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Abstract. This paper is devoted to construction of a mathematical model for determining the 

distribution function of blood cells by size. After considering the problem of light scattering on 
a spheroidizied particle with a multilayer structure and arbitrary oriented in space, the reflection 
coefficient of a plane wave from the biostructure model with a smoothly irregular structure has 
been found. This approach made it possible to construct a model of the said structure with 
several layers. Based upon the reflection of a Gaussian beam from this structure the distribution 
function of blood cells by size was obtained. Some methods such as the T-matrices apparatus, the 
Huygens – Fresnel transform, the Tikhonov’s regularization were involved. The mathematical 
model proposed for the first time allowed theoretical calculation of the size distribution functions 
of spheroidizied particles simulating blood cells for the case in vivo.
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Аннотация. Работа посвящена построению математической модели для определения 
функции распределения клеток крови по размерам. После рассмотрения задачи 
светорассеяния на сферулированной частице, обладающей многослойной структурой 
и произвольно ориентированной в пространстве, определен коэффициент отражения 



St. Petersburg Polytechnic University Journal. Physics and Mathematics. 2023. Vol. 16. No. 1

98

© Головицкий А. П., Концевая В. Г., Куликов К. Г., 2022. Издатель: Санкт-Петербургский политехнический 

университет Петра Великого.

плоской волны от модели биоструктуры с плавнонерегулярным строением. Такой 
подход позволил построить модель указанной структуры, имеющей несколько биослоев. 
Исходя из отражения гауссова пучка от этой структуры была смоделирована функция 
распределения частиц по размерам. Привлекались такие методы, как математический 
аппарат Т-матрицы, преобразование Гюйгенса – Френеля, метод регуляризации 
Тихонова. Предложенная впервые математическая модель позволила теоретически 
рассчитать функции распределения по размерам сферулированных частиц, имитирующих 
форменные элементы крови для случая in vivo.

Ключевые слова: лазерная технология, метод регуляризации Тихонова, метод 
Т-матриц, преобразование Гюйгенса – Френеля
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Introduction
Laser technologies have recently become indispensable for solving diverse problems in fields 

of science and technology ranging from physics and chemistry to medicine and biology. Laser 
technologies are increasingly used in medical diagnostics, therapy and surgery, and this direction 
undoubtedly holds immense promise for future applications.

Non-invasive methods, including, most notably, optical ones, are in great demand as they offer 
a range of benefits (relative safety, reduced injury rate and infection risks, etc.) for diagnosis and 
treatment of diseases. Blood tests measuring the size and shape of erythrocytes, as well as their 
deformability and aggregation ability, monitoring the glucose levels in human blood, measuring 
the capillary blood flow velocity are of great importance for medicine if they can be carried out 
rapidly and non-invasively.

Biological tissues are optically inhomogeneous absorbing media with the average refractive 
index exceeding the one for air. Notably, cell membranes, nuclei and organelles, such as mito-
chondria, as well as melanin granules in cells serve as the main dispersers in many biological tis-
sues [1–3]. There is evidence that cellular structures become increasingly chaotic with increasing 
malignancy of tissue neoplasms; at the same time, the size of individual cellular nuclei increases 
relative to the average value, while the relative refractive index of the cytoplasmic/nuclear envi-
ronment may also change [1].

Blood tests are a fundamental step taken in modern medical practice to diagnose various 
pathologies. In this regard, it is important to analyze the optical properties of the so-called 
blood corpuscles, which include erythrocytes, leukocytes and platelets (in the traditional sense). 
However, erythrocytes, or red blood cells, make up more than 99% of the hematocrit (the per-
centage of corpuscles in the total blood volume). As is well known, along with their transport 
function, erythrocytes constantly participate in maintaining the vital activity of the body as a 
whole. Accordingly, the systematic deviations in the state of the corpuscles making up the bulk of 
blood cells directly affect the vital processes in the body.

Researchers and doctors attribute a dominant role in the pathogenesis of a significant number 
of diseases, complications and pathological conditions to microcirculatory and hemorheological 
dysfunctions. The functional properties of erythrocytes often play a significant and sometimes 
decisive role in these pathologies [4].

