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Аннотация. В статье впервые приводится обоснование главного критерия метода 
FDD (декомпозиции в частотной области), основанного на сингулярном разложении 
матрицы взаимных спектральных плотностей (МВСП) измеренных сигналов. Метод FDD 
используется при динамическом тестировании сооружений (здания, мосты, плотины) для 
экспериментального определения их динамических характеристик в условиях нормальной 
эксплуатации без применения вибровозбудительного оборудования. Указанный критерий 
применяется для поиска собственных частот. Обоснование включало двустороннюю 
оценку первого сингулярного значения МВСП, которая позволила математически строго 
доказать применимость критерия при выполнении определенных условий.

Ключевые слова: декомпозиция в частотной области, коэффициент демпфирования, 
спектральная плотность сигнала 
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Introduction
Experimental evaluation of the dynamic characteristics of unique structures (natural frequen-

cies, natural modes of vibrations, attenuation decrements) is crucial for the construction industry. 
This practical procedure is also important for hydraulic structures (HS), due to stringent require-
ments for the safety of their operation, especially in seismic zones. For example, comparison of 
experimental and calculated dynamic characteristics allows fine-tuning the parameters of finite 
element models used for computational justification of operational reliability of HS under differ-
ent types of dynamic loads.

Since the late 1980s, there has been active research into a class of methods allowing to exper-
imentally determine the dynamic characteristics of structures (buildings, bridges, dams) under 
normal operating conditions. These methods are often grouped under the umbrella term oper-
ational modal analysis ( OMA). These methods are widely used around the world due to their 
relatively low cost and great advances made in measuring and recording equipment. A necessary 
condition for adopting OMA methods is that the operational dynamic impact should have a ran-
dom, steady behavior, close to white noise.

A widely acclaimed method from the OMA group is commonly known as Frequency Domain 
Decomposition (FDD). This method is based on singular decomposition of the cross-spectral den-
sity matrix (CSDM) of simultaneously performed measurements. It offers the following benefits:

minimum requirements for the number of simultaneous measurements; 
formalized criteria for detecting natural frequencies and eigenmodes;
no restriction on ‘proportional damping for the mathematical model of the structure (formally 

identified eigemodes are complex).
The first of these benefits means that theoretically, any object, even a very complex one, can 

be examined using only two accelerometers: one stationary (reference), and the other mobile, 
sequentially moved around the structure.

The FDD method was first introduced in 2000 [1] and further developed in [2–5]. In 2009, it 
was theoretically reinterpreted in [6]. Some modifications of the method [3, 5, 11] allow to estimate 
the modal attenuation coefficients. The theoretical foundations of the FDD method are discussed in 
more detail in monographs [7, 8]. The method has been further improved; interesting modifications 
are proposed, for example, in [11–14]. The classic version of FDD and several of its subsequent 
modifications are implemented in the ARTeMIS Modal software package [9], which allows solving 
the problem of identifying dynamic characteristics based on the data from vibration tests.

The FDD method and its ARTeMIS Modal software have been adopted since 2019 by scien-
tists of the B.E. Vedeneev All-Russian Research Institute of Hydraulic Engineering (VNIIG) at St. 
Petersburg, Russia. To date, vibration tests were used to determine the dynamic characteristics of the 
dam at the Bureyskaya HPP; the dam, the basic structure and floor slabs at the Sayano-Shushenskaya 
HPP; some hydraulic structures (HS) at the Nizhne-Bureyskaya HPP, the dam at the Zeiskaya HPP.

The FDD method is succesfully applied both in model numerical experiments and in practical 
problems of different levels of complexity. However, no strict justification of the criterion for 
identifying natural frequencies has been obtained in the literature; the same is true for theoretical 
estimates of the potential application scope of the method.

The latter circumstance is especially important for HS, since it is often complicated to use 
OMA methods (and, in particular, FDD) in these structures, as dynamic loads are induced not 
by a combination of a large number of random technological factors or microseisms (as in the 
case with public buildings), but rather by purposeful regulation of the operating modes of the 
structures, for example, the power capacity of hydraulic units in operation.
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The goal of our study is to theoretically validate the main criterion of the FDD method for 
determining the natural vibration frequencies of an object.

