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Abstract. High Electron Mobility Transistor (HEMT) heterostructures based on IT1I-N sem-
iconductors (nitrides of Al and Ga) have become increasingly widespread in recent years. They
are used in the manufacture of microwave transistors, high-power transistors for power elec-
tronics, etc. However, mass application of such transistors requires a reduction in the cost of
heterostructures due to the use of cheap substrates and an increase in the area of one substrate.
Thus, substrates of single-crystal Si(111) are of great interest. They are available in diameters
up to 300 mm, and the possibility of growing III-N structures has already been demonstrated
for them. Nevertheless, the epitaxy of I[II-N HEMT structures on Si substrates is complicated
due to a number of technological difficulties in the epitaxy of such structures. In this paper, the
dynamics of curvature and residual bow of III-N HEMT structures were experimentally studied
during epitaxy and after cooling for Si(111) substrates with a diameter of 100 mm and various
thicknesses of substrates and grown semiconductor films. It has been shown that the technology
developing and optimization should be carried out on thin substrates, while device structures
should be grown on thick substrates. Furthermore, the mechanical stresses can be controlled
accurately enough so after epitaxy the bow of the structure is minimal.
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AnHoTanuda. B HacToseir paboTe MpoBEAEHO 3KCMEPUMEHTAIBHOE WCCIEIOBAHUE JWHA-
MUKWM KpUBU3HBI U octatoyHoro mporuda [II-N HEMT cTpykTyp BO BpeMsl W MOCJe PMU-
takcuu it moaoxek Si(111) mmamerpom 100 MM pa3nudyHO TOMIMUHBI; ObUTa OTIpeesieHa
NUHAMUKA KPUBU3HBI OT TOJIIUHBI CTPYKTYPHl BO BPEMsSI POCTA, UYTO TMO3BOJISIET OIMPEACIUTh
rnmapaMeTpbl SMUTAKCUU [JIsT TTOJYYEHMSI HEOOXOAMMOTO MPOruda CTPYyKTyp IMOCe OCThIBAHUSI.

KimoueBbie caoa: DD MOC, moseBble TpaH3UCTOPHI, YIIPYTUe HAIPSKEHUS, KPEMHUI
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Introduction

High Electron Mobility Transistor (HEMT) heterostructures based on I1I-N semiconductors
(nitrides of Al and Ga) have become increasingly widespread in recent years [1]. They are used for
manufacturing microwave transistors, high-power transistors for power electronics, etc. However,
the mass application of such transistors requires a reduction in the cost of heterostructures through
the use of cheap substrates and an increase in the area of each of them. From this point of view,
substrates of single-crystal Si(111) are of great interest. They are available in diameters up to 300
mm [2] and have already been shown to grow I1I-N structures. However, epitaxy of III-N HEMT
structures on Si substrates is very difficult due to the significant difference in lattice parameters
and in thermal expansion coefficients (TEC) of the substrate and III-N layers [3]. There are
also a number of technological difficulties in the epitaxy of such structures associated with the
solubility of Ga in Si, warping of large-diameter substrates due to temperature inhomogeneity,
leading to their plastic deformation, etc.

Materials and Methods

Equipment. The experiments were carried out on a MOVPE Dragon D-125 growth system
[4] with an inductively heated susceptor and custom-built gas injector allowing high growth rate
and uniformity. The setup has a horizontal flow reactor and a laser reflectometry system with the
ability to measure the structures curvature in-situ.