Evidently, the erythrocyte has specific mechanical and geometric properties, as well as a 
refractive index. This naturally brings theoretical and practical attention towards the characteristic 
properties of erythrocytes. For example, it would be interesting to determine the sizes of eryth-
rocytes, their aggregation properties, refractive indices, especially in cases of various pathological 
abnormalities of the hematopoietic system.
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A standard detailed clinical blood test is regarded by modern scientists as an extremely infor-
mative indicator of the physiological processes occurring in healthy and diseased states. This 
diagnostic tool also includes measuring the width of the size distribution of erythrocytes. This 
indicator is included in the standard comprehensive blood panel, confirming the importance of 
the data on the size distribution of erythrocytes for clinical practice.

Rapid and precise measurements of the size distribution of blood corpuscles are crucial in 
some diseases, such as iron deficiency or sickle cell anemia, elliptocytosis, spherocytosis, etc. [5]. 

Thus, it is essential to develop effective and quick methods for finding the size distribution 
functions of spherical particles imitating blood corpuscles. The parameters of erythrocytes, in 
particular their sizes, can be determined based on light scattering [3].

Therefore, we believe that formulating and solving this problem as an optical one is promising 
for such major areas as biomedicine and biophysics. 

It is apparent that the model to be constructed must have the following properties: 
sufficiently informative;
modern but not excessively complex;
fast to apply, i.e., not requiring resource-intensive computations.
The goal of this study is to model the size distribution function of spherical particles.
The paper has the following structure. First, we consider the problem of light scattered by a 

j-spherical particle with a multilayered structure, arbitrarily oriented in space, taking into account 
multiple scattering.

Next, we determine the reflection coefficient of a plane wave by a model of biological tissue 
with a smooth irregular structure. This approach allows to construct a satisfactory model of the 
biological structure with several biolayers. 

The reflection of a so-called Gaussian beam is considered within the model proposed. In the 
course of our analysis, we naturally turn to the question of modeling the size distribution function 
of spherical particles.

Matrix formulation of scattering for j-spherical particles

Most studies relying on Mie theory regard the erythrocyte as a homogeneous sphere with the 
volume equal to the average volume of the erythrocyte. The erythrocyte can be considered to be 
a homogeneous scatterer due to the peculiarities of its structure. This representation of the eryth-
rocyte is an adequate and effective approach to solving many problems of biomedical optics. The 
assumption of the spherical shape of the cells makes it possible to correctly predict the value of 
the scattering cross section of erythrocytes [3]. The scattering phase function of erythrocytes can 
be successfully approximated within the framework of Mie theory [1, 3]. Furthermore, Mie theory 
is well applied to describing the single scattering of incident laser radiation if randomly oriented 
erythrocytes or whole blood are examined.

As noted above, it is quite common to construct models where the shape of the blood corpuscles is 
assumed to be spherical. Such an approximation yields satisfactory results for a range of problems, espe-
cially since red blood cells are easily deformed and do not constantly retain their biconvex disk shape. 

We take the spherical model of the erythrocyte as a basis; the rest of the blood cells are 
described as spheres with concentric inclusions [3].

The problem of laser radiation scattered by an aggregate of multilayered particles, serving as a 
model of aggregates in the blood medium, is solved in accordance with rigorous theory of multi-
ple scattering. Using T-matrices as a mathematical framework allows to relate the decomposition 
coefficients of two electromagnetic fields: that scattered by a model aggregate and that incident 
on it. The connection between the scattered fields is described within this framework by taking 
into account the multiple interactions between the elements of the aggregate. 

The T-matrices of all the elements of the aggregate do not depend on incident radiation, if we 
consider scattering by spherical objects. In this case, they can be calculated in the local coordinate 
system associated with the center of the selected particle.

Let us give a finite expression for the two components of the scattered field Escat(θ) and Escat(φ) 
in the far field (a detailed formulation can be found in [6]):

( ) 0
1

(2 1) ,
( 1)

ikr n
j j

scat mn n mn n
n m n

e nE E a b
ikr n n

∞

θ
= =−

+  τ − π − +∑ ∑ (1)
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where E0 is the amplitude of the wave scattered by a spherical particle; r is the radius vector; k 
is the wave vector; m, n are the harmonic numbers; θ is the angle of incidence of the laser beam 
relative to the z axis; φ is the polar angle; τn = ∂Pn(cos θ)/∂θ, πn = Pn(cos θ)/(sin θ) are Legendre 
polynomials; the coefficients aj

mn, b
j
mn were defined in [6].