In view of this goal, we constructed a double-ended estimate for the first singular value of the 
cross-spectral density matrix of vibration signals. 

Brief description of the basics of the FDD method

To determine the dynamic characteristics of a structure, let us consider the equation of motion 
for its point masses:

( ) ( ) ( ) ( ),t t t t+ + =My Cy Ky x  (1)

where x(t) are the loads, y(t) is the response (N-dimensional vectors); M, C, K are the matrices 
of mass, damping and stiffness, respectively.

It was established in monographs [7, 15] that the matrices M, C, K are symmetric and real; 
they are matrix constants, i.e., do not depend on time. Their dimension is determined by the 
number of degrees of freedom N and is equal to N × N. We should also note that the matrix M 
is positive definite, and C and K are positive semi-definite [7, 15]. 

Eq. (1) describes the free vibrations of the system in a homogeneous form. Its nontrivial solu-
tion can be used to determine the natural frequencies of the damped system ωdi, and, in general, 
the complex eigenmodes φi (modal vectors). 

Because the eigenmodes are linearly independent, the response y(t) of the system is uniquely 
decomposed into their linear combination:

1 1 2 2( ) ( ) ( ) ( ),t q t q t t= ⋅ + ⋅ + =y qϕ ϕ Φ (2)

where Φ is a matrix whose columns are eigenmodes φi, i.e., Φ = [φ1, φ2,…]; q(t) is a column 
vector of modal coordinates; t is time.

An approach called the basic frequency model has been used for many years in engineering 
practice as an initial approximation for identifying the dynamic characteristics (it is called the 
Basic Frequency Domain in books [7, 8]). The central idea of this approach is that given a small 
attenuation in the vicinity of a certain natural frequency with the number s, the response of the 
system is determined mainly by its eigenmode with the same number. 

Then the response y(t) of the system (see Eq. (2)) can be represented as follows: 

( ) ( ).s st q t≈ ⋅y ϕ (3)

By definition, the correlation function R(τ) (this is a matrix function) takes the following form 
for a stationary process: 

[ ]( ) E ( ) ( ) E ( ) ( ) R ( ) ,T T T
s s s s q s st t q t q t τ = ⋅ + τ = ⋅ + τ = τ R y y ϕ ϕ ϕ ϕ (4)

where Rq(τ) is the autocorrelation function of the modal coordinate, non-negative by definition.
Performing the Fourier transform of the correlation function R(τ), we obtain the expression 

that is of interest to us for the CSDM of the components of the response vector Gy(ω), which 
depends on eigenmodes: 

( ) ( ) .T
y q s sGω = ωG ϕ ϕ (5)

where ω is the circular frequency.
The rank of the matrix Gy(ω) is equal to unity (since the rank of the product of the matrices 

does not exceed the ranks of the multipliers), so the matrix has no more than one eigenvalue 
different from zero. Furthermore, it is apparent that given expression (5), any row or column of 
the matrix is Gy(ω) proportional to the vector of the eigenmode φs. 

Let us find the eigenvalues and vectors based on their definition:

( ) ,y ω = λG u u (6)
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( ) ( ) ( ) ( )( ) .T T T
q K K q K K q K KG G Gω = ω = ω = λu u u uϕ ϕ ϕ ϕ ϕ ϕ (7)

It follows from equalities (7) that the eigenvector is equal to the modal vector φK, and the 
eigenvalue has the following form:

2T( )( ) ( ) .q K K q KG G= ωλ ω ϕ ϕ ϕ= (8)

The matrix Gy(ω) given by Eq. (5) is obviously symmetric and, since its only nonzero eigen-
value is positive, it can also be argued that it is positive semi-definite. The singular values in such 
a matrix coincide with its eigenvalues, and the left and right singular vectors are the same.

