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AnHoTamms. B craTbe BIepBbIe TPUBOAMTCS OOOCHOBAHWE TJIABHOTO KpUTEpHs MeTona
FDD (mekommo3uiiuu B 4YaCTOTHOU 00JIacTH), OCHOBAHHOTO Ha CUHTYJISIPHOM Pa3jIOKeHUUN
MaTpUIIbl B3AUMHBIX cieKTpaibHbIX TuioTHOCTel (MBCIT) usmepennsix curaanos. Meron FDD
UCTIOJIb3YeTCsl MPU TUHAMUYECKOM TECTUPOBAHUM COOPYKEHUU (3MaHUSI, MOCTBI, TJIOTUHBI) JIJIs1
9KCMEPUMEHTAITBHOTO OTNPEACTEHUST UX AMHAMUYECKUX XapaKTePUCTUK B YCIOBUSIX HOPMAJIbHOU
9KCIUTyaTaluu 0e3 MpUMeHEeHMsT BUOPOBO3OYIUTEIbHOIO 000PYyIOBaHMS. YKa3aHHbINA KpUTepUi
TMPUMEHSIETCS IS TTIOMCKa COOCTBEHHBIX 4YacTOT. OOOCHOBaHME BKIIOYATIO JBYCTOPOHHIOKO
OILIEHKY TIepBOTO cUHTYJsspHOTO 3HaYeHUuss MBCII, koTopast mo3BoImiIa MaTeMaTUIeCK CTPOTO
JI0Ka3aThb MPUMEHUMOCTb KPUTEPUS MPU BBIITOJTHEHUU OMPEIEIEHHBIX YCIOBUM.

KioueBbie cjioBa: 1eKOMITO3ULIMSI B YACTOTHOI 00J1acTU, KO3(MPULUEHT AeMI(pUPOBaHUS,
CTIeKTpajbHasl TJIOTHOCTh CUTHAIA
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Introduction

Experimental evaluation of the dynamic characteristics of unique structures (natural frequen-
cies, natural modes of vibrations, attenuation decrements) is crucial for the construction industry.
This practical procedure is also important for hydraulic structures (HS), due to stringent require-
ments for the safety of their operation, especially in seismic zones. For example, comparison of
experimental and calculated dynamic characteristics allows fine-tuning the parameters of finite
element models used for computational justification of operational reliability of HS under differ-
ent types of dynamic loads.

Since the late 1980s, there has been active research into a class of methods allowing to exper-
imentally determine the dynamic characteristics of structures (buildings, bridges, dams) under
normal operating conditions. These methods are often grouped under the umbrella term oper-
ational modal analysis ( OMA). These methods are widely used around the world due to their
relatively low cost and great advances made in measuring and recording equipment. A necessary
condition for adopting OMA methods is that the operational dynamic impact should have a ran-
dom, steady behavior, close to white noise.

A widely acclaimed method from the OMA group is commonly known as Frequency Domain
Decomposition (FDD). This method is based on singular decomposition of the cross-spectral den-
sity matrix (CSDM) of simultaneously performed measurements. It offers the following benefits:

minimum requirements for the number of simultaneous measurements;

formalized criteria for detecting natural frequencies and eigenmodes;

no restriction on ‘proportional damping for the mathematical model of the structure (formally
identified eigemodes are complex).

The first of these benefits means that theoretically, any object, even a very complex one, can
be examined using only two accelerometers: one stationary (reference), and the other mobile,
sequentially moved around the structure.

The FDD method was first introduced in 2000 [1] and further developed in [2—5]. In 2009, it
was theoretically reinterpreted in [6]. Some modifications of the method [3, 5, 11] allow to estimate
the modal attenuation coefficients. The theoretical foundations of the FDD method are discussed in
more detail in monographs [7, 8]. The method has been further improved; interesting modifications
are proposed, for example, in [11—14]. The classic version of FDD and several of its subsequent
modifications are implemented in the ARTeMIS Modal software package [9], which allows solving
the problem of identifying dynamic characteristics based on the data from vibration tests.

The FDD method and its ARTeMIS Modal software have been adopted since 2019 by scien-
tists of the B.E. Vedeneev All-Russian Research Institute of Hydraulic Engineering (VNIIG) at St.
Petersburg, Russia. To date, vibration tests were used to determine the dynamic characteristics of the
dam at the Bureyskaya HPP; the dam, the basic structure and floor slabs at the Sayano-Shushenskaya
HPP; some hydraulic structures (HS) at the Nizhne-Bureyskaya HPP, the dam at the Zeiskaya HPP.

