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Abstract. The paper proposes a little-distributed approach to a priori estimation of object 
characteristics. The mathematical model of the Coriolis vibratory gyroscope resonator which is 
being developed to determine the splitting of its eigenfrequency, has been chosen as an object. 
The frequency splitting is caused by the presence of imperfections of the resonator due to the 
manufacturing process. The theory of design of experiment and the sensitivity analysis method 
were used to estimate the model characteristics. The model is based on the determining relations 
of the theory of thin elastic tensile shells and on the Hamilton’s variational principle. It was 
shown that the application of the taken methods allowed us to reveal the model parameters 
making the minimum contribution to the values of the output parameters and to simplify the 
model by their excluding. 
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Аннотация. В статье предлагается малораспространенный подход к априорной оценке 

характеристик объекта. Математическая модель резонатора волнового твердотельного 
гироскопа, разрабатываемая для определения расщепления его собственной частоты, 
послужила объектом исследования. Расщепление частоты вызвано наличием 
несовершенств резонатора, обусловленных процессом производства. Для оценки 
характеристик модели использованы методы теории планирования эксперимента и 
анализа чувствительности. Модель построена на основе определяющих соотношений 
теории тонких упругих растяжимых оболочек, а также вариационного принципа 
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Великого.

Гамильтона. Показано, что применение рассмотренных методов позволяет выявить 
параметры модели, вносящие минимальный вклад в значения выходных параметров, и 
упростить модель путем их исключения.
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Introduction
High-precision navigation systems based on solid-state wave gyroscopes (SSWG) are one of 

the most promising directions in modern gyroscopy [1–3]. The operating principles of the SSWG 
based on the Bryan effect are well known and described in the literature [4, 5]. However, the accu-
racy characteristics sufficient for constructing high-precision navigation systems [3] can only be 
achieved by involving a class of problems whose solutions require accurate mathematical modeling.

The following problems are related to mathematical modeling in the development of the SSWG:
prediction of operational natural frequencies and their splitting magnitudes;
identification of imperfection parameters in an imperfect resonator;
development of a balancing algorithm for the SSWG resonator;
development of a control algorithm for the SSWG.
It is important not only to be able to construct and verify the required mathematical model in 

the course of the simulation, but also to analyze the influence of its variable parameters on the 
output characteristics of the object to ultimately obtain the most compact configuration of the 
model describing the given process. 

Methods of sensitivity analysis ( SA) and, in particular, global sensitivity analysis ( GSA) [6], 
as well as methods of design of experiment ( DoE) [7, 8] are intended for solving such problems. 
Notably, these methods are widely used for processing the results of field tests carried out as part 
of the device optimization problem; they are not so common, however, for analysis of the ana-
lytical computational models constructed. 

This paper provides an example of applying the DoE and GSA methods to a mathematical 
model of a hemispherical SSWG quartz resonator.

Description of the mathematical model

The mathematical model of a quartz hemispherical resonator is designed to determine the 
operating natural frequency, as well as its splitting due to the presence of imperfections appearing 
in the manufacturing process. We consider such imperfections as the variation of density, elastic-
ity, and thickness. The model is based on the governing relations from the theory of thin elastic 
tensile shells [9], as well as Hamilton’s variational principle [10]. The basis is the expression

( )1

0
, , , , , , 01 1 ,

t
I L q q q q t dtn nt
δ = δ … … =∫  

where δI is the variation of the required functional; L = T – W (T, W are the kinetic energy of 
the considered unit volume of the shell and the potential strain energy, respectively); qi are the 
generalized coordinates in ndimensional space; t is time. 
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According to the formulas presented in [9, 11], the expressions for kinetic and potential energy 
have the form:
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where ρ, kg/cm3, is the density of the material (quartz glass); V, m/s, is the absolute velocity vec-
tor of an arbitrary point of an elastic body; h, m, is the thickness of the hemispherical shell; A1, A2 
are the Lamй parameters; ν is Poisson’s ratio of the material; E, MPa, is its elastic modulus; ε1, 
ε2 are the parameters characterizing the elongation of the mid-surface; κ1, κ2 are the parameters 
characterizing the bending deformations of the mid-surface; ω, τ are the parameters character-
izing the shear and torsion deformations of the shell, respectively; θ, φ, deg, are the zenith and 
azimuth angles, respectively.