Expressions for the magnetic field H can be obtained using conceptually similar reasoning.
The problem on light scattering by a multilayered sphere was solved involving the mathemat-

ical concept described in detail in [7].
Using expression (1) as the basis for the θ-component of the scattered radiation intensity, we 

write the following expression:

2

( ) ( )( , ) ,scat i scatI I Eφ φρ λ = ⋅ (3)

where Ii is the intensity of the incident radiant flux, ρ is the reduced radius of the particle (ρ = 
kl, l is the dimensional radius of the particle).

Reflection of a plane wave from a smooth irregular layer

Solving the problem on reflection of a plane wave from a smooth irregular layer (Fig. 1) imitat-
ing the model biological structure under consideration, we refine the expression for the reflection 
coefficient from a layer whose main characteristic is a slowly changing thickness. The mathemat-
ical model contains the following bio-layers (see Fig. 1):

ambient air (1) through which the laser beam passes; 
surface layer of the dermis, the epidermis (2);

Fig. 1. Schematic representation of the model: laser radiation is incident 
on the biological structure, including layered components 2–5 

between external environment 1 and lower dermis layers 5:
epidermis 2, upper layers of dermis 3, layer 4 with inclusions 

(aggregates of blood corpuscles); ni is the refractive index of the ith layer
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upper layer of the dermis (3);
layer consisting of spherical particles that imitate blood corpuscles (4); 
lower layers of the dermis (5). 
For the simulated model to best reproduce the real structure, the separation boundaries of the 

layers can be represented as wavy surfaces:

( , ),  sin(a ),i i i i i iz H x y H c x b y= = + (4)

where ci, ai, bi are arbitrarily set constants, and  ai ≪ 1, bi ≪ 1, ci ≪ 1, i = 1,3.
Let a plane s- or p-polarized wave fall on the modeled layer at an angle θ. For certainty, let 

us consider the case of p-polarization.
Reflected fields should be searched for as waves with rapidly oscillating phases and slowly 

varying amplitudes. The electrical components of the fields reflected from the 1st, 2nd and 3rd 
layers have the form

1 1 2 3 1 1 2 3exp( ( , , )) exp( ( , , )) ,inc ref
i iE A= τ ξ ξ ξ + τ ξ ξ ξ
ε ε

(5)

2 2 1 2 3 3 1 2 3exp( ( , , )) exp( ( , , )) ,elap ref
i iE B B+ −= τ ξ ξ ξ + τ ξ ξ ξ
ε ε

(6)

3 3 1 2 3 3 1 2 3exp( ( , , )) exp( ( , , )) ,elap ref
i iE C C+ −= τ ξ ξ ξ + τ ξ ξ ξ
ε ε

(7)

and the components of the fields E4 and E5 are represented as follows:

4 4 1 2 3 5 1 2 3 4 1 2 3exp( ( , , )) exp( ( , , )) ( , , ),elap ref scat
i iE D D E+ −

φ= τ ξ ξ ξ + τ ξ ξ ξ + ξ ξ ξ
ε ε

(8)

5 5 1 2 3exp( ( , , )) ,elap
iE E= τ ξ ξ ξ
ε

(9)

where A, B±, C±, D± are the amplitudes; ε is a small parameter; 1 2 3, ,x y zξ = ε ξ = ε ξ = ε  are the 
oblate spheroidal coordinates; 1 2 3( , , ),incτ ξ ξ ξ  1 1 2 3( , , ),refτ ξ ξ ξ  2 1 2 3( , , ),elapτ ξ ξ ξ  3 1 2 3( , , ),refτ ξ ξ ξ  

3 1 2 3( , , ),refτ ξ ξ ξ  3 1 2 3( , , ),refτ ξ ξ ξ  4 1 2 3( , , ),elapτ ξ ξ ξ  5 1 2 3( , , )refτ ξ ξ ξ 5elapτ  are the functions included 
in the eikonal equations for incident (inc), reflected (ref) and elapsed (elap) fields, respectively 
(the functions are defined in [8]). 

