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SNEKTPOAUHAMUYECKAA MOAEJIb ONPEAEJIEHUA
OYHKUMUU PACINPEAENEHNUA YACTUL, NO PASMEPAM
ANA KNETOK KPOBM IN VIVO
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AnHoranus. PaboTa mocpsiilieHa IMOCTPOCHUIO MaTeMaTUYeCKO MOAEIN ISl ONpeAeIeHUs
(yHKIIMKM paclipefe/ieHUs] KJIEeTOK KpoBM 10 pa3mepaM. Ilociie paccMOTpeHHUs 3amgadu
cBeTopaccesiHusI Ha cgepyIMpOBaHHON 4YacTulle, 00Janarouleili MHOTOCIOMHON CTPYKTYpOi
MU TIPOU3BOJIBHO OPUEHTMPOBAHHOW B MPOCTPAHCTBE, ompenejeH KO3 UIMEHT OTpakeHUsI
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IUIOCKOI BOJHBI OT MOIEIN OMOCTPYKTYPHl C TIJITaBHOHEPETYJISIPHBIM CTpOoeHueM. Takoit
MOJIXO/ TTO3BOJIMJI MIOCTPOUTD MOJIEJIb YKa3aHHOM CTPYKTYpPhI, UMEIOIIEH HECKOIbKO OMOCIIOEB.
Hcxonst U3 oTpaxkeHusl rayccoBa Iydyka OT 3TOH CTPYKTYphbl OblIa CMOAEIMPOBaHa (DYHKIIUS
pacnpeneneHus yacTull 1o pa3mepam. TIpuBiaeKanuch Takue MeTOAbl, KaK MaTeMaTUYeCKU
ammmapat T-marpuiiel, npeobpa3oBanue [roiireHca — ®OpeHenst, MeTOH pPeTYISIpU3aIIAN
Tuxonosa. IlpennoxeHHas BIEpBble MaTeMaTHM4yecKash MOJEJb IMO3BOJMIA TEOPETUYECKU
paccunTaTh QYHKIIUM pacTipeaeaeHus 1o pa3MepaM cpepyanpoBaHHBIX YACTUI, UMUTHAPYIOLINX
(opMeHHBIE BJIEMEHTHI KPOBU IS Cyvasi in vivo.
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Introduction

Laser technologies have recently become indispensable for solving diverse problems in fields
of science and technology ranging from physics and chemistry to medicine and biology. Laser
technologies are increasingly used in medical diagnostics, therapy and surgery, and this direction
undoubtedly holds immense promise for future applications.

Non-invasive methods, including, most notably, optical ones, are in great demand as they offer
a range of benefits (relative safety, reduced injury rate and infection risks, etc.) for diagnosis and
treatment of diseases. Blood tests measuring the size and shape of erythrocytes, as well as their
deformability and aggregation ability, monitoring the glucose levels in human blood, measuring
the capillary blood flow velocity are of great importance for medicine if they can be carried out
rapidly and non-invasively.

Biological tissues are optically inhomogeneous absorbing media with the average refractive
index exceeding the one for air. Notably, cell membranes, nuclei and organelles, such as mito-
chondria, as well as melanin granules in cells serve as the main dispersers in many biological tis-
sues [1—3]. There is evidence that cellular structures become increasingly chaotic with increasing
malignancy of tissue neoplasms; at the same time, the size of individual cellular nuclei increases
relative to the average value, while the relative refractive index of the cytoplasmic/nuclear envi-
ronment may also change [1].

Blood tests are a fundamental step taken in modern medical practice to diagnose various
pathologies. In this regard, it is important to analyze the optical properties of the so-called
blood corpuscles, which include erythrocytes, leukocytes and platelets (in the traditional sense).
However, erythrocytes, or red blood cells, make up more than 99% of the hematocrit (the per-
centage of corpuscles in the total blood volume). As is well known, along with their transport
function, erythrocytes constantly participate in maintaining the vital activity of the body as a
whole. Accordingly, the systematic deviations in the state of the corpuscles making up the bulk of
blood cells directly affect the vital processes in the body.

