an oscillator strength of approximately 
52% of the sum rule) are linear combinations (8), where the main contribution is made by two 
single-particle transitions: 6h → 7i and 4d → 5f. The influence of other particle–vacancy pairs 
turned out to be insignificant. Judging by the amplitude ratios –Y/X ~ 1, correlations in the 
ground states play a significant role in all cases, so we can conclude that all three lines can be 
regarded as the result of fragmentation of one harmonic mode.

Fig. 11,a shows the ħΩRPAE dependences for the energy of the resonance mode on the number 
of delocalized electrons, calculated in the random phase approximation with a full basis of sin-
gle-particle excitations, as well as the computational results obtained within the two-level model 
for transitions with the maximum oscillator strength Ω2×2 and the energy of the corresponding 
single-particle transitions Δ depending on the number of electrons in bulk-doped CdSe nano-
crystals. In contrast to the situation with surface-type doping, where, according to the data 
presented in Fig. 5, the results obtained by the two-level model and the calculations taking 
into account the full basis virtually coincided, there is a significant discrepancy between these 
approaches for any number of electrons in the system. This confirms the significant influence 

Tab l e

Calculated amplitudes of the main single-particle transitions contributing 
to spectrum of excited states in CdSe nanocrystal (see Fig. 9)

Spectral
line

Amplitudes, arb. units, 
or their ratios for transition 

6h → 7i 4d → 5f
X –Y –Y/X X –Y –Y/X

1 0.60 0.12 0.20 0.54 0.07 0.13
2 0.36 0.05 0.14 0.44 0.04 0.09
3 0.22 0.05 0.23 0.15 0.03 0.20

Nota t i on s :  X, Y are the forward-in-time and backward-in-time 
amplitudes, respectively. Note. The number of electrons in the electron 
shell was assumed to be N = 90.
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of correlations between single-particle channels on the formation of a collective excited state 
(8). This influence is also confirmed by the observation that the frequency ΩRPAE is increased 
by almost two times compared with the frequency of the single-particle transition Δ, while the 
amplitude ratio –Y/X for the main dipole transitions is higher by more than two times (com-
pared with the results in Fig. 5,a). Recall that this ratio serves as an indicator of correlations 
in the ground state. 

Thus, the collective dipole mode in CdSe nanocrystals with bulk-type doping exhibits all the 
properties of a correlated multiparticle excited state. Therefore, it can be described as a surface 
plasmon resonance, even though the condition X ≃ –Y ≃ 1 is not satisfied for the considered case 
when R = 2 nm at N ≲ 102.

As in the case of surface doping, the collective resonance mode increasingly approaches the 
classical plasmon in its properties with an increase in the geometric dimensions of the bulk-
doped nanocrystal. Fig. 12,a shows the dependences for the energy of the resonant excited state 
ħΩRPAE and the differences of single-particle energy levels Δ for the single-particle transition 
6h → 7i (HOMO → LUMO) on the radius R in a nanocrystal containing N = 90 electrons for 
the resonance mode corresponding to line 1 in Fig. 9,a. Fig. 12,a also shows the analytical radial 
dependence of the classical frequency of plasma oscillations Ωcl for a conducting sphere in a 
dielectric environment; the graph is plotted by the formula [12]:

Fig. 11. Main parameters of resonant excited state in bulk-doped CdSe nanocrystal 
as function of number of electrons N: dipole resonance frequencies Ω obtained 

in different approximations (a); amplitude ratios –Y/X (b) and ratios ħΩRPAE/Δ (c). 
RPAE approximations, two-level model (2 × 2) and one-particle approximation (Δ) were used (Fig. 11,a) 

a)

b) c)
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As seen from this graph, there is still a noticeable discrepancy between the frequency of the 
dipole resonance obtained by quantum mechanical calculations and by the classical estimate at 
R = 2 nm. However, its magnitude decreases rapidly, a transition from the quantum regime of 
plasma oscillations to the classical one can be assumed to be already made at R ≳ 4 nm, when 
the influence of interparticle interaction in the electronic system prevails over the effects of size 
quantization, and the ground state in this case is a highly correlated system. This is also evidenced 
by the dependences presented in Fig. 12,b and c for the ratios of energies and amplitudes for the 
electronic transition making the main contribution to the sum (8).

Thus, we can conclude that the conditions for the transition of collective dipole exci-
tation from the quantum regime to the classical one largely depend not only on the geometric 
dimensions of the nanocrystal and the number of free charge carriers, but also on the doping 
type; in the case of bulk doping, the transition is observed at relatively smaller values of the 
system radius.

