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Abstract. This study introduces a new modified Moore — Gibson — Thompson Photo-
Thermal (MGTPT) theory with two temperatures for semiconductor material. The photo-ther-
moelastic effects have been been investigated in an infinitely constrained semiconducting solid
cylinder subjected to variable heat flux in the form of an exponential laser pulse. The Laplace
transforms were used for the solution of the mathematical model in the transformed domain.
The numerical inversion was applied to obtain the displacement components, the conductive
temperature, the carrier density, and the thermal stresses in the physical domain. The impact
of different theories of thermoelasticity with two temperatures on the displacement, tempera-
ture, thermal stresses and carrier density were represented graphically and discussed using
Matlab software.
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Annoranuga. B paGote BBOmuUTCSI HOBass Moau(HMUIMpOBaHHAS IByXTeMIlepaTrypHas (poTo-
Tepmuueckasa teopusi Mypa — I'mbcona — Tommcona (MGTPT) mist moaynpoBOIHUKOBO-
ro marepuana. McciaemgoBanbl poToTepmMoynpyrue 3(p¢eKThl B MOJIYNTPOBOIHUKOBOM TBEPIOM
KPYTrOBOM LWJIMHAPE OCCKOHEYHOU IJIMHBI, KOTOPBI IOABEPTaeTCsl IEePEeMEHHOMY TEILIO-
BOMY TIOTOKY, OOpa30BaHHOMY 3KCIOHEHIWAJIBHBIM JIa3epHBIM MMITYIbCOM. IS perreHus
MareMaTUYecKoll MOofAeJu B TPeoOpa3oBaHHON OO0JaCTM HCIONB3YIOTCS MpeoOpa3oBaHUS
Jlannaca. 1 ompeneieHUsT KOMIIOHEHT CMEIICHUSI, TEMIIEpaTyphl MIPOBOAMMOCTH, IIOTHO-
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CTU HOCHUTEJICl U TEIJIOBBIX HAIpsDKeHU B (pU3MUECKON 00JaCTU MPUMEHSIETCS YMCACHHAsI
MHBepcHsl. BiusiHUe pasiMyHbIX IBYXTEMIIEPATypPHBIX MOJEJEl ¢ TEpMOYIPYrOCThbIO Ha CMe-
LIeHUE, TeMIIepaTypy, TEIIOBbIE HAIIPSDKEHUS U IJIOTHOCTh HOCUTENICH MpeacTaBlieHo rpadu-
YeCcKM ¢ MOMOLIbIO MporpaMMHoOro obecreyeHusi Matlab, u nmosydyeHHbIe pe3yabTaTbl 00CYX-
JatoTCs.
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Introduction

In recent years, a lot of attention has been paid to semiconductor materials due to their
physical properties. Unlike copper or aluminum, semiconductor materials are not very good
conductors at room temperature. At room temperature, they are also not good insulators too,
for example, such as glass. The resistance of semiconductor materials gradually decreases with
increasing temperature. As a consequence, they provide great electrical conductivity. Because
of this property, semiconductor materials become important in modern very large-scale inte-
gration logic (VLSI)/electronics/Electrical industries. Under high temperatures, semiconductor
materials deform and their physical properties change internally. Two major changes occur as
a result of thermal effects: one is thermoelastic deformation and another is electronic deforma-
tion. The thermal effect occurs when semiconductor media are exposed to focused laser beams
or sunlight beams and, owing to this effect, they will vibrate. These materials have many uses in
renewable energy, especially in the solar cells industry which depends heavily on semiconductor
materials.

J. M. Duhamel [1] presented the theory of classical uncoupled thermoelasticity. This theory
has two limitations. To begin with, the elastic state of material is not related to temperature.
Moreover, the parabolic heat equation predicts that the temperature travels at an infinite speed,
which is again contradictory to physical experiments. M. A. Biot [2] set up the hypothesis of
coupled thermoelasticity to conquer these impediments. According to his theory, the heat con-
duction equations and the equations of elasticity are related. However, the shortcoming of this
theory is that it only predicts heat waves with an unlimited speed of propagation. C. Cattaneo
[3] and P. Vernotte [4, 5] suggested a wider form of the Fourier law for the homogeneous and
isotropic medium by introducing thermal relaxation time 1, to the heat flux vector q to establish
a steady state at a point when a temperature gradient V 79 is abruptly imposed on it, as,

(1+1,0/00q=-K,VT, (1)

where K is the coefficient of thermal conductivity, 7 is the time.