Researchers and doctors attribute a dominant role in the pathogenesis of a significant number
of diseases, complications and pathological conditions to microcirculatory and hemorheological
dysfunctions. The functional properties of erythrocytes often play a significant and sometimes
decisive role in these pathologies [4].

Evidently, the erythrocyte has specific mechanical and geometric properties, as well as a
refractive index. This naturally brings theoretical and practical attention towards the characteristic
properties of erythrocytes. For example, it would be interesting to determine the sizes of eryth-
rocytes, their aggregation properties, refractive indices, especially in cases of various pathological
abnormalities of the hematopoietic system.
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A standard detailed clinical blood test is regarded by modern scientists as an extremely infor-
mative indicator of the physiological processes occurring in healthy and diseased states. This
diagnostic tool also includes measuring the width of the size distribution of erythrocytes. This
indicator is included in the standard comprehensive blood panel, confirming the importance of
the data on the size distribution of erythrocytes for clinical practice.

Rapid and precise measurements of the size distribution of blood corpuscles are crucial in
some diseases, such as iron deficiency or sickle cell anemia, elliptocytosis, spherocytosis, etc. [5].

Thus, it is essential to develop effective and quick methods for finding the size distribution
functions of spherical particles imitating blood corpuscles. The parameters of erythrocytes, in
particular their sizes, can be determined based on light scattering [3].

Therefore, we believe that formulating and solving this problem as an optical one is promising
for such major areas as biomedicine and biophysics.

It is apparent that the model to be constructed must have the following properties:

sufficiently informative;

modern but not excessively complex;

fast to apply, i.e., not requiring resource-intensive computations.

The goal of this study is to model the size distribution function of spherical particles.

The paper has the following structure. First, we consider the problem of light scattered by a
J-spherical particle with a multilayered structure, arbitrarily oriented in space, taking into account
multiple scattering.

Next, we determine the reflection coefficient of a plane wave by a model of biological tissue
with a smooth irregular structure. This approach allows to construct a satisfactory model of the
biological structure with several biolayers.

The reflection of a so-called Gaussian beam is considered within the model proposed. In the
course of our analysis, we naturally turn to the question of modeling the size distribution function
of spherical particles.

Matrix formulation of scattering for j-spherical particles

Most studies relying on Mie theory regard the erythrocyte as a homogeneous sphere with the
volume equal to the average volume of the erythrocyte. The erythrocyte can be considered to be
a homogeneous scatterer due to the peculiarities of its structure. This representation of the eryth-
rocyte is an adequate and effective approach to solving many problems of biomedical optics. The
assumption of the spherical shape of the cells makes it possible to correctly predict the value of
the scattering cross section of erythrocytes [3]. The scattering phase function of erythrocytes can
be successfully approximated within the framework of Mie theory [1, 3]. Furthermore, Mie theory
is well applied to describing the single scattering of incident laser radiation if randomly oriented
erythrocytes or whole blood are examined.

As noted above, it is quite common to construct models where the shape of the blood corpuscles is
assumed to be spherical. Such an approximation yields satisfactory results for a range of problems, espe-
cially since red blood cells are easily deformed and do not constantly retain their biconvex disk shape.

We take the spherical model of the erythrocyte as a basis; the rest of the blood cells are
described as spheres with concentric inclusions [3].

The problem of laser radiation scattered by an aggregate of multilayered particles, serving as a
model of aggregates in the blood medium, is solved in accordance with rigorous theory of multi-
ple scattering. Using T-matrices as a mathematical framework allows to relate the decomposition
coefficients of two electromagnetic fields: that scattered by a model aggregate and that incident
on it. The connection between the scattered fields is described within this framework by taking
into account the multiple interactions between the elements of the aggregate.

The T-matrices of all the elements of the aggregate do not depend on incident radiation, if we
consider scattering by spherical objects. In this case, they can be calculated in the local coordinate
system associated with the center of the selected particle.