Fig. 12. Radial dependences for main parameters of the resonant excited state 
in bulk-doped CdSe nanocrystal (N = 90): dipole resonance energies ħΩ according 

to different models (a), as well as ħΩRPAE/Δ (b) and amplitude –Y/X (c) ratios. 
RPAE and single-particle (Δ) approximations are used; the figure also shows the corresponding 

values of the classical plasmon resonance frequency Ωcl (see Fig. 12,a) 

a)

b) c)
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Conclusion

The paper theoretically investigated the optical properties of semiconductor nanocrystals with 
different types of doping. We considered cadmium selenide (CdSe) nanocrystals containing differ-
ent numbers of delocalized charge carriers. The interaction processes of electrons with each other 
and with an external electromagnetic field were described using a theoretical approach based 
on the Hartree–Fock approximation and the random phase approximation taking into account 
exchange interactions (RPAX). For comparison, the results are also presented for calculations in 
the local density approximation with the Dirac–Slater potential. 

It was found that a dominant resonance line is observed in the optical spectra of nanocrystals 
obtained using both approaches; its position practically does not depend on the method chosen 
for describing the exchange interaction between electrons for all the given particle numbers in the 
system. The excited state corresponding to the resonant dipole transition has a collective nature 
in both surface and bulk doping mechanisms, as evidenced by the significant contribution of mul-
tiparticle correlations to the generation of the wave function. 

In the case of surface doping, the electronic structure of the ground state has a largely non-uni-
form distribution of charge density, when the maximum of the distribution function is shifted to 
the surface of the nanocrystal, which, in turn, determines the nature of the oscillations of the 
dipole resonance mode.

Analyzing the distribution of oscillator strengths in the vicinity of the resonance line, as well as 
the corresponding dipole amplitudes and the density distribution of dipole transitions, we found 
that the oscillations of electron density in the collective mode are rotational in nature, with only 
angular degrees of freedom excited, while the motion in the radial direction is practically frozen, 
since there is no restoring force (directed along the normal to the surface) acting on charge car-
riers in the external potential.

This conclusion is further corroborated by the results obtained within the two-level model 
that describes the dipole resonance under surface doping as a correlated excited state composed 
of particle–vacancy pairs including only transitions between HOMO and LUMO orbitals for all 
possible angular momentum projections. Calculations indicate that the resonance frequency val-
ues obtained taking into account all possible single-particle transitions and within the two-level 
model turn out to be nearly identical for all CdSe nanocrystals considered containing from 8 to 
162 delocalized electrons. Since the relationship between the rotational mode and single-particle 
excitations involving radial degrees of freedom is weak, the resonance line is virtually not frag-
mented. It was also found for relatively small system sizes, when the radius of the nanocrystal 
turns out to be less than the effective Bohr radius, that the resonance mode still does not make 
a transition from size quantization mode to classical plasmon oscillations with an increase in the 
number of electrons, even despite the increasing contribution of interelectron Coulomb inter-
action. The tendency towards transition to classical mode is manifested only when the radius of 
the system is increased to the size of the effective Bohr radius, with the rotational character of 
oscillatory motion preserved.

As established by the calculations, the electronic structure of the ground state turns out to 
be significantly different for bulk doping compared with surface-doped systems. In this case, the 
radial distribution of electron density over the bulk of the nanocrystal becomes more uniform, 
and the parabolic nature of the positively charged core induces a radially directed restoring force 
acting on the electrons. Therefore, the collective excited state can be described as harmonic oscil-
lations of the electron cloud as a whole in the direction normal to the surface of the system with 
minor deviations in the density distribution compared with the ground state. 

Thus, in the case of bulk doping, the dipole resonance can be described as a collective trans-
lational mode where, in contrast with surface doping, several single-particle dipole transitions are 
correlated simultaneously. This is confirmed by the fact that the results obtained by the two-level 
model differ significantly from those taking into account the full single-particle basis, and the 
difference increases as the number of particles in the system increases. In addition, the interaction 
of the harmonic mode with single-particle excited states leads to fragmentation of the resonance 
line, since the degrees of freedom of the oscillatory electronic system are not separated in this 
situation. Quantum effects also make the largest contributions to forming the collective mode at 
relatively small sizes of nanocrystals, however, the transition to the classical plasmon oscillation 
mode occurs at smaller radii of the system than with the surface type of doping. As a result, the 
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dipole oscillations of the electron cloud can be described as a plasmon mode even at sizes com-
parable to the effective Bohr radius. The frequency of this mode tends to the classical frequency 
of plasma oscillations in a spherical conductor.

Thus, it can be concluded that the optical spectrum of semiconductor nanocrystals is dom-
inated by a resonant dipole mode regardless of the method used for doping. The nature of the 
mode in question is determined by the size of the system itself, as well as the type and degree of 
doping, i.e., the number of delocalized charge carriers. As the geometric dimensions of the elec-
tronic system (primarily) and the number of its electrons increase, a power-law transition of the 
collective excited state occurs from the size quantization mode to classical plasmon oscillatory 
motion of this system. In this case, the nature of motion depending on the number of excited 
degrees of freedom is determined by the electronic structure of the ground state. In turn, the elec-
tronic structure of this state is formed in accordance with the distribution of the positive charge 
potential, i.e., with the doping type.
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