Then ‘the generalized theory of thermoelasticity with one relaxation time was put forward by
H. W. Lord and V. Shulman [6] for the particular case of an isotropic body. According to this
theory, the heat equation being hyperbolic has a finite speed of propagation for temperature.
After that a more precise version of thermoelasticity was presented by the two-temperature the-
ory of thermoelasticity introduced by P. J. Chen and M. E. Gurtin [7]. This model includes the
conductive temperature ¢ (the outcome of thermodynamic processes) and the thermodynamic
temperature 7" (the result of mechanical processes). A. E. Green and K. A. Lindsay [8] showed
that the linear heat conduction tensor is symmetric. R. S. Dhaliwal and H. H. Sherief [9] gave
the equations of generalized thermoelasticity for an anisotropic medium. However, A. E. Green
and P. M. Naghdi [10 — 12] further contributed to the thermoelastic theories with and without
energy dissipation and further developed the Fourier law as
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4 Simulation of physical processes

q=-K,VT-K'V0,0=T,T=¢-a 0, Q)

where K is the materialistic constant; a.. is the two-temperature parameter.

Now the law can be formulated as folfows

Based on entropy equality, they proposed three new thermoelastic theories. Their theories are
known as the thermoelasticity theory of type I, the thermoelasticity theory of type Il (i.e., thermo-
elasticity without energy dissipation), and the thermoelasticity theory of type Il1 (i.e., thermoelas-
ticity with energy dissipation). On linearization, type I becomes the classical heat equation whereas
on linearization of type-11, as well as type-111 theories, give the finite speed of thermal wave prop-
agation.

Recently, there has been a myriad of academic articles that study and interpret the Moore —
Gibson — Thompson (MGT) equation. I. Lasiecka and X. Wang [13] founded their theory on
a 3"-order differential equation, important to various fluid dynamics. Using the MGT equation
with 27, R. Quintanilla [14, 15] devised a novel heat conduction model. MGT equation of the
modified Fourier law is, as follows:

(1+1,0/00q=-K, VT~ K, V0, where 6=T. (3)

J. R. Fernandez and R. Quintanilla [16] discussed linear thermoelastic deformations of
dielectrics. N. Bazarra et al. [17] studied a thermoelastic problem using MGT thermoelastic
equation. Suppose that the semiconductor elastic media is exposed to external laser beams and
which create carrier-free charge density due to excited free electrons with semiconductor gap
energy E In response to absorbed optical energy, there is a change in the electronic defor-
mation and the elastic vibration. In this case, heat conductivity equations will be affected by
thermal-elastic-plasma waves. The revised Fourier law for semiconductor materials with plasma
impact in a generalized form can be written as

(1+1,8/00q =—K,VT~ K, V0] (EN/t)dx, where =T, (4)

here N is the carrier density.
The photoexcitation effect is represented by the final term in Eq. (4). When the above equa-
tion is differentiated with respect to x, the result is

(1+1,0/00V-q=~ VK, VT-K V)~ ENh, where 6 =T. (5)

Some other researchers also worked on similar research on Hall current effect and semicon-
ductor medium such as M. Marin [18], P. Lata et al. [19], A. M. S. Mahdy et al. [20], 1. Kaur
and K. Singh [21, 22], M. Marin et al. [23, 24], 1. Kaur et al. [25, 26], M. M. Bhatti et al.
[27, 28], M. Conti et al. [29], M. I. A. Othman and M. Marin [30], J. A. Conejero et al. [31],
M. Marin et al. [32], E. M. Craciun et al. [33], M. E. Nasr et al. [34], A. E. Abouelregal et al.
[35]. However, from the literature review, it has been observed that no work has been carried
out in the transient study of semiconductor cylinders exposed to ultrashort pulsed laser heating
and photogenerated plasma with two temperatures. The importance of this issue is the main
motivation for its in-depth review in this study.

This study aimed to explore the photo-thermoelastic interactions in an infinite semiconduct-
ing solid cylinder acted upon by the variable heat flux in the form of an exponential laser pulse
along the boundary surface.

