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Abstract. The paper presents calculations of thermoelastic parameters of layered 

composite structure (substrate + adhesive) using the contact layer method. The 
corresponding mathematical model (taking into account the presence of a contact layer) 
has been used to study properties of a layered rod subjected to heating. Temperature 
dependences of Young’s modulus, CLTE and thermal stresses for layered, built-up and 
polymeric specimens were obtained and analyzed. A comparison of the calculation data 
on the effective properties of objects under investigation obtained by the classical formulae 
and by the contact layer method was made. The importance of taking into account the 
contact layer presence and its parameters in the study of thermoelastic characteristics of 
layered structures was proved.
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Аннотация. В статье представлены расчеты термоупругих параметров слоистой 
композиционной структуры (субстрат + адгезив) по методу контактного слоя. 
Соответствующая математическая модель (учитывает наличие контактного слоя) 
использована для исследования свойств слоистого стержня, подвергнутого нагреву. 
Получены и проанализированы температурные зависимости модуля Юнга, КЛТР и 
термических напряжений для слоистого, составного и полимерного стержней. Для 
объектов исследования проведено сравнение результатов расчета их эффективных 
свойств, полученных по классическим формулам смеси и по методу контактного слоя. 
Доказана важность учета наличия контактного слоя и его параметров при изучении 
термоупругих характеристик слоистых структур.

Ключевые слова: слоистый композит, адгезионная механика, метод контактного 
слоя, модуль Юнга, КЛТР
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Introduction

Over the past few decades, researchers around the world have been developing new compos-
ite materials, categorizing materials with a layered structure as a separate class. This structure 
allows to achieve the required properties of the material, making it relatively easy to manufacture. 
Layered composites (LCs) are used in many industries for production of structural elements for 
various purposes [1]. Examples of such elements are rods, plates and shells. Due to their special 
thermoelastic properties, high strength, corrosion resistance and relatively light weight, compos-
ites are promising competitors to traditional materials. 

It is crucial to be able to model the physical and mechanical behavior of the material used 
to obtain reliable results from structural calculations. Much attention is focused on perfecting 
the physical and mathematical methods for calculating the effective properties of composite 
materials [2]. As more and more adhesive bonded materials are synthesized, along with novel 
adhesives, more insights are gained into the mechanism of adhesion and the theories describing it 
[3]. The mechanical properties of LC structures can vary depending on the geometric and phys-
ical parameters of the model, such as sample dimensions, Young’s modulus, Poisson’s ratio and 
other parameters of adhesive and substrate materials. Pressure, temperature, aging and external 
load have a great influence on the parameters of the composite. Thus, to calculate the properties 
of this type of material, it is extremely important to use the most suitable mathematical models 
whose accuracy has been confirmed by physical experiments. 

Materials and methods

The classical theory introduces the mixture rules, used to estimate the elastic parameters of 
composites; these formulas were obtained by Voigt (in 1889) [4] and Reiss (in 1929) [5]. The 
mixture rules for determining the transverse elastic modulus Emix and the effective CLTE αmix are 
written in the following form:

0 1

0 1 1 0

= ,mix
E EE

V E V E+
(1)

0 0 1 1,mix V Vα = α + α (2)

where the subscripts 0 and 1 correspond to two different materials.
These formulas do not take into account Poisson’s ratio and the characteristics of the contact 

layer resulting from adhesive interaction of materials that are part of the composite and in contact 
with each other. The mixture rules allow to calculate the thermoelastic parameters only in the 
first approximation. Numerous studies by Russian [6–10, 12] and foreign [11, 13-19] researchers 
offer various methods for assessing the stress-strain state and determining the elastic parameters 
of composites, but the results of calculations based on these methods are not consistent with all 
experiments and require improvement.

The total contact surface area of the interacting layers increases relative to the volume of the 
material in calculations of the materials that consist of a relatively large number of layers, which 
is why it is essential to take into account the adhesive interaction of the layers.