The matrix GyG
T
y coincides with Gy up to the coefficient. Indeed,

2 2T T T T ,y y s s s s s s s s y= = =G G Gϕ ϕ  ϕ ϕ ϕ ϕ ϕ ϕ (9)

It follows from the definition of singular value decomposition that the singular vectors of the 
matrix Gy coincide with the eigenvectors of the matrix GyG

T
y Therefore, the first singular vector (it 

corresponds to the maximum, and in our case, only eigenvalue different from zero) is an estimate 
of the eigenmode φs.

Unfortunately, it is not always possible to represent the response y(t) in the form (3), i.e., to 
neglect the influence of other eigenmodes. It was established in [7] that this method is inappli-
cable for identifying the natural frequencies close in value and the corresponding eigenmodes 
even in systems with low damping. More accurate methods, in particular FDD, have been devel-
oped for this purpose, also reducing the influence of random noise inevitably generated during 
measurements. 

Let us briefly describe the central idea of the FDD method, following [7]. 
Let the response y(t) be a linear composition of all modal vectors according to Eq. (2). Let us 

calculate the correlation function

T( ) E ( ) ( ) ,t t τ = ⋅ + τ R y y (10)

then

T T T( ) E ( ) ( ) .qt t τ = ⋅ + τ = R q q RΦ Φ Φ Φ (11)

The Fourier transform of the correlation function R(τ) gives an expression for the CSDM Gy(ω):

T( ) ( ) .y qω = ωG GΦ Φ (12)

It follows from the assumption that there is no correlation between the modal coordinates q(t) 
[7] that the matrix Gq(ω) is diagonal. Since the matrix ΦT contains complex elements, its trans-
position ΦT should be replaced by a Hermitian conjugate ΦH.

Then expression (12) takes the following form:

2 H( ) ( ) ,y ng ω = ω G Φ Φ (13)

where the diagonal matrix [gn
2(ω)] contains the autospectral densities of the matrix Gq(ω).

The central idea of the FDD method is based on the application of the following singular value 
decomposition of the matrix:

H 2 H( ) ( ) ,y ns ω = = ω G USU U U (14)

where s is a diagonal matrix of singular numbers arranged in descending order; U is a matrix 
consisting of left (right) singular vectors. 

The left and right singular vectors of the matrix Gy(ω) are the same because this matrix is 
self-adjoint and positive definite [18]. 
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Comparing expressions (13) and (14), we see that if the eigenvectors composing the matrix Φ 
were mutually orthogonal, then the required modal forms up to a coefficient would be singular 
vectors of the CSDM at an arbitrary frequency. Since this condition is not fulfilled, we can only 
expect for an approximate solution to the problem of finding modal vectors and frequencies. 

As shown in [7], if the external effect is assumed to be white noise, and the dissipation is small, 
then the following expression is valid for the matrix Gy(ω): 

H H
H

*
1

( ) diag 2 Re ,
M

m m m m m m m
y

m m m m

c c c
i i i=

  
ω = + = ⋅ ⋅  ω − λ − ω − λ ω − λ  

∑G ϕ ϕ ϕ ϕ
Φ Φ (15)

where m m dmiλ = −γ + ω (γm is the dissipation coefficient, ωdm is the natural frequency taking into 
account damping); φm is the eigenmode; Φ is the matrix whose columns are the vectors of eigen-
modes Φ = [φ1,φ2,…, φM]; cm is the positive coefficient; M is the number of eigenmodes taken 
into account in decomposition (2).

Let us introduce the notations

2 2( ) 2 Re .
( )

m m m
m

m md m

c c
i

  γ
α ω = = ω − λ ω − ω + γ 

(16)

Then expression (15) can be written as follows:

( ) H( ) diag ( ) ,y mω = ⋅ α ω ⋅G Φ Φ (17)

or 

H

1
( ) .

M

y m m m
m=

ω = α∑G ϕ ϕ (18)

The authors of the FDD method proposed an algorithm for the case when the values of the nat-
ural frequencies are not close to each other, based on representation of the matrix Gy(ω) in the 
form (17), which can be summarized as follows.

Step 1. A CSDM Gy(ω)1 is calculated for each frequency ω of a given range.
Step 2. A singular value decomposition (SVD) of the matrix Gy(ω) is performed at each fre-

quency ω, its first singular value σ1(ω) is determined and a function for the first singular value of 
σ1(ω) depending on the frequency ω is constructed.