The governing equations are expressed using a new generalized photo-thermoelastic model
as MGTPT heat transfer for semiconducting medium with two temperatures. The Laplace
transforms are used for the solution of the mathematical model in the transformed domain.
And the numerical inversion is applied to obtain the displacement components, the conductive
temperature, the carrier density and the thermal stresses in the physical domain. The impact of
different theories of thermoelasticity with two temperatures on the displacement, temperature,
thermal stresses, and the carrier density are represented graphically using Matlab software.
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Basic equations

Following the work of A. E. Abouelregal and D. Atta [36], we present below the constitutive
relations, the equation of motion, the plasma diffusion equation governing the plasma transpor-
tation process in semiconductor nanostructure medium, the MGTPT heat conduction equation
with thermal-plasma-elastic interaction.

The constitutive relations:

o, =( u, —BT-3,N)3, 'H’l(ullf +uf~f)’

(6)
B=(3r-2p)a,d, =(3n+2p)d,. T =9—a,9;,

where o, N/m?, are the stress tensor components; A, H, Pa, are the Lame’s elastic constants;
U, U, m,are the displacement tensor components; d is the coefficient of electronic deforma—
thIl 8 is the Kronecker delta; o, K- ! is the linear thermal expansion coefficient.

The equatlon of motion:

o, +F = pii, %)

where F, N, is the body force; p, kg/m?, is the medium density; #,, m/s*, are components of
the body acceleration.

The plasma diffusion equation:

aN—D \Y N—ﬁm(l av®)e, )

t T
where D, is the carrier diffusion coefficient; 1, s, is the photo-generated carrier lifetime; a is the
measure of thermoelastic diffusion effect; k is the coupling parameter for thermal activation,
K = (T/t) ON_/OT (N, is the carrier concentration at equilibrium position).

The modified Moore — Gibson —Thompson heat conduction equation with two temperature
quantities:

. EN P )
(K;9,),+(K0,), + . [1+ro = )[pc (1-av*)+B,Tye, —pQ ], )
where C is the specific heat at constant strain; e, are the strain tensor components; Q is the
source of heat; K. = K9 ., K =K; d,, 1isnot surhmed.

The subscrlptsjmarked by commas mean the partial derivatives with respect to the spatial co-
ordinates, whereas one or two dots on top of the notation mean the first or second derivative with
respect to the time variable ¢.

Formulation and solution of the problem

A one-dimensional (1D) symmetrical, thermally homogenous, semiconductor solid cylinder
of radius », was considered (Fig. 1). An external laser pulse heating system was used to irradiate
the external surface of the solid cylinder. A cylindrical coordinate system (r, 0, z) with the z-axis
arranged along the cylinder axis was taken. Initially, it was believed the cylinder to maintain con-
stant and uniform temperature 7 .

Furthermore, all examined fields were assumed to be finite within the medium for the regularity
condition. Due to symmetry, and for the 1D problem, all the functions considered depended on
the radial distance  and the time ¢.

For the 1D problem, displacement components of u and the displacement-strain relations are
given by

u=(u,0,0)(r,0),e =ulr,e,=ouldr,e,=e_=e,_=e_=0, (10)

where e, are the strain tensor components.
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4 Simulation of physical processes

Fig. 1. The illustration to the problem formulation:
a semiconductor solid cylinder of radius T, and an external laser heat

The stress-strain-temperature-carrier relations (6) using Egs. (10) will be the form

GW=2ug—z+ke—|:[3(l—avz)(p+8nN:|, (11)
Gee=2p£+%e—[ﬁ(l—avz)(p+6nN], (12)
r
Gzzzke—[ﬁ(l—avz)(p+8nN], (13)
V? =a—22+li
or- ror

where e, is the cubical dilatation, e, = e = (1/r) d(ru) / or.
Hence, the dynamic motion equation becomes

oo 1 ou’

— 44— - = —Q%u |. 14
& (0, —Cu) p( e uj (14)
Using Egs. (11) — (13), in Egs. (14) and (8), (9), the governing equations for the considered

semiconducting medium are:

o] 10(ru) 0 R ON o*u
A+2u)—| ——%|-B—|(1-aV -8 —= 15
( " l’l)6r|:r or } B@r[( “ )(P] " or P orr ) (15)
&b, (vN)-Sx(1-a¥)e, (16)