Contact layer model. Turusov proposed a contact layer model with a theoretical justification [20]. 
This model is based on the hypothesis that there exists a certain layer that is a brush with short 
elastic bonded rods oriented normally to the contact surface, located between the adhesive and the 
substrate (Fig. 1). There is no direct contact between the rods in the contact layer and, therefore, 
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there are no normal stresses σx and σz. Short rods absorb shear stresses σyx, σzy, σxz and, naturally, 
normal stresses σy. If contact problems of mechanics are solved by the known methods from elas-
ticity theory, a singularity of type x–1/2 occurs for x → 0, i.e., infinity, occurs at the boundaries 
between layers and in the corner points near the ends of the contact layer for tangential stresses. 

The contact layer model proposed by Turusov allows to satisfy all boundary conditions imposed 
to solve the Cauchy problem, since it provides a way to avoid infinite stresses at the corner points 
of the adhesive joint. As such singularities are eliminated, it becomes possible to apply the well-
known criteria for the strength of adhesive joints. This model of the contact layer can be assumed 
to be correct from the standpoint of physical rigor, since the existing theory and indirect exper-
iment suggest that the number of bonds per 1 cm2 is 1012 with adhesive contact, i.e., every tenth 
atom participates in the interaction of the substrate with the adhesive, which means that these 
contacts are relatively few and do not touch each other.

Thus, the contacts together comprise a regular layer of bonded rods, which has certain 
parameters: 

E* is the elastic modulus, G* is the shear modulus, h* is the thickness of the layer.
If the number of bonds per 1 cm2 is 1012, then every hundredth atom participates in the inter-

action of the substrate with the adhesive, and in this case the medium parameters are 0.01·E*, 
0.01·G* and h*.

In accordance with the theory of the contact layer method, Turusov [20] obtained the follow-
ing relation between the total strain of a layered rod εz l.b. and its parameters: 

( )

. . . . . .
. . .
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2

0 1 0 0 1 1

0 0 1 1
0 0 1 2
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    δ µ µ  = + + − − +     ω      
  β µ µ  + α + α + − − ∆   ω    

(3)

where the subscripts 0 correspond to the substrate and 1 to the adhesive; E0, E1, Pa, are Young’s 
moduli; μ0, μ1 are Poisson’s coefficients; h0, h1, mm, are the thicknesses; V0, V1 are the relative 
volume fractions of the substrate and adhesive content, respectively; ez is the elastic strain; εt is 
the thermal strain; ΔT, K, is the temperature difference.

The parameters v, δ, β in the relation (3) characterize the contact layer and are determined 
as follows:

Fig. 1. Schematic representation of the adhesive bond 
between layers of dissimilar materials brought into contact: 

A is the adhesive (for example, epoxy), AM are adhesive molecules, 
S is the substrate (for example, steel), CL is the contact layer
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(4)

where l, mm, is the size of the square cross-section side (the length of the layer with the adhesive 
joint); gr, Pa, is the stiffness of the contact layer;

2 0 0

0 0 1 1

1 2(1 ) .gr
E h E h

 −µ −µ
ω = + 

 

If we assume that ΔT = 0 in relation (3), then we can derive from it an expression for finding 
the effective (eff) elastic modulus Eeff.l.b. (Young’s modulus) of a layered rod (l.b.), which takes the 
following form:

12

0 1
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. . .

1 00 1

1 1 0 0

2
tanh( )1 .(1 ) (1 )eff l b

E EV VE
E E

E V E V

−
  µ µ⋅ −    ν   = + − ⋅ −    −µ −µ ν   + ⋅ ⋅  

(5)

Furthermore, expression (3) can be used to obtain a formula for finding the CLTE αeff.l.b., pro-
vided that q = 0:

( )0 1 0 1 1 0 0 1
. . 0 0 1 1

0 1 1 1 0 0

4 ( ) tanh( )( ) 1 .
(1 ) (1 )eff l b

E E V V vV V
E V E V v

⋅ α − α ⋅ µ ⋅ −µ ⋅ ⋅ ⋅  α = α ⋅ + α ⋅ + ⋅ − −µ ⋅ ⋅ + −µ ⋅ ⋅  
(6)

If we assume that the total strain of the entire layered rod is equal to zero in relation (3), we 
obtain the following the dependence for the thermal stresses σ in a rod of constant length on 
various characteristics of the rod:

. . . . . . .eff l b eff l bE Tσ = −α ⋅ ⋅ ∆ (7)