Step 3. The values of frequencies ω̃m that correspond to the local maxima of the function σ1(ω) 
are found. 

Step 4. If singular expansions generate the first singular vectors close to collinear (which is 
verified using a MAC estimate2) in the vicinity of the frequency ω̃m, then the frequency ω̃m can 
be assumed to be a natural frequency, and the first singular vector u1(ωm) is an estimate of the 
eigenmode. 

Thus, the central idea (referred to as the criterion from now on) of the FDD algorithm is that 
the first singular number of the matrix Gy(ωm), being a function of frequency, has local maxima 
near modal frequencies. 

This is confirmed by the solutions of model problems and numerous calculations performed 
on vibration measurements of real objects. 

1 Generally speaking, only those elements of the matrix Gy(ω) that can be obtained from signals measured simultaneously are 
calculated. The algorithm described below can be applied to a complete matrix Gy(ω), but the matrices used in practice are 
selected from the matrix Gy(ω) in a specific manner. 

2 MAC is the Modal Assurance Criterion. It is introduced to compare two eigenmodes a and b by the formula 
H

H H

2

MAC( , )
( )( )

=
a b

a b
a a b b .
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Fig. 1 shows a screenshot from the ARTeMIS Modal program with the graphs of the depen-
dences of the first six singular numbers on frequency (in logarithmic units for greater clarity) 
based on the results of dynamic testing of the Sayano-Shushenskaya HPP dam that we performed 
in 2022. 

We should again emphasize that one of the main goals of dynamic testing is to determine (as 
accurately as possible) the values of the natural frequencies of structural vibrations. The graphs 
in Fig. 1 confirm that the method allows to identify the 11 lowest natural frequencies of the 
Sayano-Shushenskaya HPP dam. The ARTeMIS Modal program provides a special procedure 
for excluding harmonic components from the procedure for identifying the natural frequencies. 

Lack of justification for the criterion of the FDD method

Even though the FDD method is widely used in engineering practice, the mathematical jus-
tification of the criterion has not yet been carried out. In other words, the studies on the FDD 
method do not provide evidence that the function σ1(ω) has local maxima in the vicinity of nat-
ural vibration frequencies.

There is no analytical expression of the first singular number for square matrices of arbitrary 
dimension. However, as already noted above, the CSDM can be represented as (17) and its struc-
ture allows to obtain the necessary estimates. 

The coefficients αm(ω) are of particular interest to us, since it follows from Eq. (16) that they 
not only depend on the corresponding natural frequencies and damping coefficients, but also 
reach their maximum values at natural frequencies.

Indeed, determining the extreme values of the function αm(ω), we obtain for ω = ωdi

( ) .i
i di

i

c
α ω =

γ
(19)

Fig. 1. Averaged frequency dependences of six singular values (6 curves) of the spectral density matrix:
the upper curve (blue) corresponds to the first singular number σ1(ω); the arguments 

of the local maxima σ1(ω) (marked with circles) correspond to the natural frequencies of the dam. 
The data were obtained from measurements at the Sayano-Shushenskaya dam in 2022
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Fig. 2 shows an example of graphs for the functions αj(ω) for a system with three degrees of 
freedom with small damping coefficients.

We can demonstrate how the values of the damping coefficients and the distance between the 
natural frequencies affect the result considering the example of the simplest system with three 
degrees of freedom. 

Example of the simplest system with three degrees of freedom. Consider three cases. We define 
the eigenmodes, dissipation coefficients and natural frequencies as follows.

Case 1. Matrix of modal vectors (eigenvectors)

1 1 1
1 1 0 ;
1 1 1

 
 = − 

−  

Φ

the values of the damping coefficients are as follows:

γ1 = 16, γ2 = γ3 = 18, 
and the values of the natural frequencies are 

ωd1 = 29.5, ωd2 = 52.0, ωd3 = 71.0.
Case 2. This differs from case 1 only by the value of the second natural frequency, which is ωd2 = 63.0.