Condition (8) contains a term 4 1 2 3( , , )scatE φ ξ ξ ξ  that takes into account scattering (scat) in the 
4th layer by inhomogeneities (spherical particles).

The next step is to find the amplitudes A, B±, C±, D±.  We write them as series in terms of 
degrees of the small parameter ε.

A recurrent system of equations for iterative determination of the terms in the series A, B, C±, 
D± can be obtained by through standard continuity conditions for tangent components of electric 
and magnetic fields at the interfaces of the media, taking into account expressions (5)–(9). The 
reflection coefficient of the field can be obtained in the first approximation from the constructed 
system of equations.

Next, we need to find the reflected field for a Gaussian beam. To obtain the required field 
in the initial cross section (within the framework of the chosen method), we intend to apply the 
inverse transformation and then the Huygens–Fresnel integral transformation [8]. The number 
of primes in coordinate systems is of fundamental importance: the system (x′, y′, z′) is associated 
with the incidence direction of the beam, and the system (x′′, y′′, z′′) with the reflected field; the 
reflected field propagates along the line of the beam z′′ = 0. The required field in the initial cross  
section is expressed as follows:
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where the formulas kn1x′ = k11x + k12y + k13z, kn1y′ = k21x + k22y + k23z, kn1z′ = k31x + k32y + k33z, 
k11 = kn1a11, k12 = kn1a12, k13 = kn1a13, k21 = kn1a21, k22 = kn1a22, k23 = kn1a23, k31 = kn1a31, k32 = kn1a32, 
k11 = kn33a33, a11 = cosφcosψ – sinφcosθsinψ, a12 = –sinφcosψ – cosφcosθsinψ, a13 = sinθsinψ, 
a21 = cosφsinψ + sinφcosθcosψ, a22 = –sinφsinψ + cosφcosθcosψ, a23 = sinθcosψ, a31 = sinφsinθ, 
a32 = cosφsinθ, a13 = cosθ relate the coordinate systems (x′, y′, z′) and (x′′, y′′, z′′). The Gaussian 
beam 1 2( , )′′ ′′Φ ξ ξ  and the coefficients obtained from the recurrent system of equations for iterative 
determination of the terms in the series (the amplitudes 

00
A ,

10
A ,

11
A , 0000A  are decomposed into 

these series in terms of degrees of the small parameter ε) were found in [6].
The particulars of the geometry associated with the boundaries constructed for the reflecting 

medium, the characteristic properties of the incident beam itself (the distribution of the field in a 
fixed cross section and the angle of incidence) affect certain parameters of the reflected field. The 
reflected field is represented as the main term and the additive correction of the asymptotics with 
respect to the small parameter with an error O(ε2). 

Next, if we assume the parameters of the given system to be fixed, then the distortions in the 
field of the incident beam upon reflection can be assumed to depend on two predominant factors 
against the background of the others. 

The first of these factors is represented in Eq. (10) by expressions in square brackets: 
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The reflected field can be obtained here by multiplying the expression for the incident beam 
field by the local reflection coefficient of the plane wave with unit amplitude, incident on the 
medium at the same angle as the beam.
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The expressions in curly brackets in Eq. (10) describe the transverse diffusion of the amplitude: 
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A similar process occurs during reflection due to beam distortion (deviation from the propa-
gation direction of the reflected beam). It seems reasonable to refer to the expressions in square 
brackets as the geometric factor, and to those in curly brackets as the diffuse factor.

Thus, we formulated the expressions for the reflected field of the Gaussian beam for the case 
of p-polarization. Such characteristics of the system as the beam angle and the refractive index 
of the reflecting layer were assumed to be arbitrary in the problem statement. These results are 
asymptotics with respect to the small parameter (whose meaning is the ratio of the characteristic 
scale of the variation in the body's boundary profile to the characteristic distance).

Notably, the formulas are not uniform with respect to the incidence angle parameter, but 
changing the other parameters produces the final result. Considering the process where the inci-
dence angle increases within the given expression, we can observe that the additive corrections of 
the asymptotics begin to grow, pointing to a gradual increase in the distortion of the beam. The 
resulting formulas lose their meaning if the incidence angle is increased to 90°. In this case, the 
reflected field is scattered into a wide range of angles (is spread out in space). There are no solu-
tions of the wave equation that would have the character of a localized beam in space propagating 
in a certain direction from the reflective surface. Consequently, the reflective formulas hold true 
within the angular range from 0° to 89°. According to our estimates, the error of the calculations 
obtained lies at the level of quadratic asymptotic terms. Similar reasoning can be used to obtain 
a reflected field for the magnetic component of the field.