Let us give a finite expression for the two components of the scattered field Em,(e) and Emt(w)
in the far field (a detailed formulation can be found in [6]):

ikr
e (2n +1)
E ~E,—— , |

scat(0) 0 _l. “ 1m__n n(n+1)|: mn n mn n:| ( )
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E e~ Eo lerZ( 0 0, b7, ) @)

n=1 m= n(l’l+1)

where E is the amplitude of the wave scattered by a spherical particle; r is the radius vector; k
is the wave vector; m, n are the harmonic numbers; 0 is the angle of incidence of the laser beam
relative to the z axis; ¢ is the polar angle; © = 0P (cos 0)/00, 1, = P (cos 0)/(sin 0) are Legendre
polynomials; the coefﬁc1ents a , b were defined in [6].

Expressions for the magnetlc ﬁeld H can be obtained using conceptually similar reasoning.

The problem on light scattering by a multilayered sphere was solved involving the mathemat-
ical concept described in detail in [7].

Using expression (1) as the basis for the 8-component of the scattered radiation intensity, we
write the following expression:

g 3)

[scat(<b) (p’ }\’) = ]1' ’ |Escat(d))

where [, is the intensity of the incident radiant flux, p is the reduced radius of the particle (p =
ki, [ is the dimensional radius of the particle).

Reflection of a plane wave from a smooth irregular layer

Solving the problem on reflection of a plane wave from a smooth irregular layer (Fig. 1) imitat-
ing the model biological structure under consideration, we refine the expression for the reflection
coefficient from a layer whose main characteristic is a slowly changing thickness. The mathemat-
ical model contains the following bio-layers (see Fig. 1):

ambient air (/) through which the laser beam passes;

surface layer of the dermis, the epidermis (2);

=
ko

i X
. A I.m
g : 2 Hi(x,»), m
: 3, Hox, ), m3
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@@ (@ 4 Hi(x,y), ns

© @O ;.

Fig. 1. Schematic representation of the model: laser radiation is incident
on the biological structure, including layered components 2—5
between external environment / and lower dermis layers 5:
epidermis 2, upper layers of dermis 3, layer 4 with inclusions
(aggregates of blood corpuscles); n, is the refractive index of the ith layer
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upper layer of the dermis (3);

layer consisting of spherical particles that imitate blood corpuscles (4);

lower layers of the dermis (J5).

For the simulated model to best reproduce the real structure, the separation boundaries of the
layers can be represented as wavy surfaces:

z,=H,(x,y), H =c;sin(a, x +b,y), 4)

where ¢, a, b, are arbitrarily set constants, and a, < 1, b, < 1, ¢, < 1,i=1,3.

Let a plane s- or p-polarized wave fall on the modeled layer at an angle 6. For certainty, let
us consider the case of p-polarization.

Reflected fields should be searched for as waves with rapidly oscillating phases and slowly
varying amplitudes. The electrical components of the fields reflected from the 1st, 2nd and 3rd
layers have the form

E, = exp(ér,-m(al,az,;)) ¥ exp(érlmf(al,az,;))A, 5)
E, = exp(érmp@pap;))r ¥ exp(érgre_,@,ap;)w, ©)
E,= exp(éue,a,,(al,az,a;))c* ¥ exp(érsmf(apaz,as e ™)

and the components of the fields E, and E, are represented as follows:

Ey = XD T (G DD + XD Ty (B EnEDD + Eoy(BuBaB) )

B = eXp(= T (6 EunE ). o)

where A, B*, C*, D* are the amplitudes; ¢ is a small parameter; &, =¢ex,§, =¢€y,§, =€z are the

oblate spheroidal coordinates; t,,.(§,&,,&;), Tlref'(§1’§2a§3)a tZelap(&l’éZ’ 3); T3_ref(§1_a &,,65),
Tarer (61562563)s Taer (61562583)s i (615625E3)s Tspr (§1,€55E3) Tsyy,, are the functions included
in the eikonal equations for incident (inc), reflected (ref) and elapsed (elap) fields, respectively

(the functions are defined in [8]).

Condition (8) contains a term E, .(§,,&,,&;) that takes into account scattering (scar) in the
4th layer by inhomogeneities (spherical particles).