Fig. 2. Functions αj(ω) for a system with three degrees of freedom

Fig. 3. Functions of first singular value σ1(ω) and αi(ω) 
(solid and dashed lines, respectively) for cases 1 (a), 2 (b) and 3 (c) 

a)	 b)	 c)
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Case 3. This differs from case 2 by the values of the dissipation coefficients: γ2 = γ3 = 9.
We construct (with some step) the CSDMs Gy(ω) by Eq. (17) and, performing a singular 

decomposition of these matrices, we construct the curves of the first singular number as function 
of the circular frequency for each of the cases. We also give graphs of functions αm(ω) for all 
three cases (Fig. 3). Evidently, the maxima of the function of the first singular number in case 
1 correspond to the natural frequencies; in case 2, the function σ1(ω) has only two extrema, and 
in case 3, where the damping coefficients decrease compared to the previous case, all natural 
frequencies are determined again.

Thus, some variation of parameter values can produce a qualitatively different result. The 
behavior of the curves corresponding to the coefficients αi(ω) can be clearly seen from the graphs. 
These functions indicate that it is not only the distance between the eigenmodes that matter, but 
also the damping coefficients determining the sharpness of the peaks of the functions αi(ω). 

Construction of double-ended estimate for σ1(ω)

Let us introduce some additional notation:

( )2 diag .m= αA (20)

Since the coefficients cm > 0 and γm > 0 [7] in expression (16), the diagonal matrix А2 consists 
of real positive elements.

The matrix A is defined as follows:

( )diag ( ) .m= α ωA (21)

Eq. (17) can be written in the following form: 
2 H( ) .y ω =G AΦ Φ (22)

The matrix Gy(ω) is Hermitian (self-adjoint) because

H( ) ( ).y yω = ωG G

Modal vectors φm can be assumed to be normalized, since the coefficient αm, according to 
expression (16), contains a constant cm that can be complemented with a normalization coefficient. 

Below we omit the formulation of the argument ω for functions that depend on it for simplic-
ity’s sake, i.e., we write Gy instead of Gy(ω), αm instead of αm(ω), etc.

Let us write the matrix Gy in coordinate form:

(1) 2 (1) (2) (1) ( )

1 1 1

(2) (1) (2) 2 (2) ( )

1 1 1

( ) (1) ( ) (2) ( ) 2

1 1 1

( )

( )
.

... ... ...

( )

M M M
N

m m m m m m m m
m m m
M M M

N
m m m m m m m m

m m my

M M M
N N N

m m m m m m m m
m m m

= = =

= = =

= = =

 α ϕ α ϕ ϕ α ϕ ϕ 
 
 α ϕ ϕ α ϕ α ϕ ϕ =  
 
 
 α ϕ ϕ α ϕ ϕ α ϕ
  

∑ ∑ ∑

∑ ∑ ∑

∑ ∑ ∑

G  (23)

The first singular value of this matrix coincides with its spectral radius (this statement will be 
proved below). However, the structure of this matrix is rather complex to obtain estimates of the 
spectral radius, since its elements contain separate components of modal vectors.

Let us confirm that this matrix is reduced to a simpler form preserving the spectrum by means 
of some operation. 

Let us consider the following matrix:

H( )( )=K A AΦ Φ (24)

and confirm that the matrices Gy and K have the same nonzero eigenvalues.
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For this purpose, we prove the following auxiliary statement.
Statement. Let U and V be some rectangular matrices of dimension n × m. Then the nonzero 

eigenvalues of the matrices UVH and VHU coincide.
Proo f .  Let some nonzero number λ be the eigenvalue of the matrix UVH, i.e., there exists a 

nonzero vector u such that

H .λ(UV )u = u (25)

We multiply both parts (25) by VH on the left and, using the associativity property of matrix 
multiplication, we obtain the equality:

H H H( ) ( ).= λV U V u V u (26)

Since the number λ is different from zero and the vector u is nonzero, then the vector VHu is 
nonzero as well (this is evident if we scalar multiply equality (26) by itself), which means that the 
number λ also turns out to be the eigenvalue of the matrix VHu (by definition of the eigenvalue 
and vector).