O p s  EN 0 0 ) o%e
K= Vit K'Vips == 14, — pCEy[(l—aV )(p]+[375¥ , o an
Pre-operating both sides of Eq. (15) by (1/r + 0/0r), we get:
2

(k+2p)V2e—BV2(l—avz)(p—SnVZN=(%]. (18)

In order to obtain the above equations in dimensionless form, the dimensionless quantities are
given by the following:

(ru")=von(r,u), (T’,N',G;j,(p') =pL\)(2](BT,8nN,Gy,(p),

(15,7, 1") = vin (T, 7.t"), n= pIC;E , PVi =A+2u, Y=,/7b+u2“-

Here, the magnetic parameter M (also known as the Hartmann number) measures the strength

(19)
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of the magnetic field. Using Eq. (19) in Egs. (16) — (18) and after suppressing the primes, yields:

2
Vie-V?(1-av?)e-V2N = (%j, (20)
ON
5:81(VZN)—82N+63(1—aV2)(p, 1)
0, ) o) o ) d’e
—V0+6,Vo+d.N=|1+1,— || —(1-aV +6, — |, 22
or P+0,V Q+0s5 ( oatj{atz( )(P 5 o1 (22)
where 8n are the electronic deformation coefficients that follow the expressions
1 ) K
3 =Dm, 8,=—, 8;=—", 8, =—F——,
T B (A+2p)C, @3)
£ ____ BT

5, = : 5, = .
3,C (A +2p)nt pC, (h+2p)

Making use of dimensionless quantities defined by Eq. (19) in Egs. (10) — (12) and after sup-
pressing the primes, yields:

GW=2y2Z—z+(l—2y2)e—[(l—avz)(p+N], (24)
G :2y21+(1—2y2)e—[(1—av2)<p+N} (25)
00 » >
GZZ:(1—2y2)e—[(l—avz)(p+N] (26)
The initial conditions of the problem are taken as
ou
=0=" 27
u(r,O) 0 ar(r,O), (27)
29
=0= 28
(p(r,O) 0 o (r,O), (28)
ON
= = — . 2
N(r,O) 0 . (r,O) (29)

The Laplace transform of a function f with respect to the time variable ¢, with s as a Laplace
transform variable, is defined as

201 0)=F(5)=] £ (e @ (0)

Using Laplace transforms on Eq. (30) to Egs. (20) — (22) we obtain:
(V2 =s*)e -V (1-aV?)5-V’N =0, (31)
[8,V2=(8,+s)|N+38,(1-aV*)5 =0, (32)
(14745)8,5° +[ =(5+8,) V" +(1+745) s (1-aV?) [§ -8,V =0, (33)

Using Laplace transforms on Eq. (30) to Egs. (24) — (26), we obtain:
ou —
P~ 2% _ 2\~ _ 2\—=
5, =2 +(1-27*)e-[(1-av* )5+ N ], (34)
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Sy :2y2%+(1—2y2)5—[(1—avz)6+1\_/],

GZZ

=(1-2¢)e-[(1-av*)5+ N |

When Egs. (31) to (33) are decoupled, we get

(V¢ -BV*+CV*-D)(2,5.N)=0,

where

B=—[a8,5:s+(—A48,-88,,- 838, +58, —add,) |/ 4,
C =(~8,3,5+ad,8,8, +8,8,—8,8,8,, + 85,5, +85,, +8,8,)/ 4,

>
)
Il
_—

A=-85

11°

D =(8,8,8,5—5,8,8,)/ 4,

Presenting A, (i = 1, 2, 3) in Egs. (39) we obtain:
(V2 =27) (V2 =23)(V? =43 )(e.9.N) =0,

where kf (i =1, 2, 3) are the roots of the equation

that are given by

5

5

with

(xé — B\ +CA? —D)

0,
, 1.
A :5(2cosm§+3),
:%(—@sing—\/gmcos§+3),

1 —wsin&++/30cos & + B
il )

3
co:\/m, iz%[sin(—zB -9BC+27D

20

The general solution of Eq. (38) can be written in the form

(e,

where / (') indicates the second type of modified Bessel functions of order n.
We get the following relations by inserting Eq. (42) into Egs. (31) — (33):

C.

o, N) =Z(1>Ci’ni)gi]0 (}‘i’”)>

(0 +8)(8,2] -3
8,5, + (8,07 +8,)(822-8,)

—sz), 8y =8, +s5, 8, =(1+7,5)d,s,

+1:Os)sz, o, = —(s+84)—(1+tos)s2a.