The next step is to find the amplitudes A, B*, C*, D*. We write them as series in terms of
degrees of the small parameter ¢.

A recurrent system of equations for iterative determination of the terms in the series 4, B, C*,
D* can be obtained by through standard continuity conditions for tangent components of electric
and magnetic fields at the interfaces of the media, taking into account expressions (5)—(9). The
reflection coefficient of the field can be obtained in the first approximation from the constructed
system of equations.

Next, we need to find the reflected field for a Gaussian beam. To obtain the required field
in the initial cross section (within the framework of the chosen method), we intend to apply the
inverse transformation and then the Huygens—Fresnel integral transformation [8]. The number
of primes in coordinate systems is of fundamental importance: the system (x', y', z’) is associated
with the incidence direction of the beam, and the system (x”, ", z”') with the reflected field; the
reflected field propagates along the line of the beam z” = 0. The required field in the initial cross
section is expressed as follows:
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where the formulas kn x' = k, x + k,y + k.2, kny = k,x + k,,y + k,.z, kn.? = k, x + k,,y + k.2,

k11 = knlall’ k12: knlal2’ k13: kn1a_13’ k21 - I_cnla2l’ k22: k’?lazz’ k23: kn1a23, k31 : knlaBI’ k32:. kn_la32’
k, = kn33a3_3, a, = cosecosy — s1n<pcostmy, a,, = —sSInecosy — cos<pc939s1nw, a,= 51.n931.n\y,
a,, = cosesiny + sinecosbcosy, a,, = —sinesiny + cosecosbcosy, a,, = sinfcosy, a, = singsing,

a,, = cosgsing, a , = cosb relate the coordinate systems (x', ¥, Z') and (x", y”, z”). The Gaussian
beam ®(&[,&)) and the coefficients obtained from the recurrent system of equations for iterative
determination of the terms in the series (the amplitudes A&) , A, Af , Ayoeo are decomposed into
these series in terms of degrees of the small parameter ¢) were found in [6].

The particulars of the geometry associated with the boundaries constructed for the reflecting
medium, the characteristic properties of the incident beam itself (the distribution of the field in a
fixed cross section and the angle of incidence) affect certain parameters of the reflected field. The
reflected field is represented as the main term and the additive correction of the asymptotics with
respect to the small parameter with an error O(g?).

Next, if we assume the parameters of the given system to be fixed, then the distortions in the
field of the incident beam upon reflection can be assumed to depend on two predominant factors
against the background of the others.

The first of these factors is represented in Eq. (10) by expressions in square brackets:

€ [/ad "~ k n [/ad "~ " n
EX[AO”I(Q +&; 7k1y’klx)+iélA0000(E.>l +&) ’kly’klx)]q)(&'l’ 2)—
1
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_Ey[AfO(}; +&; ’k1y9k1x)+ﬁa2A0000(EJl TS ’kly’klx)]q)(é.!l’ )~
1

8)6 8 [/ad "~ k n [/ad [/Aad " n
ay [Aﬁ(él +é2 ’kly’klx)+i§1Aoooo(é1 +§2 9k1y’k1x)]q)(§19 2)_
1

ngy k23 4 "~ "~ " oen
_T[Eéz/loooo(‘t:l +§2 > 1yak1x)]q)(§1’ 2)-
1

The reflected field can be obtained here by multiplying the expression for the incident beam
field by the local reflection coefficient of the plane wave with unit amplitude, incident on the
medium at the same angle as the beam.
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The expressions in curly brackets in Eq. (10) describe the transverse diffusion of the amplitude:

0D(&),E;)

' ek, [GA@@T 8 ohyoky) | ARG +E LKy K

ikn, o ok, ok, ) oE! b
_{ Syk)? [6A®(é;h+ég~’k1y’klx)+a @(ér+é’2'~’k1y’klx)]aq)(é;,9 ’2’)}
ik, o ok, ok, oE!

A similar process occurs during reflection due to beam distortion (deviation from the propa-
gation direction of the reflected beam). It seems reasonable to refer to the expressions in square
brackets as the geometric factor, and to those in curly brackets as the diffuse factor.