Statement is proven. 
If we assume that 

,= =U V ΦΑ (27)

that is, because the following equality holds true:

2 H H( ) = ( )( ),y ω =G A A AΦ Φ Φ Φ (28)

it follows from the statement proved above that the matrices 

H H( ) ( )( ) and ( )( )y ω = =G A A K A AΦ Φ Φ Φ

have the same eigenvalues, different from zero.
By virtue of the combinational law, the matrix K can be represented as

H( ) .=K A AΦ Φ (29)

It takes the following coordinate form:

1 1 2 1 2 1 1

1 2 2 1 2 2 2

1 1 2 2

( , ) ( , )
( , ) ( , ) .
... ... ...
( , ) ( , )

M M

M M

M M M M M

α α α α α
 

α α α α α =  
 

α α α α α 

K 

ϕ ϕ ϕ ϕ
ϕ ϕ ϕ ϕ

ϕ ϕ ϕ ϕ

(30)

The matrix K composed of scalar products of a vector system i iα ϕ , taking into account that 
||φi|| = 1, is a Gram matrix [17], which is known to be Hermitian. Since the matrix K is con-
structed relative to modal vectors, and modal vectors are linearly independent, it turns out to be 
strictly positive definite. 

From this we can conclude that the singular numbers are identical to the eigenvalues and, 
consequently, the first singular number is equal to the spectral radius of the matrix K.

According to the above, the matrices Gy (dimension N × N) and K (dimension M × M) have 
the same eigenvalues different from zero; however, since the dimensions of the matrices differ, 
the matrix Gy can also have zero eigenvalues in the case when N > M. Therefore, it is positive 
semi-definite. Because the matrix Gy is positive semi-definite and self-conjugate, it follows that 
the singular numbers are identical to the eigenvalues and, consequently, as in the case of the 
matrix K, the first singular number is equal to the spectral radius.
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According to the theorem on singular number estimates [17], the first singular value of the 
Hermitian matrix P cannot be less than the modulus of its maximal diagonal element:

1 1
max ,iii M≤ ≤

σ ≥ P (31)

where σ1 is the first singular number.
We thus obtain the lower-bound estimate of the first singular value σ1(ω) of the matrix K, and, 

consequently, the matrix Gy:

1
1
max .i

i M≤ ≤
σ ≥ α (32)

To obtain an upper-bound estimate of the first singular value σ1(ω) of the matrix Gy, we con-
sider the matrix T = (ΦHΦ)A2 and confirm that the spectrum of this matrix coincides with the 
spectrum of the matrix K, and, therefore, the nonzero eigenvalues of the matrices T and Gy(ω) 
also coincide. 

Let us introduce the following notations:

.HC Φ Φ= (33)

Then the matrix K can be written as 

,=K ACA (34)

and the matrix T as
2.=T CA (35)

Now let λ be the eigenvalue, and let u be the corresponding eigenvector of the matrix K, i.e., 
Ku = λu, and then

( ) .λACA u u= (36)

Multiplying equality (32) in the left-hand side by A–1, we obtain:

1 .−λu uCA A= (37)

This implies equalities of the form 

1 2 1 1 1 .( ) ( ) ( )− − − −= λu u u uCA AA CA A T A A= = (38)

Thus, the eigenvalues of the matrix T = CA2 coincide with the eigenvalues of the matrix 
K = ACA.

Let us write the matrix T in coordinate form:

1 2 1 2 1

1 2 1 2 2

1 1 2 2

( , ) ( , )
( , ) ( , )

.
... ... ...

( , ) ( , )

M M

M M

M M M

α α α 
 α α α =
 
 α α α 

T 

ϕ ϕ ϕ ϕ
ϕ ϕ ϕ ϕ

ϕ ϕ ϕ ϕ

(39)

Since the spectrum of the matrices T coincides with the spectrum K, all eigenvalues are positive, 
so the matrix is positive definite. 

The following relation between norms holds true in finite-dimensional spaces [18]:

( ) ,
∞

ρ ≤T T (40)

where ρ(T) is the spectral radius (maximum eigenvalue) of the matrix T; ||T||∞ is the matrix norm 
taking the form
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1 1
max .