The FDD method is succesfully applied both in model numerical experiments and in practical
problems of different levels of complexity. However, no strict justification of the criterion for
identifying natural frequencies has been obtained in the literature; the same is true for theoretical
estimates of the potential application scope of the method.

The latter circumstance is especially important for HS, since it is often complicated to use
OMA methods (and, in particular, FDD) in these structures, as dynamic loads are induced not
by a combination of a large number of random technological factors or microseisms (as in the
case with public buildings), but rather by purposeful regulation of the operating modes of the
structures, for example, the power capacity of hydraulic units in operation.

© AnppuanoBa E. A., Hosunkuit . B., Onumyk B. C., 2022. Uzparens: Cankrt-IlerepOyprckuii NmOJUTEXHUUECKUI
yHuBepcuret I[lerpa Benaukoro.
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The goal of our study is to theoretically validate the main criterion of the FDD method for
determining the natural vibration frequencies of an object.

In view of this goal, we constructed a double-ended estimate for the first singular value of the
cross-spectral density matrix of vibration signals.

Brief description of the basics of the FDD method

To determine the dynamic characteristics of a structure, let us consider the equation of motion
for its point masses:

My(#) + Cy(2) + Ky (?) = x(2), (1

where x(7) are the loads, y(7) is the response (/N-dimensional vectors); M, C, K are the matrices
of mass, damping and stiffness, respectively.

It was established in monographs [7, 15] that the matrices M, C, K are symmetric and real;
they are matrix constants, i.e., do not depend on time. Their dimension is determined by the
number of degrees of freedom N and is equal to N x N. We should also note that the matrix M
is positive definite, and C and K are positive semi-definite [7, 15].

Eq. (1) describes the free vibrations of the system in a homogeneous form. Its nontrivial solu-
tion can be used to determine the natural frequencies of the damped system o, and, in general,
the complex eigenmodes ¢, (modal vectors).

Because the eigenmodes are linearly independent, the response y(7) of the system is uniquely
decomposed into their linear combination:

y(t):(Pl '%(t)"'(Pz'qz(t)"'---:(pq(t)a (2

where @ is a matrix whose columns are eigenmodes ¢, i.e., ® = [¢,, 9,,...]; q(?) is a column
vector of modal coordinates; 7 is time.

An approach called the basic frequency model has been used for many years in engineering
practice as an initial approximation for identifying the dynamic characteristics (it is called the
Basic Frequency Domain in books [7, 8]). The central idea of this approach is that given a small
attenuation in the vicinity of a certain natural frequency with the number s, the response of the
system is determined mainly by its eigenmode with the same number.

Then the response y(7) of the system (see Eq. (2)) can be represented as follows:

y(©) =, -q,(2). (3)

By definition, the correlation function R(t) (this is a matrix function) takes the following form
for a stationary process:

R()=E[y() -y (t+1) |=0,E[q,()-¢.(t+D]o, =R, (De,0,". )

where R (1:) is the autocorrelation function of the modal coordinate, non-negative by definition.

Performmg the Fourier transform of the correlation function R(T), we obtain the expression
that is of interest to us for the CSDM of the components of the response vector G (0)) which
depends on eigenmodes:

G,(0) =G, ()9,0;. )

where o is the circular frequency.

The rank of the matrix G (0)) is equal to unity (since the rank of the product of the matrices
does not exceed the ranks of the multipliers), so the matrix has no more than one eigenvalue
different from zero. Furthermore, it is apparent that given expression (5), any row or column of
the matrix is Gy(co) proportional to the vector of the eigenmode ¢ .

Let us find the eigenvalues and vectors based on their definition:

G (o)u=Au, (6)

84



4 Simulation of Physical Processes

G, (00,0 u =G (0)9, (pru) =G, (0)(@ru)@, =Au. (7)

It follows from equalities (7) that the eigenvector is equal to the modal vector ¢,, and the
eigenvalue has the following form:

A=G,(0)@r9,) =G, (]o. - ®)

The matrix Gy(co) given by Eq. (5) is obviously symmetric and, since its only nonzero eigen-
value is positive, it can also be argued that it is positive semi-definite. The singular values in such
a matrix coincide with its eigenvalues, and the left and right singular vectors are the same.