Thus, we formulated the expressions for the reflected field of the Gaussian beam for the case
of p-polarization. Such characteristics of the system as the beam angle and the refractive index
of the reflecting layer were assumed to be arbitrary in the problem statement. These results are
asymptotics with respect to the small parameter (whose meaning is the ratio of the characteristic
scale of the variation in the body's boundary profile to the characteristic distance).

Notably, the formulas are not uniform with respect to the incidence angle parameter, but
changing the other parameters produces the final result. Considering the process where the inci-
dence angle increases within the given expression, we can observe that the additive corrections of
the asymptotics begin to grow, pointing to a gradual increase in the distortion of the beam. The
resulting formulas lose their meaning if the incidence angle is increased to 90°. In this case, the
reflected field is scattered into a wide range of angles (is spread out in space). There are no solu-
tions of the wave equation that would have the character of a localized beam in space propagating
in a certain direction from the reflective surface. Consequently, the reflective formulas hold true
within the angular range from 0° to 89°. According to our estimates, the error of the calculations
obtained lies at the level of quadratic asymptotic terms. Similar reasoning can be used to obtain
a reflected field for the magnetic component of the field.

Size distribution function of the spherical particles

Let us pose an inverse problem, where the intensity of light scattered by an aggregate of spher-
ical particles is known. The latter are located in the layer and serve as a model of the aggregate
of blood corpuscles (see expression (11)). Based on the known intensity measured with a certain
error, we must find the size distribution of erythrocytes for the in vivo case.

The problem is formulated as follows:

Determine the size distribution function of blood corpuscles for the in vivo case.

The problem is solved by finding the reflected field E,, , in a layer consisting of spherical par-
ticles with various sizes and refractive coefficients. It is defined as follows:

E E —E

blood - ref skin’
where E _, E . are, respectively, reflected fields from the entire modeled optical system and
sequentiaﬁy from the layers (epidermis, upper layer, dermis).
The intensity of the reflected field in a layer consisting of spherical particles is expressed

as follows:

2

Iblood (6,2) = |Ebloodi|2 + |Eblood||

, (11)

where £, = =(blood) €OS 0+ Ex(blaod) sin 6, Etooay = Ez(bload) sin 6 — Ex(bload) cos®.

The components £_and E_follow the expressions

al;:z(blcood) _ 6E y(blood) __ al;x(blood) _ aE‘z(blood) _

8y P = —l'(x)llouij(blood) ’ P o = —icopto;,t_/Hy(blood) 5 ( 12)
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aE y(blood) aE x(blood) aE z(blood) aE y(blood)

ox oy —IOU M H 11000 oy oz 1008  H  1o00) (13)
OH x(blood OF z(blood . oH lood a}[X bloo
a(Zl - a(x H= THOg U IEY(blood)’ ;(; - 8(y "= =08 81 EZ(blood)’ (14)

where g, F/m, is the dielectric constant; g Is the dielectric constant of the model medium for the
Jjth layer U, G/m, is the magnetic constant M, is the magnetic permeability of the model medium
for the jth layer; o, s7', is the angular frequency
Egs. (12)—(14) correspond to the system of Maxwell equations in the Cartesian coordinate system.
In this case, the inverse problem is described by the Fredholm linear integral equation of the
first kind:

pmax

Au= [ 10 u(p)dp = £ (1), (15)

pmin

where A is the integral operator; u(p) is the required distribution of cells over the reduced radii
(sizes); I wt(e)(p,k) is the intensity of the scattered field by a spherical multilayered particle over the
angle 0, this is the kernel of the integral equation fd) = 1, (0,A), where I, (6,)) is the scattered
light intensity determined by expression (11).

Suppose that the function / t(e)(p,k) 1s continuous in a rectangle Q = ([c¢,d]x[a,b]), while

b[ao bloo

el ,sothata=p . b=p ,c=r, ,d=) .

We assume that we know not the function f itself but some approximate value f, corresponding
to the condrtron(/ﬂ f- f§|| < 3. In the case where the function u(p) is assumed to be smooth,
we can choose W‘ 48 the solution space.