M

iji M j
∞ ≤ ≤

=

= ∑T T (41)

Expressions (39)–(41) imply the following estimate of the spectral radius of the matrix T:

1 1
max ( ) .

M

j i ji M j≤ ≤
=

ρ ≤ α∑ ϕ ϕ (42)

As established above, the nonzero eigenvalues of the matrices Gy and T coincide, and the first 
singular number of the matrix Gy coincides with the spectral radius. Therefore, the upper-bound 
estimate of the first singular value σ1(ω) of the matrix Gy is also determined by the expression (38):

1 1 1
max ( ) .

M

j i ji M j≤ ≤
=

σ ≤ α∑ ϕ ϕ (43)

Since the vectors φi are normalized, the scalar product (φiφj) is the cosine of the angle between 
the vectors φi and φj, i.e., |(φiφj)| ≤ 1, and the following notation is valid:

1 1 1 1
max ( ) Tr( ).

M M

j i j k yi M j k≤ ≤
= =

σ ≤ α ≤ α =∑ ∑ Gϕ ϕ (44)

Combining the lower-bound (32) and upper-bound (44) estimates, we write a double-ended 
estimate for the first singular value σ1(ω) of the matrix Gy:

11 1 1 1
max max ( ) Tr( ).

M M

i j i j k yi M i M j k≤ ≤ ≤ ≤
= =

α ≤ σ ≤ α ≤ α =∑ ∑ Gϕ ϕ (45)

If the modal vectors are mutually orthogonal, then the following estimate σ1(ω) follows 
from (45):

11 1
max ( max .i ii M i M≤ ≤ ≤ ≤

α ≤ σ ω ≤ α) (46)

Evidently, this means that

1 1
max .( ) ii M≤ ≤

ω = ασ (47)

Importantly, these estimates are valid for the considered functions σ1(ω), αm(ω) and Tr(Gy(ω)) 
at all frequencies, and not only in the vicinity of natural frequencies.

Let us introduce the notations 

.mini di djj i
d

≠
= ω − ω (48)

Then the following relations are fulfilled for the frequency ωdi, for all j ≠ 1: 

2 2 2

/
( ) .

( / ) 1
j j j j

j di
i j i j

c c
d d

γ γ
α ω ≤ =

+ γ γ +
(49)

Let us compare relations (49) with the formula αi(ωdi) = ci/γi. We can see from this comparison 
that if 1/

jid γ   for all j = 1, 2,…, M, then

( ) ( ),i di j diα ω α ω (50)
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and therefore, if condition (50) is satisfied, then both functions 
1 1
max ( )

M

j i ji M j≤ ≤
=

α∑ ϕ ϕ  and Tr(Gy) 

approach the function 
1
max ji M≤ ≤

α , and, consequently, we can claim that σ1(ω), which is the function  

of the first singular number in the SVD decomposition of the matrix Gy(ω), also approaches this 
function if condition (50) is satisfied, with its maxima then located near the modal frequencies.

 
However, the values of the function 

1 1
max ( )

M

j i ji M j≤ ≤
=

α∑ ϕ ϕ  at any of the frequencies are obviously  

much closer to the function 
1
max ji M≤ ≤

α  than to the function 
1

Tr( )
M

k y
k=

α =∑ G , due to the fact that 
|(φiφj) < 1. 

The graphs of the function σ1(ω) and the functions of the lower and upper-bound estimates 
(45) are shown in Fig. 4 for a system with three degrees of freedom to illustrate this statement.

Conclusion

We constructed for the first time a double-ended estimate for the first singular value of the 
cross-spectral density matrix of vibration responses in a linear mechanical system with many 
degrees of freedom. This estimate serves as a justification for the main criterion of the frequency 
domain decomposition (FDD) method aimed at searching for natural vibration frequencies based 
on the results of vibration measurements. 

The study carried out can be used to further improve the FDD method, analyze the scope of 
its applicability for mechanical systems with significant damping, and compare the FDD method 
with other methods of operational modal analysis (OMA) in identifying the dynamic character-
istics of structures.
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