Size distribution function of the spherical particles

Let us pose an inverse problem, where the intensity of light scattered by an aggregate of spher-
ical particles is known. The latter are located in the layer and serve as a model of the aggregate 
of blood corpuscles (see expression (11)). Based on the known intensity measured with a certain 
error, we must find the size distribution of erythrocytes for the in vivo case.

The problem is formulated as follows:
Determine the size distribution function of blood corpuscles for the in vivo case.
The problem is solved by finding the reflected field Eblood in a layer consisting of spherical par-

ticles with various sizes and refractive coefficients. It is defined as follows:

Eblood = Eref – Eskin,
where Eref, Eskin are, respectively, reflected fields from the entire modeled optical system and 
sequentially from the layers (epidermis, upper layer, dermis).

The intensity of the reflected field in a layer consisting of spherical particles is expressed 
as follows:

22( , ) ,blood blood bloodI E E⊥θ λ = +


(11)

where ( ) ( )cos sin ,blood z blood x bloodE E E⊥ = θ + θ  ( ) ( )sin cos .blood z blood x bloodE E E= θ − θ


The components Ex and Ez follow the expressions

(blood) (blood) x(blood) z(blood)
0 (blood) 0 y(blood),  ,z y

j x j

E E E E
i H i H

y z z x
∂ ∂ ∂ ∂

− = − ωµ µ − = − ωµ µ
∂ ∂ ∂ ∂

(12)
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y(blood) x(blood) z(blood) y(blood)
0 z(blood) 0 x(blood),  ,j j

E E E E
i H i H

x y y z
∂ ∂ ∂ ∂

− = − ωµ µ − = ωε ε
∂ ∂ ∂ ∂

(13)

x(blood) z(blood) y(blood) x(blood)
0 y(blood) 0 z(blood),  ,j j

H E H H
i E i E

z x x y
∂ ∂ ∂ ∂

− = − ωε µ − = ωε ε
∂ ∂ ∂ ∂

(14)

where ε0, F/m, is the dielectric constant; εj is the dielectric constant of the model medium for the 
jth layer; μ0, G/m, is the magnetic constant; μj is the magnetic permeability of the model medium 
for the jth layer; ω, s–1, is the angular frequency.

Eqs. (12)−(14) correspond to the system of Maxwell equations in the Cartesian coordinate system.
In this case, the inverse problem is described by the Fredholm linear integral equation of the 

first kind:

max

( )
min

( , ) ( ) ( ),scatAu I u d f
ρ

θ
ρ

≡ ρ λ ρ ρ = λ∫ (15)

where A is the integral operator; u(ρ) is the required distribution of cells over the reduced radii 
(sizes); Iscat(θ)(ρ,λ) is the intensity of the scattered field by a spherical multilayered particle over the 
angle θ, this is the kernel of the integral equation f(λ) ≡ Iblood(θ,λ), where Iblood(θ,λ) is the scattered 
light intensity determined by expression (11).

Suppose that the function Iscat(θ)(ρ,λ) is continuous in a rectangle Ω = ([c,d]×[a,b]), while 
f(λ) ∈ L2[c,d], so that a ≡ ρmin, b ≡ ρmax, c ≡ λmin, d ≡ λmax.

We assume that we know not the function f itself but some approximate value fδ corresponding 
to the condition 

2[ , ]
.

c dL
f fδ− ≤ δ  In the case where the function u(ρ) is assumed to be smooth, 

we can choose U = W 1
p[a,b] as the solution space.

In fact, instead of the function Iscat(θ)(ρ,λ), we assign the function Ihscat(θ)(ρ,λ). At the same time, 
the following conditions are satisfied:

2
( ) ( ) ( )

( , ) ( , ) .scat hscat L
I I hθ θ Ω

ρ λ − ρ λ ≤

In this case, the restriction holds true: 

1
2 2

,h W L
A A h

→
− ≤

where Ah is the approximation for the integral operator A whose accuracy h corresponds to the 
kernel Ihscat(θ)(ρ,λ) in the operator norm. 