In fact, instead of the fJunctron I, .o(p;A), we assign the function 7, (p,1). At the same time,
the followrng conditions are satisfied:

scat(e)(pﬁ}\‘) Ihscat(e)(pﬂ}\‘)”

In this case, the restriction holds true:

[4-4]

L (o)

Wlalq

where A, is the approximation for the integral operator 4 whose accuracy 4 corresponds to the
kernel [h t(e)(p,k) in the operator norm.

To numerrcally find the distribution u(p), we apply the Tikhonov regularization method [9, 10],
since the inversion of the operator A for the inverse problem is unstable for space W‘ and the

Tikhonov equation has the following form [9, 10]:
(A;Ah +aCu® = A;f,

where A, is the transformation operator from space W'
mation operator from subspace L 4 to space W
matrix was defined in monograph [9]

This problem statement assumes that there is no information about the smoothness of the
exact solution. In this case, the operator of the initial integral equation A, can be assumed to be
acting from space L, , to subspace L, Aedr

Let us write out the smoothing functional for the case under consideration:

dap 1O subspace L, , is the transfor-

et (conjugated to A); d’c is the operator whose

2 2 .
M®u]= ||Ahucx _ 'f'%”Lz[c,dJ +afuf,  — min. (16)

2fe,d]
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Then the Tikhonov equation should be written as
(A A, +oE)u" =4, f.

The function minimizing the functional u* depends on the value of the regularization
parameter a.

Results of numerical calculations for the model medium

Let us consider a model medium that has the characteristics presented in Table 1.

The parameter values for the interfaces between the layers are chosen so that the model is as
close as possible to the real data on the form of the surface boundaries of the corresponding layer
in the structure of a typical human dermis, and the wavelength is A = 633 nm (the center of the
He-Ne laser line).

Table 1

Characteristics adopted for the model medium

Parameter Notation Parameter value for layer i
(2) ) 4)
Layer thickness, pm d, 65 565 90
a. —0.0024 0.021 | 0.041
Arbitrary constant b. 0.0200 0.030 | 0.050
c, 0.010
Refractive index (real part) n, 1.50 1.40 1.35

Notes. 1. Arbitrarily given constants are represented by Eq. (4): H, =¢;sin(a, x+b,y)
2. The refractive index of the ambient air n, = 1,000, n, = n,, + iy, for the ith layer of the
model absorbing medium, it was assumed that y, =y, = ¢, = x;= 107 n ;= 1.40.

Let us list the conditions imposed for problem on finding the size distribution function of
blood corpuscles imitating erythrocytes. Firstly, the framework of the mathematical model con-
structed for the interaction of laser radiation with a biological structure containing a particle
aggregate assumed that number of particles in the given aggregate was finite. Secondly, both the
structures of the aggregate elements and the effects of multiple scattering were taken into account;
at the same time, the geometric and optical characteristics of the scatterers were assumed to be
given exactly.

Fig. 2 shows examples for the calculated intensity curves of laser radiation scattering as a func-
tion of wavelength (scattering spectra) by two groups of spherical multilayered particles for cases
of varying degrees of aggregation.

Analyzing the obtained results, we reached the following conclusions:

the mathematical approach used in the paper and the software developed based on this approach
make it possible to detect the processes of particle aggregation in the model medium for the in
vivo case (Table 2, see also Fig. 3);

variation of structural characteristics of the given aggregate (variation in the distances between
the elements) leads to variation in both the numerical values of the spectral characteristics (see
Fig. 2), and the shape of the curves themselves (Fig. 3). This effect is due to the difference in the
size of the cells, as well as their internal structures.