I

(35)
(36)

(37)

(38)

(39)

(40)

(41)

(42)

(43)
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(2] +3,)3,
n[ = 2 2 . (44)
8,05 +(8,A7 +8,, ) (8,1] -8
The displacement u may be represented in the Laplace transform domain, as follows:
3
_ 1
i = Z}L—gil1 (A7) (45)
i=1 i
We obtained Eq. (45) with the help of the Bessel function relation
jx]o (x)dx=x1,(x). (46)
Differentiating Eq. (45) in terms of » gives
a—_zz“g[ lo(xir)—ill(xir) : (47)
or ‘o AT
Thus, the final thermal stress solutions are generated in closed form as follows:
3 B 2 2 7
5, = g, (kir)—xill (hr) |, (48)
i=1 L e |
_ 3.0 [2y? ]
Su0 = 28| 51 (hr) +1dy () | (49)
i=1 L7V B
. =2 &bl (L), (50)
i=1

L=1-2y=[¢,(1-an))+m, |
Boundary conditions

We presume that the cylinder's outside surface is compelled. Therefore, the mechanical
boundary condition can be expressed as

u(r,t)y=0atr=r, (51)

Also, the boundary condition for variable heat flux (exponentially laser pulsed heat) is applied
to the boundary surface:
2 L
t
e "atr=r,. 52
16¢> ‘ (52)

P

qPZQO

Using dimensionless variables (32) on Eq. (3) yields the equation

0 0 oT
I+4t,— |g =—| —+90 T~ 33
( "arjqf’ (az “j or (53)
Egs. (52) and (53) give the following boundary condition:
t
9, 0\0| » & 0 jaT

——|1+t,— |—|t e’ |=—| —+0, |— atr=r,.

1612 ( 0 8tj6t[ ] [Gt ‘) or 0 54
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The carriers can reach the sample surface during the diffusion phase, with a finite probability of
recombination.
The boundary condition for the carrier density:
ON
D,—=s,N at r=r,, (55)
or
where D, is the carrier diffusion coefficient, s is the surface recombination velocity.
The boundary conditions (51), (54), and (55) have the following forms after performing the
Laplace transform:

u(r,,s)=0, (56)
8(1—avz)$ _ o (1+7145)s __G(s) 57)
or . 8(1+stp)3(s+64)
oN =
DEE =s5,N(r.5). (58)

Egs. (42) and (45) are substituted into Eqs (56) — (58), giving

Zg, I, (A1) =0, (59)
, gy (1+71,5) st -
(A7) Cs (1- =G (s), (60)
Zgl I’C ( ¢ ) 8(1+stp) (s+84) (S)
3
Znigi[DExill(kiro)_SVIO(xiro)]:0' 61)
P

The values of g, (i = 1, 2, 3) can be obtained by solving Egs. (59) — (61) by the Cramer’s rule:

& (5)7
A=G [GG,-G,G]-G,[G,G, -GG, ]+G,[G,G, - GG, ],
A, =G(s)[G,G, -GG, ],

A, =-G(5)[GG, - G,G,],
A= G(S)[G1G8 G2G7],
1
G' =0,
1 }\‘ (PI

G+3 :(P,«C?w(l—axf),
Go=M; [DE}\’i(Pi_SVWj]a
1 (}\’iro):(pﬂ [0(}\’1‘7‘0):\'/[7 i=1 2,3,

and putting the values of g (s) into Egs. (42), (45), (48) — (50), the various components of dis-
placement, temperature distribution, carrier density, and stresses are

Z7=G( ){[GG GG] -GG, GG]e [GIGS—G2G7]i}, (62)
A A A Ay

1 2
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I
— S
7.60) {[6,G, - G,G,]¢,9, -[GG, - G,G,]¢,9, +[G,G, - G,G,]C,9, ) (63)
N=—-{[G,G, - G,G,|n9, -[GG, - G,G,|n,9, +[G,G, ~ G,G, |n,8,}. (64)