The matrix GyGTy coincides with Gy up to the coefficient. Indeed,

O

It follows from the definition of singular value decomposition that the singular vectors of the
matrix G coincide with the eigenvectors of the matrix G GT Therefore, the first singular vector (it
corresponds to the maximum, and in our case, only elgenvalue dlfferent from zero) is an estimate
of the eigenmode ¢_.

Unfortunately, it is not always possible to represent the response y(7) in the form (3), i.e., to
neglect the influence of other eigenmodes. It was established in [7] that this method is inappli-
cable for identifying the natural frequencies close in value and the corresponding eigenmodes
even in systems with low damping. More accurate methods, in particular FDD, have been devel-
oped for this purpose, also reducing the influence of random noise inevitably generated during
measurements.

Let us briefly describe the central idea of the FDD method, following [7].

Let the response y(f) be a linear composition of all modal vectors according to Eq. (2). Let us
calculate the correlation function

GG, =00 0,0, =

R(D)=E[y@®)-y'(t+D)], (10)

then
R(1)=®E[q(1)-q"(t+7) |@" =OR @". (11)
The Fourier transform of the correlation function R(t) gives an expression for the CSDM Gy(co):
G, (0) =G, (0)D". (12)

It follows from the assumption that there is no correlation between the modal coordinates q(?)
[7] that the matrix G (co) is diagonal. Since the matrix ®” contains complex elements, its trans-
position ®7 should be replaced by a Hermitian conjugate ®*.

Then expression (12) takes the following form:

G,(0)=®[ g, () |@", (13)

where the diagonal matrix [g *(0)] contains the autospectral densities of the matrix G ((0)
The central idea of the FDD method is based on the application of the following smgular value
decomposition of the matrix:

G,(0)=USU" =U[s, (w)|U", (14)

where s is a diagonal matrix of singular numbers arranged in descending order; U is a matrix
consisting of left (right) singular vectors.

The left and right singular vectors of the matrix G (u)) are the same because this matrix is
self-adjoint and positive definite [18].
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Comparing expressions (13) and (14), we see that if the eigenvectors composing the matrix @
were mutually orthogonal, then the required modal forms up to a coefficient would be singular
vectors of the CSDM at an arbitrary frequency. Since this condition is not fulfilled, we can only
expect for an approximate solution to the problem of finding modal vectors and frequencies.

As shown in [7], if the external effect is assumed to be white noise, and the dissipation is small,
then the following expression is valid for the matrix Gy(u)):

H
0,0, ?,9 . C H
G (o PPy EnP n —@-diag| 2Re| —2— | |- D", 15
@)= Z Sy | —iO-A, g( [im—xmn (>

where A, =—y, +io,, (v, is the dissipation coefficient, o, is the natural frequency taking into
account damping); ¢, is the eigenmode; @ is the matrix whose columns are the vectors of eigen-
modes ® = [¢,9,,..., ¢,I]; ¢, is the positive coefficient; M is the number of eigenmodes taken
into account in decomposition (2).

Let us introduce the notations

c c
o, (0w)=2Re (m—k] = . w:dy)’; e (16)
Then expression (15) can be written as follows:
G, (0) = @-diag(a,,(w)) ®", (17)
or
M
G,(0)=>0,0,0, (18)

m=1

The authors of the FDD method proposed an algorithm for the case when the values of the nat-
ural frequencies are not close to each other, based on representation of the matrix G (m) in the
form (17), which can be summarized as follows

Step 1. A CSDM Gy(oa)‘ is calculated for each frequency o of a given range.

Step 2. A singular value decomposition (SVD) of the matrix Gy(co) is performed at each fre-
quency o, its first singular value o, (o) is determined and a function for the first singular value of
c,(w) dependlng on the frequency o is constructed.

Step 3. The values of frequencies o  that correspond to the local maxima of the function o ()
are found.

Step 4. 1f singular expansions generate the first singular vectors close to collinear (which is
verified using a MAC estimate?) in the vicinity of the frequency oSW, then the frequency cSm can
be assumed to be a natural frequency, and the first singular vector u (o, ) is an estimate of the
eigenmode.

Thus, the central idea (referred to as the criterion from now on) of the FDD algorithm is that
the first singular number of the matrix G (m ), being a function of frequency, has local maxima
near modal frequencies.

This is confirmed by the solutions of model problems and numerous calculations performed
on vibration measurements of real objects.

! Generally speaking, only those elements of the matrix G (®) that can be obtained from signals measured simultaneously are
calculated. The algorithm described below can be applied to a complete matrix G (o), but the matrices used in practice are
selected from the matrix G (®) in a specific manner.