The coefficient of linear thermal expansion (CLTE) is a physical quantity that characterizes 
the relative variation in the linear dimensions of a body with an increase in temperature by 1 K 
at constant pressure and without phase transformation. The CLTE is unique for each material 
and depends on a large number of parameters. This key property of the material turns out to be 
especially important for studies of composite structures operating in environments with variable 
temperatures. Crystals typically have the lowest CLTE because their structure is extremely uni-
form and strong. Solids with the highest CLTE have weak intermolecular bonds; common exam-
ples are polymers, known to be characterized by low melting points. Studies into the properties of 
composite materials containing polymers pay considerable attention to the glass transition tem-
perature, below which the polymer material becomes hard and brittle. This parameter is deter-
mined individually for each polymer and depends on the chemical composition and structure of 
the molecular chain. The transition from a hard and brittle «vitreous» state to a soft and plastic 
rubber-like state occurs when the temperature rises. 

Background assumptions for the calculations. As mentioned above, the physical and mechani-
cal characteristics of layered composite materials can be calculated if we know the reliable param-
eter values of the adhesive, substrate, as well as the characteristics of adhesive interaction of the 
contacting layers. The study of the thermoelastic behavior of composite rods used the geometric 
and physical parameters of the specimens from the experiments conducted by Turusov [20].



St. Petersburg Polytechnic University Journal. Physics and Mathematics. 2023. Vol. 16. No. 1

144

Fig. 2 schematically shows the geometry of the specimens considered. They have the same 
length; one is made of pure polymer, and the other two consist of two materials: metal and 
polymer. 

Specimen 1 is a rod made of polymer material (in this case, epoxy was taken). Specimen 2 is 
a rod composed of two steel rod elements (substrates), with a layer of polymer adhesive (epoxy) 
between them. Specimen 3 is a layered rod made of steel plates (substrates) bonded by epoxy. 

Table 1 shows the constant parameters of composites that we have adopted for the calculations. 
Notably, the layered and composite rods contain the same amount of polymer and steel in their 
composition (15% and 85% in each of the rods, respectively). 

Fig. 1. Schematic representation of the adhesive bond 
between layers of dissimilar materials brought into contact: 

A is the adhesive (for example, epoxy), AM are adhesive molecules, 
S is the substrate (for example, steel), CL is the contact layer

Tab l e  1

Initial data for calculations

Parameter Notation Value
Specimen geometry

Total length, mm L 100
Size of square section side, mm L 10.0
Section thickness in specimen 2, mm 

steel
polymer

hst
hpol

42.5
15.0

Layer thickness in specimen 3, mm 
steel
polymer

h0
h1

1.40
0.25

Physical properties of materials
Steel: Young’s modulus, GPa

Poisson’s ratio
CLTE, K–1

E0
μ0
α0

210
0.3

1.2∙10–7

Poisson’s ratio for polymer μ1 0.5
Stiffness of contact layer, GPa/mm gr 25
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Results and discussion

Fig. 3,a shows graphs of temperature dependences of Young’s moduli for polymer, composite 
and layered rods. Young’s modulus of the composite rod (specimen 2) was calculated by mixture 
rule (1), and the layered rod (specimen 3) by the Turusov model (see Eq. (5)). Young’s modu-
lus of the polymer E1 was calculated using an empirical formula obtained by approximating the 
experimental data measured during a laboratory study of the dependence of Young’s modulus of 
epoxy adhesive E1 on temperature T [20]. The formula has the following form:

1  18.2 8200.E T= − ⋅ + (8)

The following empirical formula was also used for the CLTE α1 of the polymer: 

α1 = (0.46T– 58)∙10–6 . (9)

The behavior of curve 1 in Fig. 3,a shows that the elastic modulus of the polymer decreases 
almost linearly with an increase in temperature. A more accurate estimate of the difference 
between the temperature dependences of the elastic modulus can be obtained from analysis of the 
data in Table 2. The analysis indicates that the elastic modulus of the polymer is 2831 MPa at 
the initial temperature of the polymer, equal to 295 K, and 1011 MPa at a temperature of 395 K 
(decreases approximately by 2.8 times with an increase in temperature by 100 K). This decrease in 
the elastic modulus can be explained by an increase in interatomic and intermolecular distances, 
as well as a weakening of the interaction forces between microparticles in the bulk of the material.