To numerically find the distribution u(ρ), we apply the Tikhonov regularization method [9, 10], 
since the inversion of the operator A for the inverse problem is unstable for space W 1

p[a,b] and the 
Tikhonov equation has the following form [9, 10]:

* *( ) ,h h hA A C u A fα+ α =

where Ah is the transformation operator from space W 1
2[a,b] to subspace L2[c,d]; A

*
h is the transfor-

mation operator from subspace L2[c,d] to space W 1
2[a,b] (conjugated to Ah); C is the operator whose 

matrix was defined in monograph [9].
This problem statement assumes that there is no information about the smoothness of the 

exact solution. In this case, the operator of the initial integral equation Ah can be assumed to be 
acting from space L2[a,b] to subspace L2[c,d]. 

Let us write out the smoothing functional for the case under consideration:

2[ , ]2[ , ]

2 2[ ] min.
c dc d

h LL
M u A u f uα α

δ= − + α → (16)
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Then the Tikhonov equation should be written as

* *( ) .h h hA A E u A fα+ α =

The function minimizing the functional uα depends on the value of the regularization 
parameter α.

Results of numerical calculations for the model medium

Let us consider a model medium that has the characteristics presented in Table 1.
The parameter values for the interfaces between the layers are chosen so that the model is as 

close as possible to the real data on the form of the surface boundaries of the corresponding layer 
in the structure of a typical human dermis, and the wavelength is λ = 633 nm (the center of the 
He-Ne laser line).

Let us list the conditions imposed for problem on finding the size distribution function of 
blood corpuscles imitating erythrocytes. Firstly, the framework of the mathematical model con-
structed for the interaction of laser radiation with a biological structure containing a particle 
aggregate assumed that number of particles in the given aggregate was finite. Secondly, both the 
structures of the aggregate elements and the effects of multiple scattering were taken into account; 
at the same time, the geometric and optical characteristics of the scatterers were assumed to be 
given exactly.

Fig. 2 shows examples for the calculated intensity curves of laser radiation scattering as a func-
tion of wavelength (scattering spectra) by two groups of spherical multilayered particles for cases 
of varying degrees of aggregation.

Analyzing the obtained results, we reached the following conclusions: 
the mathematical approach used in the paper and the software developed based on this approach 

make it possible to detect the processes of particle aggregation in the model medium for the in 
vivo case (Table 2, see also Fig. 3);

variation of structural characteristics of the given aggregate (variation in the distances between 
the elements) leads to variation in both the numerical values of the spectral characteristics (see 
Fig. 2), and the shape of the curves themselves (Fig. 3). This effect is due to the difference in the 
size of the cells, as well as their internal structures.

The regularization parameter can be selected within the software program we have developed. 
This process was carried out automatically at the predefined error levels of the integral equation 
kernel. To select the regularization parameter providing an optimal ratio between a priori infor-
mation and experimental data, the following methods were used: L-curve, relative residual, qua-
si-optimality criterion and smoothing functional (Fig. 4).

Tab l e  1

Characteristics adopted for the model medium

Parameter Notation
Parameter value for layer i

(2) (3) (4)

Layer thickness, µm dl 65 565 90

Arbitrary constant 
ai −0.0024 0.021 0.041
bi 0.0200 0.030 0.050
ci 0.010

Refractive index (real part) n0i 1.50 1.40 1.35
Note s .  1. Arbitrarily given constants are represented by Eq. (4): sin(a )i i i iH c x b y= + .  
2. The refractive index of the ambient air n1 = 1,000; ni = n0i + iχi for the ith layer of the 
model absorbing medium, it was assumed that χ2 = χ3 = χ4 = χ5 = 10−5; n05 = 1.40. 
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a)	 b)

Fig. 2. Calculated intensities of laser radiation scattered by two groups each containing 5 
spherical multilayered particles as function of radiation wavelength (incidence angle θ = 0°); 

the distance between the particles was 1 µm (a) and 2 µm (b), 
the remaining parameters are given in Table 1.

a)	 b)

Fig. 3. Functions of bimodal (a) and normal (b) distributions 
of spherical multilayered particles over their reduced radii;

the distances between the particles were 1 µm (a) and 2 µm (b).
Thin lines correspond to the specified distributions, colored bold lines correspond to the calculated ones