2 MAC is the Modal Assurance Criterion. It is introduced to compare two eigenmodes a and b by the formula
w12
")

MAC(ab) = —
(aa)(b'b)
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Fig. 1. Averaged frequency dependences of six singular values (6 curves) of the spectral density matrix:
the upper curve (blue) corresponds to the first singular number ¢ (o); the arguments
of the local maxima o (w) (marked with circles) correspond to the natural frequencies of the dam.
The data were obtained from measurements at the Sayano-Shushenskaya dam in 2022

Fig. 1 shows a screenshot from the ARTeMIS Modal program with the graphs of the depen-
dences of the first six singular numbers on frequency (in logarithmic units for greater clarity)
based on the results of dynamic testing of the Sayano-Shushenskaya HPP dam that we performed
in 2022.

We should again emphasize that one of the main goals of dynamic testing is to determine (as
accurately as possible) the values of the natural frequencies of structural vibrations. The graphs
in Fig. 1 confirm that the method allows to identify the 11 lowest natural frequencies of the
Sayano-Shushenskaya HPP dam. The ARTeMIS Modal program provides a special procedure
for excluding harmonic components from the procedure for identifying the natural frequencies.

Lack of justification for the criterion of the FDD method

Even though the FDD method is widely used in engineering practice, the mathematical jus-
tification of the criterion has not yet been carried out. In other words, the studies on the FDD
method do not provide evidence that the function ¢ (w) has local maxima in the vicinity of nat-
ural vibration frequencies.

There is no analytical expression of the first singular number for square matrices of arbitrary
dimension. However, as already noted above, the CSDM can be represented as (17) and its struc-
ture allows to obtain the necessary estimates.

The coefficients o, (o) are of particular interest to us, since it follows from Eq. (16) that they
not only depend on the corresponding natural frequencies and damping coefficients, but also
reach their maximum values at natural frequencies.

Indeed, determining the extreme values of the function o, (w), we obtain for © = o,

o (o) =;— (19)

i
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Fig. 2. Functions o () for a system with three degrees of freedom

Fig. 2 shows an example of graphs for the functions aj(u)) for a system with three degrees of
freedom with small damping coefficients.
We can demonstrate how the values of the damping coefficients and the distance between the
natural frequencies affect the result considering the example of the simplest system with three

degrees of freedom.

Example of the simplest system with three degrees of freedom. Consider three cases. We define
the eigenmodes, dissipation coefficients and natural frequencies as follows.
Case 1. Matrix of modal vectors (eigenvectors)

1
=1
1

1 1
-1 0 |;
1 -1

the values of the damping coefficients are as follows:

v, = 16,7,=v,= 18,

and the values of the natural frequencies are
©,=295,0,=52.0,0,=71.0.
Case 2. This differs from case 1 only by the value of the second natural frequency, which is o, = 63.0.
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Fig. 3. Functions of first singular value ¢,(®) and (o)
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(solid and dashed lines, respectively) for cases 1 (a), 2 (b) and 3 (¢)
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Case 3. This differs from case 2 by the values of the dissipation coefficients: y, =y, = 9.

We construct (with some step) the CSDMs G (m) by Eq. (17) and, performing a singular
decomposition of these matrices, we construct the curves of the first smgular number as function
of the circular frequency for each of the cases. We also give graphs of functions a (o) for all
three cases (Fig. 3). Evidently, the maxima of the function of the first singular number in case
1 correspond to the natural frequencies; in case 2, the function c,(») has only two extrema, and
in case 3, where the damping coefficients decrease compared to the previous case, all natural
frequencies are determined again.

Thus, some variation of parameter values can produce a qualitatively different result. The
behavior of the curves corresponding to the coefficients a(w) can be clearly seen from the graphs.
These functions indicate that it is not only the distance between the eigenmodes that matter, but
also the damping coefficients determining the sharpness of the peaks of the functions o ().

Construction of double-ended estimate for ¢ (o)
Let us introduce some additional notation:

=diag(a.,, ). (20)
Since the coefficients ¢, > 0 and y, > 0 [7] in expression (16), the diagonal matrix A’ consists

of real positive elements.
The matrix A is defined as follows:

A = diag(+fa, () ). Q1)
Eq. (17) can be written in the following form:
G, (0) = PA’D". (22)

The matrix Gy(oa) is Hermitian (self-adjoint) because
H
G (0)=G, (»).