G, = T{[G2G9 _GgGs](1181 _Hl)_[GlG‘) _G7G3](1282 _}’l2)+ (65)

+ [Gle - G2G7](1393 —H; )} )

_ N
Ogp = %{[Gz@ - G8G3](“1 Jr1191)_[(;1(;9 _G7G3](“2 +1282)+ (66)
+[G.G, - G,G, ] (s +1,9,)}

G
G_ = %){[GZGQ —G8G3]1181 —[GlG9 —G7G3]1282 +[G1G8 —G2G7]l333}, (67)
where

2

8, =1,(%r), 6,=1,(Ar), uiZiill (Ar), i=1, 2, 3.
r

1

Inversion of the transforms

In order to obtain the result of the problem in the physical domain, transforms in Egs. (62) —
(67) are inverted using
1
2mi

'[ f(x,s)e’”ds. (68)

e—ioo

f(x,t):

Finally, let us evaluate the integral in Eq. (68) using the Romberg’s integration (W. H. Press
et al. [37]) with an adaptive step size.

Particular cases:

i. If K#0,K#0and 1 #0, a#0 in Egs. (62) — (67), the results for the MGTPT + 27T
can be obtained (277 are the two temperature quantities).

ii. fK"#0, K#0and t =0, a # 0 in Egs. (62) — (67), the results for the Photothermal
Green and Naghdi I11 mode? (PGN-III) [12] with 27T can be obtained.

ii. If K# 0 and 1,=0, a # 0 in Egs. (62) — (67), the results for the Photothermal Green
and Naghdi II model (PGN-1I) [11] with 277 can be obtained.

iv. If K"=0and t, =0, a # 0 in Egs. (62) — (67), the results for the Coupled Photothermo-
elasticity theory (CP”%E) with 27T are obtained.

v. If K"=0 and a # 0 in Egs. (62) — (67), the results for the generalized Lord and Shulman
Photothermoelasticity model (PLS) [6] with 27T are obtained.

vi. If a = 0 in Egs. (62) — (67), the results for the MGTPT model are obtained.

Numerical results and discussion

In order to demonstrate the theoretical results and to show the effect of Hall current, rota-
tion, and the effect of the modified photothermal heat equation (MGTPT) graphically using
Matlab software, the isotropic silicon material (Si) with its physical properties was taken. The
used data are listed in Table.

Fig. 2, a depicts the variation in the radial displacement u for MGTPT and PGN-III theories
with two temperatures. Notice that the radial displacement is minimum in the absence of two
temperature quantities in the MGTPT theory. However, as the value of the two-temperature
parameters in the MGTPT theory increases, the radial displacement increases as well. More-
over, PGN-III theories with and without two temperatures show a higher variation in the radial
displacement. Furthermore, as the radial distance increases, the radial displacement decreases.
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Displacement Component v

0.0006
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a)

Table

Parameter values of silicon material [36] used in our study

Parameter Notation Unit Value
, . A 36.4
Lame’s elastic constants GPa
n 54.6
Thermal elastic coupling B MPa/(deg) 7.04
Electronic dqformatlon 5 . _9.103!
coefficient n
Medium density p kg/m? 2.33-10°
Specific heat at constant strain C, J/(kg'K) 695
Coefficient of thermal K W/(mK) 150
conductivity
Materialistic constant K* kW-s 1.54
Carrier diffusion coefficient D, m?*/s 2.5-10°3
Magnetic constant 1, H/m 1.257-10°
Reference temperature
T, K 300
(s. t. |T/ T <<1)
Photo-generated carrier lifetime T us 50
Carrier concentration
o . oy NO m73 1020
at equilibrium position
Electric constant g, F/m 8.854-107"2
Semiconductor gap energy E, eV 1.11
Linear thermal expansion
. o, K 310°6
coefficient
Surface recombination velocity s, m/s 2
b)
0.00040
0.00038 4
0.00036 ——MGTPT witha=0.0
—— MGTPT with a = 0.0 0.00034 ——MGTPT witha =0.2
——MGTPT with a = 0.2 S 000032 —— MGTPT witha= 0.4
— MGTPT witha = 0.4 £ 0.00030 4 PGN-IIl with a = 0.0
PGN-Ill with a = 0.0 2 0000 ] —— PGN-IIl with a = 0.2
—— PGN-Ill witha = 0.2 @ 0:00024 E
o
:D 0.00022
5 0.00020
T 0.00018 4
@ 0.00016 ]
£ 0.00014
o 0.00012 1
F 000010 R
0.00008 ~—
oo M
0.00004 %