These expressions take into account the imperfections of the parameters E, h, ρ by specifying 
their inhomogeneity with respect to the circumferential coordinate by the following law:

0

0

0
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where E0, h0, ρ0 are the base values of the elastic modulus, thickness and density; amp_E, k_E, 
phase_E, amp_h, s_h, phase_h, p_rho, amp_rho, phase_ rho are the parameters of harmonic 
perturbation (imperfections).

Using the Ritz method [12], the solution of the problem is reduced to solving the 
eigenvalue problem:

( )2 0,A B− =Cλ

where A, B are matrices associated with kinetic and potential energies, as well as the coordi-
nate functions; C is a column vector of unknown coefficients; λ is a column vector of natural 
frequencies. 

The values of natural frequencies corresponding to the second elliptical mode are determined 
as a result of the calculations. 

For an ideal hemispherical resonator without imperfections, the difference between the paired 
values of the natural frequencies for the elliptical mode (f1 and f2) is zero. At the same time, in the 
case of a nonzero harmonic amplitude, the difference in the absolute value between f1 and f2 E, 
h, ρ is the required value of the splitting of the operational natural frequency. This is a property 
of any vibration mode with azimuthal angle variability for a hemispherical resonator.

We should note that in this paper we consider a mathematical model containing nine 
variable parameters associated with assigning the imperfections for the quantities E, h and ρ. 
These parameters are selected based on the computational resources available and the clarity 
of the results presented; we do not purport that this choice is sufficient for comprehensive 
analysis. 

All calculations were performed using Matlab software combined with predictive modeling and 
robust optimization software pSeven (developed by DATADVANCE).
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Global sensitivity analysis conducted for the mathematical model of the resonator

GSA methods are aimed at identifying the degree to which variable parameters of a function 
influence its output (analyzed) value. In practice, if the functional dependence between the 
input and output parameters is unknown, but their experimental values are available, then DoE 
methods are used to construct it. The latter imply the construction of an optimal experimental 
plan, i.e., the minimum number of experiments conducted, but still sufficient to construct a 
functional dependence between input variables (factors) and output parameters, as well as the 
assessment of the quality of the constructed function. A similar approach is used for conducting 
virtual experiments: a mathematical model is represented as a black box and serves only to obtain 
the values of the output parameters for the given input parameters. 

As a result, a data array containing various combinations of factor values and the corresponding 
values of output parameters can be used to construct a simpler mathematical model describing the 
relationship between them, which generally reduces the computational time at the subsequent stages. 

For example, a polynomial representation is often used as a simplified model:

2 2
0 1 1 2 2 11 1 22 2 12 1 2...,y a a x a x a x a x a x x= + ⋅ + ⋅ + ⋅ + ⋅ + ⋅ ⋅

where y is the value of the output parameter, anm are the required coefficients, xn are the values 
of the factors. 

The splitting S of the operational natural frequency is taken as the output parameter within the 
model considered, and the parameters of the imperfection harmonics at E, h and ρ (k_E, amp_E, 
phase_E, s_h, amp_h, phase_h, p_rho, amp_rho, phase_rho) are taken as factors.

A function of the form

( )_ ,  _ ,  _ ,  _ ,  _ ,  _ ,  _ ,  _ ,  _S k E amp E phase E s h amp h phase h p rho amp rho phase rho

is a target or a response function. The geometric interpretation of this function is called the 
response surface. 

An array of data is required to build a response surface; these data are the result of a real or 
virtual experiment (this follows from the above). The number of experiments should allow to 
construct a response surface describing the dependence of factors and output parameters in the 
considered region of the factor space with the required accuracy. It is preferable that the number 
of experiments should be minimal. There are numerous methods within the DoE for formulating 
an optimal experimental plan.

In this study, we used Latin hypercube sampling ( LHS) [8], generating an almost random 
sample of factor values evenly filling the factor space. 

Because there is no universal approximation method for constructing a continuous function 
based on known numerical values of parameters, various methods were used in this paper, cho-
sen because they yield satisfactory results, and provide high quality indicators of the constructed 
functions. To determine the influence of factors on the output parameter S, the Sobol method 
was used as the GSA method [13]. 

It should be noted that the pSeven software uses a surrogate modeling approach that provides 
increased accuracy of constructing the response surface due to an additional iterative learning 
process (training, correction) of the primary response function [14] to the required accuracy 
parameters. 