Fig. 2. Geometry of composite rods:
solid polymer (1), composite (2) and layered (3) (dimensions are given in mm)

Tab l e  2

Calculated temperature dependences of elastic modulus  
and CLTE for the three specimens considered

Temperature, K Young’s modulus, MPa Thermal expansion coefficient, 10–5 K−1

1 2 3 1 2 3
295 2831 17.534 101.793 7.8 2.19 5.805
305 2.649 16.482 99.065 8.2 2.25 6.134
315 2.467 15.420 96.132 8.7 2.32 6.465
325 2.285 14.349 92.965 9.2 2.39 6.797
335 2.103 13.267 89.535 9.6 2.46 7.130
345 1.921 12.176 85.801 10.1 2.53 7.465
355 1.739 11.074 81.718 10.5 2.60 7.801
365 1.557 9.961 77.227 11.0 2.67 8.138
375 1375 8.839 72.255 11.5 2.74 8.477
385 1193 7.705 66.711 11.9 2.81 8.818
395 1011 6.561 60.475 12.4 2.88 9.161

Note .  The specimen numbers correspond to those shown in Fig. 2.
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The results obtained by the mixture rule for the composite rod (see curve 2 in Fig. 3,a) indicate 
that Young’s modulus decreases with increasing temperature in similarly to that in the polymer, 
but curve 2 has a much shallower slope to abscissa than curve 1. The reason for this difference 
is that the composite rod (specimen 2) includes a polymer section between two sections of steel 
(the relative volume fractions of polymer and steel are 15% and 85%, respectively), which is a 
consequence of the fact that the initial value of Young’s modulus of such a composite rod is 
greater than that of the polymer. The elastic modulus decreases by 2.7 times with an increase in 
temperature by 100 K.

Curve 3 in Fig. 3,a, obtained by Turusov’s formula, is markedly different from the first two. 
It is important to note for this case that the value of Young’s modulus at the initial temperature 
obtained by Eq. (5) is much higher than that obtained by the mixture rule. Such a synergistic 
effect in the layered structure is due to the influence of the contact layer that appears between the 
adhesive and the substrate. Expression (4) allows taking into account the presence of the contact 
layer and its parameters, which is what produces the observed discrepancy. Since the calculation 
was carried out for a soft polymer (adhesive), whose Young’s modulus is significantly higher 
than Young’s modulus of steel (substrate), we introduce here the bulk modulus K for uniform 
stretching (instead of the standard elastic modulus of the polymer), depending on both the elastic 
modulus and Poisson’s ratio:

.
2(1 2 )

EK =
− µ

(10)

Poisson’s ratio is close to 0.5 in the above calculation, which means that the modulus 
K is superior to Young’s modulus and the resistance of the layered structure to stretching 
and compression.

Considering the properties of the materials, we found that the polymer has a significant frac-
tion of free volume, for example, cavities of the order of molecular (monomeric) sizes or voids 
of smaller magnitude associated with irregular packing of molecules. The process of thermal 
expansion of the polymer is mainly an increase in the free volume with an increase in tempera-
ture, while similar processes in crystalline solids, characterized by much lower values of CLTE, 
are associated with anharmonic dependence of potential energy on interatomic or intermolecular 
distances [22]. Rupture stresses can occur in composite structures that are layered materials, for 
example, due to the difference in the coefficients of linear thermal expansion of the components 
that make up the layered composite.

Fig. 3,b shows the temperature dependences of CLTE for polymer, composite and layered 
rods. Evidently, all three curves exhibit growth with increasing temperature. The CLTE of the 
polymer increases because the molecules become more mobile as the temperature increases, 
weakening intermolecular bonds during motion.

a) b)

Fig. 3. Calculated effect of temperature on the elastic moduli (a) 
and CLTE (b) of polymer (1), composite (2) and layered (3) rods. 

Data from Table 1, as well as Eqs. (8) and (9) were used
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According to the calculated data for the layered rod, the presence of contact layers significantly 
affects the results; this is a consequence of the predominant influence of the bulk modulus K for 
uniform stretching (instead of standard Young’s modulus of the polymer, as already mentioned 
above); as a result, the CLTE of the layered rod takes a greater value than that of the composite, 
calculated by the mixture rule.