Modal vectors ¢, can be assumed to be normalized, since the coefficient o , according to
expression (16), contains a constant ¢ that can be complemented with a normalization coefficient.

Below we omit the formulation of the argument o for functions that depend on it for simplic-
ity’s sake, i.e., we write Gy instead of Gy(co), o, instead of o (w), etc.

Let us write the matrix Gy in coordinate form:

- i
Zam(q)g)f za (P(l) 2) za (P(l) (N)
m=1
< (2) (1) (2) (2) (N)
(04 o (04
G - ,,.Z‘ W@ P, Z:, OO ; 2000 | o3
y
& N 1 u N 2 N
D> a0t el D a0l el Za (M)
m=1 m=1

The first singular value of this matrix coincides with its spectral radius (this statement will be
proved below). However, the structure of this matrix is rather complex to obtain estimates of the
spectral radius, since its elements contain separate components of modal vectors.

Let us confirm that this matrix is reduced to a simpler form preserving the spectrum by means
of some operation.

Let us consider the following matrix:

= (AD")(@A) (24)

and confirm that the matrices Gy and K have the same nonzero eigenvalues.
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For this purpose, we prove the following auxiliary statement.

Statement. Let U and V be some rectangular matrices of dimension n x m. Then the nonzero
eigenvalues of the matrices UVH and VU coincide.

Proof. Let some nonzero number A be the eigenvalue of the matrix UVH, i.e., there exists a
nonzero vector u such that

>

(UVHu = (25)

We multiply both parts (25) by V" on the left and, using the associativity property of matrix
multiplication, we obtain the equality:

VAUV a) = A(V). (26)

Since the number A is different from zero and the vector u is nonzero, then the vector V'u is
nonzero as well (this is evident if we scalar multiply equality (26) by itself), which means that the
number A also turns out to be the eigenvalue of the matrix VHu (by definition of the eigenvalue
and vector).

Statement is proven.

If we assume that

U=V=0A, 27)

that is, because the following equality holds true:
24/ H H
G, (0)=PA'D" =(DPA)(AD"), (28)
it follows from the statement proved above that the matrices
H H
G, (0) =(PA)AD") and K = (AD" )(DA)

have the same eigenvalues, different from zero.
By virtue of the combinational law, the matrix K can be represented as

K = A(D"D)A. (29)

It takes the following coordinate form:

o, Vo4, (P, 0,) oy (@1,0,,)
K: VOCIOCZ((PZ,(Pl) OLZ VO(Z(XM ((pza(pM) .

| VO Oy, (@4,0) L0, (9,,0,) oy,

The matrix K composed of scalar products of a vector system \/oTi ¢, , taking into account that
o)l = 1, is a Gram matrix [17], which is known to be Hermitian. Since the matrix K is con-
structed relative to modal vectors, and modal vectors are linearly independent, it turns out to be
strictly positive definite.

From this we can conclude that the singular numbers are identical to the eigenvalues and,
consequently, the first singular number is equal to the spectral radius of the matrix K.

According to the above, the matrices G (dimension N x N) and K (dimension M x M) have
the same eigenvalues different from zero; flowever, since the dimensions of the matrices differ,
the matrix Gy can also have zero eigenvalues in the case when N > M. Therefore, it is positive
semi-definite. Because the matrix Gy is positive semi-definite and self-conjugate, it follows that
the singular numbers are identical to the eigenvalues and, consequently, as in the case of the
matrix K, the first singular number is equal to the spectral radius.
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According to the theorem on singular number estimates [17], the first singular value of the
Hermitian matrix P cannot be less than the modulus of its maximal diagonal element:

c, 2 max|P”. ,
I<isM

(31

where o, is the first singular number.
We thus obtain the lower-bound estimate of the first singular value ¢ (o) of the matrix K, and,
consequently, the matrix Gy:

c, 2 gzg{( Q.. (32)
To obtain an upper-bound estimate of the first singular value ¢ (w) of the matrix Gy, we con-
sider the matrix T = (®"®)A? and confirm that the spectrum of this matrix coincides with the
spectrum of the matrix K, and, therefore, the nonzero eigenvalues of the matrices T and Gy(m)
also coincide.
Let us introduce the following notations:

C=0"0. (33)
Then the matrix K can be written as
K =ACA, (34)
and the matrix T as
T=CA® (35)

Now let X be the eigenvalue, and let u be the corresponding eigenvector of the matrix K, i.e.,
Ku = u, and then