Structure growth method on silicon. One of the main epitaxy problems is the difference between
the TEC of the substrate and 1II-N layers, which leads to a strong contortion of the structure after
epitaxy and cooling. To eliminate this effect, the technique of creating mechanical stresses in the
growing III-N layers during growth is used [5—9] to compensate for the stresses that arise during
the cooling of the structure. Since the structures are highly stressed, after the epitaxy process, they
can have a different bow, which affects the subsequent stages of transistor fabrication. The order
of growing HEMT structures is shown in Fig. 1.
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Fig. 1. Order of growing HEMT structures: flat silicon substrate (a); first AIN layer protecting Si
from Ga and creating initial stresses (b); AlGaN buffer of several variable composition layers to
maintain the coherence of GaN growth on AIN and stress accumulation (c¢); GaN layer for the
accumulation of mechanical stresses, the creation of a non-conductive buffer layer and the active
region of the HEMT (d); structure distortion during cooling after epitaxy (e).
The black arrows show the direction of layer contortion at each stage; the red ones show the distortion of the
whole structure during cooling
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Structure growth starts with substrate annealing (7 = 1130 °C; p = 100 mbar) to get rid of
silicon oxide covering the substrate (Fig. 1, a). After that an AIN layer is deposited (7' = 1100
°C [10]; p = 110 mbar; growth rate =~ 0.5 pm/h) to prevent etching of Si by Ga melt (Fig. 1,b).
Then a set of AlGaN layers (7 = 1050 °C; p = 100 mbar; 6 layers of different composition;
composition being controlled by concentration of Al and Ga ratio; Al concentration in solid
solution: 80%, 60%, 45%, 35%, 15%, 10%) for stress compensation are grown (Fig. 1,c). HEMT
structure is finalized (7 = 1050-1100 °C; p = 100— 400 mbar) with doped with Fe and C and
undoped GaN layers, AIN spacer (f = 1 nm), Al ,,N barrier layer (f = 23 nm) and in-
situ deposited SiN (f = 5 nm) (Fig. 1,d). At the enci of epltaxy grown structure is cooled down
(t = 30 min) to the room temperature (Fig. 1, e).

Geometry of the structures. The curvature coefﬁcient, defined as the reciprocal of the curvature,
at constant mechanical stresses in the structure layers according to the Stoney equation (1) is
directly proportional to the thickness of the grown film and inversely proportional to the square
of the substrate thickness:

1 7

R M

where £k is the curvature coefficient, R is the curvature, fis the film thickness, H is the substrate
thickness.

Based on geometric considerations (Fig. 2) and the smallness of bow / in relation to the
curvature R and substrate diameter ¢, we can obtain expression (2) for calculating /.

d : kd : )

8R 8
R The structure bow is proportional to
the square of the substrate diameter, so as
substrates increase in size, it is necessary to

significantly reduce the residual curvature.
The condition for post-growth processing

* is a bow of no more than 50 um, which
corresponds to a curvature of 40 km™! for a
100 mm substrate.

Results and Discussion

Fig. 2. Relation between curvature R and substrate The curvature of the grown structure, as
diameter d and bow £ well as the growth rate of each layer, was

determined from data in-situ measured

during growth for each layer. The structure
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Fig. 3. Graph of the curvature k& and bow /4 vs different thicknesses of final films. Substrate
thickness of the growing structure f at different thicknesses were equal. It is seen that
thicknesses of substrate H controlling compositions and thicknesses

(given in brackets for each sample) of the buffer layers allow to control the
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Fig. 4. Graph of the curvature k& and bow % vs thickness of the growing structure f at different total
thicknesses of structure (given in brackets for each sample)

mechanical stresses in the layers during the growth.
Table 1 shows the final bows of the heterostructures. The best result was demonstrated by
sample 1, while sample 3 did not fit into the tolerance at all (II1.C).
Table 1

Final bow of heterostructures after cooling

Sample 1 2 3 4 5 6 7

h, um 2.5 18.8 | 60.0 | 47.5 | 23.8 | 20.0 | 42.5

Conclusion

To conclude, it has been shown that under certain mechanical stresses in the layers, the
curvature and bow of the structure are inversely proportional to the square of the substrate
thickness. Therefore, the technology developing and optimization should be carried out on thin
substrates so that the sensitivity is higher and the response to stress changes is more noticeable,
while device structures should be grown on thick substrates so that the final bow is minimal.

Furthermore, the mechanical stresses can be controlled accurately enough by compositions
and thicknesses of the buffer layers so that after epitaxy the bow of the structure is minimal.
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