In practice, to avoid delamination in materials and destruction of their structure, it is of utmost 
importance to correctly calculate the thermal stresses in composite materials. Our calculations 
of thermal stresses in three specimens show that the behavior of the layered composite with an 
increase in temperature is radically different from the corresponding reactions of composite 
(three-section) and polymer rods.

Fig. 4. Temperature dependences of thermal stresses in polymer (1), 
composite (2) and layered (3) rods (curves 1 and 2 almost coincided)

The data from Table 1, as well as Eqs. (8), (9) were used

Tab l e  3

Calculated temperature dependences of 
heating-induced stresses in three specimens 

Temperature, K Stress σ, MPa
1 2 3

295 –9.899 –17.244 –267.866
305 –11.991 –20.437 –336.650
315 –13.935 –23.289 –406.812
325 –15.681 –25.747 –477.141
335 –17.178 –27.758 –546.201
345 –18.377 –29.270 –612.286
355 –19.227 –30.225 –673.335
365 –19.678 –30.570 –726.839
375 –19.680 –30.245 –769.702
385 –19.182 –29.194 –798.035
395 –18.134 –27.356 –806.866
405 –16.486 –24.672 –789.686
415 –14.188 –21.079 –737.708

Note .  The specimen numbers correspond to those shown in Fig. 2. 
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Based on the values obtained (Table 3) and the constructed graphs (Fig. 4), we can conclude 
that the thermal stresses in the polymer and composite rods are much less than those in the lay-
ered rod. The reason for this is that the values of Young’s modulus and CLTE obtained by the 
mixture rule are less than those obtained by the formula for the layered rod. Data analysis suggests 
that the stresses increased in absolute magnitude at temperatures from 300 to 400 K, but began 
to decrease in all three cases at 380 K. A more intense growth in the CLTE (relative to the initial 
value) with an increase in temperature, compared with the decrease rate of the elastic modulus, 
indicates a decrease in thermal stresses at a temperature of 380 K.

We should emphasize that the CLTE value of the polymer is much higher than the corre-
sponding value for steel (see Table 1). Polymer and steel layers in the layered and composite rods 
were rigidly connected to each other and subjected to heating; each material tends to expand in 
accordance with its CLTE value, but since it is higher in polymer and lower in steel, thermal 
stresses arise (the polymer tends to expand, and steel prevents this). The steel is subjected to 
tensile stress, since the polymer forces it to expand beyond the limit that is defined by its CLTE 
value. Stresses arise due to the difference between the adhesive (epoxy) and the substrate (steel) 
and can lead to delamination. We can observe from the above dependences that the temperature 
variation in the entire range under consideration changes the value of the CLTE for the polymer 
by more than six times, and the elastic modulus drops to zero as the temperature approaches the 
melting point. Such dependencies are also true for steel, although to a lesser extent. 

Conclusion

The paper reports on the calculations of thermoelastic properties of layered composites, ana-
lyzing the data obtained. The physical mechanism of the transformations in the material exposed 
to temperature variation was clarified in the analysis. Calculations of Young’s modulus and the 
coefficient of linear thermal expansion (CLTE) were carried out based on the theory of the con-
tact layer method for a layered rod and in accordance with the classical mixture rule for a com-
posite one. The theory of the contact layer method allows to take into account the geometric and 
physico-mechanical parameters of the substrate, adhesive and contact layer (the layer formed by 
their interaction), providing better accuracy for the simulations and calculations. 

We established that calculations of the characteristics of a layered rod should focus closely on 
the adhesive interaction of interfacial layers. An evident conclusion from the calculations and 
analysis of the results is that a large number of mechanical characteristics should be taken into 
account in studies into the thermoelastic parameters of a rod with a layered structure. In partic-
ular, Poisson’s ratio, the thickness of the component layers and the stiffness of the contact layer 
have a significant effect.

The coefficients of linear thermal expansion were calculated using the contact layer method 
and the mixture formula.

Importantly, the analytical formula (5) for determining effective Young’s modulus by the con-
tact layer model agrees fairly well with the results of the physical experiment and can be consid-
ered fairly accurate. The effective modulus taking into account the contact layer as a parameter 
allows to conduct numerical experiments by varying the values of the mechanical properties of 
the materials that make up the layered composite.
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