The regularization parameter can be selected within the software program we have developed.
This process was carried out automatically at the predefined error levels of the integral equation
kernel. To select the regularization parameter providing an optimal ratio between a priori infor-
mation and experimental data, the following methods were used: L-curve, relative residual, qua-
si-optimality criterion and smoothing functional (Fig. 4).
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Fig. 2. Calculated intensities of laser radiation scattered by two groups each containing 5
spherical multilayered particles as function of radiation wavelength (incidence angle 6 = 0°);
the distance between the particles was 1 um (@) and 2 um (b),
the remaining parameters are given in Table 1.
Table 2

Size distribution function of particles obtained by simulation

Whole structure or structural element

Diameter, um

Refractive index

Whole particle 6516570761 8.0 —
Nucleus 4.0 3.0 1.37
Cytoplasm 5060656540 1.00
Plasma membrane - 1.33
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Fig. 3. Functions of bimodal (a) and normal (b) distributions
of spherical multilayered particles over their reduced radii;
the distances between the particles were 1 um (a) and 2 um (b).
Thin lines correspond to the specified distributions, colored bold lines correspond to the calculated ones
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selection methods: by relative discrepancy (a, e), by quasi-optimality criteria (b, g)
and L-curve (c, h), as well as by the smoothing functional principle (d, /)

It seems reasonable to involve traditional data related to the size distribution of erythrocytes
used in practical medicine to confirm the effectiveness of the above selection methods [11]:

”(p) = Al 'eXpBl (p _bl )25

u(p) =4, 'eXsz(p_b2)2 + 4, -expB3(p—b3)2,

where A, B, b, are fitting parameters.

(17)

(18)
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The above equations (17) and (18) describe the normal and bimodal distributions, respectively.

The parameter values for a normal distribution are b, = 2, A, = 1, B, = -2, and b, = 3, A, =
0.80, B, = -1.00; b, = 5, A, = 0.15, B, = —1.30 for a bimodal distribution describing the case with
the fraction containing 30% of abnormally large cells.

Let us consider the behavior of the two curves in Fig. 3,a. A predefined asymmetric bimodal
size distribution of particles corresponds to a continuous curve simulating the presence of frac-
tions of both abnormally large and normal formed elements (erythrocytes). Notably, the numer-
ical solution of the problem allowed to reconstruct both the peak characterizing the fraction of
normal cells and the peak corresponding to the fraction of abnormally large erythrocytes with a
high degree of accuracy.

Similar interpretations can be given for the curves in Fig. 3,5. Here, the result of the numerical
solution of the inverse problem is shown by a bold colored line (the noise level in the right-hand
side of the equation is taken equal to 5%). The thin gray line corresponds to the size distribution
function of particles based on relation (17). Evidently, the numerical solution of the problem given
by relation (15) allowed to reconstruct the particle size distribution profile with high accuracy.

As a result, the constructed mathematical model makes it possible to theoretically calculate
the size distribution function for spherical particles imitating blood cells for the in vivo case. We
should also note that the solution obtained by minimization rather satisfactorily coincides with
the predefined one for different types of distributions. It is significant that the error of the solution
is commensurate with the noise level.

Conclusion

We can conclude from analysis of our findings that the new approach to describing the inter-
action of laser radiation with a layered medium, reproducing a model of biological tissue, has
proved fruitful. The approach included asymptotic methods of diffraction theory. Let us briefly
overview the main results obtained.

1. We formulated the expressions for calculating the reflected field of a Gaussian beam in
the case of p-polarization of incident radiation, where such parameters as the incidence angle of
the incoming beam and the refractive index of the reflecting surface are arbitrary. The formulas
express the asymptotics with respect to a small parameter. The meaning of the small parameter
introduced is the ratio of the characteristic variation scale of the body's boundary profile to the
corresponding characteristic distance. The error of the calculations is of the order of quadratic
asymptotic terms.

2. The constructed model satisfactorily reproduces the propagation of non-coagulating laser
radiation into biological tissue with multilayered structure. This model allows to calculate the
optical characteristics of the system, laying the foundations for qualitative analysis of the studied
biophysical processes.

3. The mathematical model was constructed by means of the tools available in the software
package, where the characteristic dimensions of the given biological structure can be freely var-
ied in automatic mode. These advantages allow tracking the changes that occur when the input
parameters are varied.

4. The new approach makes it possible to correctly reconstruct the distribution of red blood
cells along the given radii taking into account the structural features of such a bioaggregate and
accurately detect the changes in the distribution width of erythrocytes for the in vivo case.
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