Sensitivity analysis of the mathematical model of the resonator: results and discussion

Three isolated cases with different initial data (ranges of factor variation) were considered for 
the model, which was done by reducing the dimension of the model by specifying some factors 
as constants (without the variation range). This feature was determined by the goals to minimize 
the computational time and to simplify the processing of the results obtained.

In all cases, the values setting the variation range of the physical and geometric characteristics 
of the material (density, elastic modulus, thickness) were selected based on the values of imper-
fection parameters determined by technological errors made during machining and manufacturing 
of the workpieces. The first 12 harmonics of imperfections are considered, the variation range of 
the phase angle of the harmonics corresponded to a variation in the phase angle from 0 to 2π.
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The results were represented using data slices over the values of the full factor space obtained 
via the constructed target function. In other words, each slice is a data sample that allows to 
monitor the variation in splitting (as an output parameter) depending on the selected factor, while 
the rest are constant (based on the selected values).

Case I. Consideration of mathematical model to estimate the influence of factors amp_E, 
amp_h, amp_rho on the output parameter S. For this purpose, we used the initial data from 
Table 1, which contains the factors considered and their variation ranges. 

In accordance with the constructed experi-
mental plan, the calculations carried out by the 
response surface model (RSM) [8, 14] yielded 
a response surface, with the Sobol indices cal-
culated based on it [13]; they reflect the degree 
of influence of the studied parameters on the 
model. Fig. 1 shows data slices in the directions 
corresponding to the coordinate axes of Split 
(the value of frequency splitting) and each of 
the studied parameters. Evidently, the amp_E 
parameter has practically no effect on the output 
splitting value within the variation limits, while 
the other two parameters affect the splitting 
equally. In addition, the Sobol indices are shown 
graphically as columns in the lower right corners 
of the slices in Fig. 1 (their numerical values are 
given in Table 2). These indices actually express 
the variance magnitude of the model output rela-
tive to each of the factors. Importantly, the total 
value of the first-order Sobol indices is always 
equal to unity. 

Analyzing the obtained results, we find that 
the calculations can be simplified in the case 
of a large-dimensional model by neglecting the 
variability of the elastic modulus, due to the 
small value of the Sobol index for the amp_E 
parameter. 

Case II. Consideration of the mathematical 
model to minimize the splitting magnitude with 
a given (constant) imperfection in the form of 
parameters amp_E, phase_E, amp_h, phase_h. 
For this purpose, we used the initial data from 
Table 1, containing factors and their variation 
intervals (i.e., this is now a problem with four 
variables). 

Fig. 2 shows data slices for the factors under 
consideration for the response surface con-
structed using the sparse Gaussian process 
(SGP), which is a modification of the standard 
Gaussian process (GP) [14, 15] for samples of 
large dimension. 

Similarly to case I, we can see from Fig. 2 
that the variation of the thickness parameters 

makes a decisive contribution to the change in splitting. The maximum splitting is observed when 
the phase component of the thickness variation coincides with the phase of the density variation 
(set as a constant). The phase value for which the splitting is reduced to zero is also observed in 
the slice, suggesting that the splitting caused by one defect can be balanced by introducing another 
defect with certain parameters. We should note that this result is possible because the factors con-
sidered in the mathematical model of the resonator are disconnected. 

Tab l e  1

Factors used to construct response surfaces
and their variation ranges for three cases

Factor Variation range
Case I

amp_E 0.0005–0.0500
phase_E 0.5000

k_E 4.000
amp_h 0.0005–0.0500

phase_h 0.5000
s_h 4.000

amp_rho 0.0005–0.0500
phase_rho 0.5000

p_rho 4.000
Case II

amp_E 0.0005–0.0500
phase_E 0.000–2.000

k_E 4.000
amp_h 0.0005–0.0500

phase_h 0.000–2.000
s_h 4.000

amp_rho 0.0100
phase_rho 0.5000

p_rho 4.000
Case III

amp_E 0.0100
phase_E 0.5000

k_E 1.000–12.000
amp_h 0.0100

phase_h 0.5000
s_h 1.000–12.000

amp_rho 0.0100
phase_rho 0.5000

p_rho 1.000–12.000
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Fig. 1. Slices of data obtained for factors amp_E(a), amp_h(b) and amp_rho(c) (case I)

a) b) c)

Fig. 2. Slices of data obtained for factors 
amp_E (a), amp_h (b), phase_E (c) and phase_h (d) (Case II)

a) b) c) d)

Tab l e  2 

Influence of parameters considered
on the model for Case I (see Table 1 and Fig. 1) 

Factor amp_E amp_h amp_rho
Sobol index 0.00028 0.44800 0.45100
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Fig. 3 shows a comparison of slices for these response surfaces constructed by SGP and 
high-dimensional approximation combined with the Gaussian process (HDAGP) [14, 15].