0.0

0.00002 -

Fig. 2. The radial displacement (a) and temperature () variations for various models
with two temperature quantities (a is the two-temperature parameter)
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Fig. 2, b illustrates the variation in the temperature distribution for MGTPT and PGN-III
theories with two temperatures. Note that temperature distribution is higher in the inner core of
the cylinder as compared to the outer one of the cylinder. In addition, the presence of two tem-
peratures causes a higher temperature distribution.
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0.0003 4

Carrier Density

0.0002

—— MGTPT witha=0.0
—— MGTPT witha=0.2
—— MGTPT witha=04
—— PGN-Ill witha=0.0
—— PGN-lll witha=0.2

0.0001 4

0.0000 T T T T
0.0 0.2 0.4 0.6 0.8 1.0

r

Fig. 3. The variation in the carrier density for
various models with two temperature quantities

a)

"

—— MGTPT witha = 0.0
——MGTPT witha=0.2
—— MGTPT witha=0.4

PGN-IIl with a = 0.0
—— PGN-lll witha=0.2

0.0003

0.0002

0.0001 T T T T
0.2 0.4 0.6 0.8 1.0

Fig. 3 shows the variation in the carrier den-
sity for MGTPT and PGN-III theories with two
temperatures. It should be noted that PGN-
IIT depicts the minimum variation in carrier
density than MGTPT theory in the absence of
two temperature quantities. At the same time,
PGN-III theory results in maximum variation
in carrier density. Notice that variation in the
carrier density sharply decreases as the radial
distance r increases.

Fig. 4 shows the variation in the stress com-
ponents for MGTPT and PGN-III theories
with two temperatures. It has been noticed that
in the absence of two temperature quantities in
the MGTPT theory, the variation in the stress
components are minimum as compared to the
PGN-III theory. However, as the value of the

b)
699
—— MGTPT with a = 0.0
0.0014 4 ——MGTPT witha =0.2
—— MGTPT with a = 0.4
PGN-I1l with a = 0.0
0.0012 —— PGN-lllwitha=0.2
0.0010
0.0008 -
0.0006 |
T T T !

0.2 0.4 0.6 0.8 1.0

0.0005 |

——MGTPT witha =0.0
——MGTPT witha =0.2
——MGTPT witha =0.4

PGN-IIl witha = 0.0
——PGN-lll witha=02

0.0 0.2

Fig. 4. The deviations in radial (a), hoop (b) and vertical (c¢) stresses
for various models with two temperatures
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two- temperature parameter increases, there is a sharp increase in the stress components. Note
that the variation in the stress components decreases drastically as the radial distance » increas-
es.

Conclusions

This study lays out several photo-thermoelasticity models that are generalized in the Moore —
Gibson — Thompson photo-thermal (MGTPT) model with two temperatures. In addition, this
study included the photo-thermoelastic Green — Naghdi type III model. The generalized MGTPT
model is used to solve some of the physical consequences of some earlier models. In this study,
the infinite semiconducting solid cylinder subjected to the exponential laser pulse on its boundary
surface has been studied. The governing equations are expressed with the help of the MGTPT
with two temperatures.

Effects of different thermoelastic theories with two temperatures on the components of dis-
placement, temperature field, carrier density, and thermal stresses are represented graphically. As
seen in the graphs, all of the domains examined are significantly impacted by the two tempera-
tures. The thermal effect occurs when semiconductor media are exposed to focused laser beams
or sunlight ones and, because of the thermal effect, they will vibrate. These materials have many
uses in renewable energy, especially in the solar cells industry which depends heavily on semi-
conductor materials.

Photothermal methods are not only simple and sensitive but they can also be used to gain some
insight into the process of de-excitation in materials with optical absorption. The ideas presented
in this paper will come in handy for physicists, material designers, thermal engineers, and geo-
physicists. A wide range of photo-thermoelasticity and thermodynamic problems can be solved
using the technique used in the above study.
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