(ACA)u = . (36)
Multiplying equality (32) in the left-hand side by A™!, we obtain:
CAu=27A"u. (37)
This implies equalities of the form
CAAA Hu=CA*(Au)=T(A'w)=AA"u. (38)
Thus, the eigenvalues of the matrix T = CA? coincide with the eigenvalues of the matrix

K = ACA.
Let us write the matrix T in coordinate form:

o, o, (@, 0,) o, (9,9,)
1| %(®29) o, (9200 | (39)
al((PM’(pl) 0(.2((PM,(P2) 0LM

Since the spectrum of the matrices T coincides with the spectrum K, all eigenvalues are positive,
so the matrix is positive definite.
The following relation between norms holds true in finite-dimensional spaces [18]:

p(T) <T|

(40)

w’

where p(T) is the spectral radius (maximum eigenvalue) of the matrix T; ||T|| is the matrix norm
taking the form

o1
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g
I
| T, = max ZIT | 1)
Expressions (39)—(41) imply the following estimate of the spectral radius of the matrix T:
p< maXZoc (00, 42)

1<isM

As established above, the nonzero eigenvalues of the matrices G_and T coincide, and the first
singular number of the matnx G coincides with the spectral radius. Therefore, the upper-bound
estimate of the first singular valué o (o) of the matrix G is also determined by the expression (38):

G, < maXZa (X (43)

I<isM

Since the vectors ¢, are normalized, the scalar product (¢ (pj) is the cosine of the angle between
the vectors ¢, and 9, Le. s (o, (p)| <1, and the following notation is valid:

o, Sgﬁlﬁz%kcpi(pj)kz% =Tr(G,). (44)
=] k=1

Combining the lower-bound (32) and upper-bound (44) estimates, we write a double-ended
estimate for the first singular value ¢ (o) of the matrix Gy:

1<isM 1<i<

M
maxa, <o, <max20t |((pl.(pj)|SZock =Tr(G,). (45)
k=1

If the modal vectors are mutually orthogonal, then the following estimate o (w) follows
from (45):

max o, <o,(®)<maxa,.
max o, < 0,(®) < max (46)
Evidently, this means that

G,(0) = maxa,. 47)

Importantly, these estimates are valid for the considered functions ¢,(®), a () and Tr(G ())
at all frequencies, and not only in the vicinity of natural frequencies.
Let us introduce the notations

d, =min
jil

0y~ 0. (48)
Then the following relations are fulfilled for the frequency o, for all j # 1:

<GV _ ¢y, .
d?+vy;} (d;/y,)’+1

(49)

Let us compare relations (49) with the formula (o ) = c/y.. We can see from this comparison
thatlfd/y >1 forallj=1, 2,..., M, then

o, (00,) > o (0,), (50)
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M
and therefore, if condition (50) is satisfied, then both functions {nax E oc/.|((pl.(pj)| and Tr(Gy)
<i<M :
J=1

approach the function maxa i and, consequently, we can claim that c,(»), which is the function
1<isM

of the first singular number in the SVD decomposition of the matrix G (o), also approaches this
function if condition (50) is satisfied, with its maxima then located near the modal frequencies.

M
However, the values of the function max Zoc ; |((pl.(pj)| at any of the frequencies are obviously
1<isM :
j=1 M

much closer to the function maxa; than to the function Zak = Tr(Gy) , due to the fact that
(99) < 1. Er=m =

The graphs of the function o,(®) and the functions of the lower and upper-bound estimates
(45) are shown in Fig. 4 for a svstem with three deerees of freedom to illustrate this statement.

»
5]
T

L

o
o

\

/ \
max(Q)",

I<isM

8]
w0
T

2]

Singular value O and its estimates

0 10 20 30 40 50 60 70 80 % @,rad/s

Fig. 4. Comparison of first singular value of spectral density matrix ¢ (o)
with its lower and upper-bound estimates by Eq. (45) as functions of the frequency o

Conclusion

We constructed for the first time a double-ended estimate for the first singular value of the
cross-spectral density matrix of vibration responses in a linear mechanical system with many
degrees of freedom. This estimate serves as a justification for the main criterion of the frequency
domain decomposition (FDD) method aimed at searching for natural vibration frequencies based
on the results of vibration measurements.

The study carried out can be used to further improve the FDD method, analyze the scope of
its applicability for mechanical systems with significant damping, and compare the FDD method
with other methods of operational modal analysis (OMA) in identifying the dynamic character-
istics of structures.
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