Considering the constructed response surfaces, we can observe their qualitative similarity, but 
the approximation performed by the HDAGP method gives negative splitting values. Such values 
are impossible, since the splitting values are calculated as the modulus of the difference between 
the natural frequencies f1 and f2 for an elliptical mode. 

On the other hand, estimation of the approximation quality by the HDAGP method gives 
close yet better results compared to those obtained by the SGP method (Table 3). This result 
suggests that the constructed models must be tested for adequacy; furthermore, verification cal-
culations using a mathematical model are necessary so that the approximation is performed with 
the accuracy sufficient for the task at hand at least in the area considered. 

Case III. Consideration of the mathematical model to obtain a known result presented in 
[5] using DoE and GSA methods. The above study confirmed the decisive influence of the 4th 
imperfection harmonic on the frequency splitting of a hemispherical resonator with the 2nd ellip-
tical operational mode. The initial data of Table 1 containing three factors and their variation 
intervals were used for this case. These are k_E, s_h and p_rho. 

Fig. 3. Slices of data obtained for factors amp_E(a), amp_h(b), 
phase_E(c) and phase_h (d) (case II) for SGP and HDAGP surfaces 

(brown and green curves, respectively)

a) b) c) d)

Tab l e  3

Estimate of approximation quality of splitting values for case II

Estimation method R2 MSE MAPE
%

HDAGP 0.983 3.169 7.368
SGP 0.979 3.497 7.583

Nota t i on s :  R2 is the determination coefficient, MSE, MAPE are the root-
mean-square and maximum prediction errors, respectively.
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Various approximation methods were tested for constructing the corresponding response sur-
face, including the ones discussed above. However, the expected result was only obtained by the 
gradient boosted regression trees method (GBRT) [14, 15]. This method is applicable for approx-
imating complex functions and working with large data sets; the output is a step function rather 
than a smooth one, which is characteristic for the influence of the 4th harmonic. In the case of 
the 2nd elliptical mode of vibrations, the 4th imperfection harmonic has a pronounced effect on 
splitting, increasing it by an order of magnitude, compared with the nearest harmonics (2nd and 
3rd). Fig. 4 shows data slices for the factors under consideration for the surface constructed by 
the GBRT method.

The calculation results indicate that the method can be used to detect a local maximum in the 
region of the 4th harmonic of density variation and thickness variation. A maximum could not 
be detected in the region of the 4th harmonic for elasticity variation. This is probably caused by 
a significantly lower influence of the factor on frequency splitting (the Sobol index is 0.0098) and 
poor quality of the constructed model (the determination coefficient is 0.524). 

Conclusion

This paper reports on the potential for application of the methods of design of experiment 
(DoE) and global sensitivity analysis (GSA) at a qualitative level to examine the behavior of the 
selected mathematical model and to assess the degree to which its parameters influence the output 
characteristics. 

The application of the methods is illustrated by the example of a mathematical model of a 
hemispherical quartz resonator with the parameters describing the imperfection of its geometry 
and the physico-mechanical properties of the material from which it was manufactured. 

We established that the parameters associated with the variation in thickness and density of 
the resonator have the greatest influence on the splitting of its natural frequencies. The influence 
of these parameters is comparable, which makes it possible to eliminate the effect of frequency 
splitting by compulsorily introducing one type of imperfection in the presence of another (for 
example, introducing thickness variation in the presence of density variation). 

We established that the 4th harmonic of imperfections has the decisive influence on the fre-
quency splitting described in the literature.

Fig. 4. Slices of data obtained for factors s_h(a), k_E(b) and p_rho(c)
for surface constructed by GBRT method (case III)

a) b) c)
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The DoE and GSA methods were confirmed to be effective for analysis of mathematical mod-
els. These methods allow to identify the model parameters that make a minimal contribution to 
the values of the output parameters, and simplify the model by excluding them. In addition, a 
polynomial model can then be constructed to describe the initial mathematical model with the 
required accuracy, reducing the time spent on the research with subsequent optimization carried 
out in accordance with the required parameters. 

Notably, special attention should be paid to estimating the accuracy of constructing the 
response surface and estimating the quality of the corresponding response function.
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