Tab l e  2

Size distribution function of particles obtained by simulation

 Whole structure or structural element Diameter, μm Refractive index
Whole particle 6.5 6.5 7.0 7.6 8.0 – 

Nucleus 4.0 3.0 1.37
Cytoplasm 5.0 6.0 6.5 6.5 4.0 1.00

Plasma membrane – 1.33
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It seems reasonable to involve traditional data related to the size distribution of erythrocytes 
used in practical medicine to confirm the effectiveness of the above selection methods [11]: 

2
1 1 1( ) exp ( ) ,u A B bρ = ⋅ ρ − (17)

2 2
2 2 2 3 3 3( ) exp ( ) exp ( ) ,u A B b A B bρ = ⋅ ρ − + ⋅ ρ − (18)

where Ai, Bi, bi are fitting parameters.

a)	 b)

c)	 d)

e)	 f)

g)	 h)

Fig. 4. Determination of regularization parameter for functions of bimodal (a–d) 
and normal (e–h) distributions of spherical multilayered particles using various 

selection methods: by relative discrepancy (a, e), by quasi-optimality criteria (b, g) 
and L-curve (c, h), as well as by the smoothing functional principle (d, h)
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The above equations (17) and (18) describe the normal and bimodal distributions, respectively.
The parameter values for a normal distribution are b1 = 2, A1 = 1, B1 = −2, and b2 = 3, A2 = 

0.80, B2 = −1.00; b3 = 5, A3 = 0.15, B3 = −1.30 for a bimodal distribution describing the case with 
the fraction containing 30% of abnormally large cells.

Let us consider the behavior of the two curves in Fig. 3,a. A predefined asymmetric bimodal 
size distribution of particles corresponds to a continuous curve simulating the presence of frac-
tions of both abnormally large and normal formed elements (erythrocytes). Notably, the numer-
ical solution of the problem allowed to reconstruct both the peak characterizing the fraction of 
normal cells and the peak corresponding to the fraction of abnormally large erythrocytes with a 
high degree of accuracy.

Similar interpretations can be given for the curves in Fig. 3,b. Here, the result of the numerical 
solution of the inverse problem is shown by a bold colored line (the noise level in the right-hand 
side of the equation is taken equal to 5%). The thin gray line corresponds to the size distribution 
function of particles based on relation (17). Evidently, the numerical solution of the problem given 
by relation (15) allowed to reconstruct the particle size distribution profile with high accuracy. 

As a result, the constructed mathematical model makes it possible to theoretically calculate 
the size distribution function for spherical particles imitating blood cells for the in vivo case. We 
should also note that the solution obtained by minimization rather satisfactorily coincides with 
the predefined one for different types of distributions. It is significant that the error of the solution 
is commensurate with the noise level.

Conclusion

We can conclude from analysis of our findings that the new approach to describing the inter-
action of laser radiation with a layered medium, reproducing a model of biological tissue, has 
proved fruitful. The approach included asymptotic methods of diffraction theory. Let us briefly 
overview the main results obtained.

1. We formulated the expressions for calculating the reflected field of a Gaussian beam in 
the case of p-polarization of incident radiation, where such parameters as the incidence angle of 
the incoming beam and the refractive index of the reflecting surface are arbitrary. The formulas 
express the asymptotics with respect to a small parameter. The meaning of the small parameter 
introduced is the ratio of the characteristic variation scale of the body's boundary profile to the 
corresponding characteristic distance. The error of the calculations is of the order of quadratic 
asymptotic terms.

2. The constructed model satisfactorily reproduces the propagation of non-coagulating laser 
radiation into biological tissue with multilayered structure. This model allows to calculate the 
optical characteristics of the system, laying the foundations for qualitative analysis of the studied 
biophysical processes. 

3. The mathematical model was constructed by means of the tools available in the software 
package, where the characteristic dimensions of the given biological structure can be freely var-
ied in automatic mode. These advantages allow tracking the changes that occur when the input 
parameters are varied. 

4. The new approach makes it possible to correctly reconstruct the distribution of red blood 
cells along the given radii taking into account the structural features of such a bioaggregate and 
accurately detect the changes in the distribution width of erythrocytes for the in vivo case.
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