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Abstract. We consider a system of randomly distributed magnetic atoms and describe the ex-
change interaction in the Ising model with a hydrogen-like dependence of the exchange energy 
on distance. The density of states for such system was calculated using an advanced numerical 
algorithm. Furthermore, the density of states was calculated analytically. We established that 
finding the density of states allows calculating the dependence of magnetic susceptibility of the 
system on temperature and magnetic field.
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Аннотация. Мы рассматриваем систему случайно распределенных магнитных атомов 
в модели Изинга с водородоподобной зависимостью обменной энергии от расстояния. 
Плотность состояний для такой системы посчитана численно и аналитически. 
Показано, что, зная плотность состояний, несложно рассчитать зависимость магнитной 
восприимчивости системы от температуры и магнитного поля.
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Introduction

The exchange interaction of impurity atoms in semiconductors is actively studied. Interest 
in this topic grew significantly after the discovery of ferromagnetism in GaAs uniformly doped 
with a Mn magnetic impurity [1] (not due to Mn or MnAs clusters). At the moment, active 
experimental studies of the magnetic properties of semiconductors doped with non-magnetic 
impurities are being carried out [2−4]. The distribution of impurity atoms in semiconductors 
is random. However, the magnetic properties of materials are primarily theoretically studied 
in lattices that are either regular or close to regular. The magnetic properties of systems with a 
completely random distribution of magnetic atoms have not been thoroughly studied. This may 
be due both to the complexity of the considered model and to different approaches to describing 
regular and irregular systems. One of the main theoretical results in this field is the work [5], 
which predicts the absence of long-range magnetic order in a system of randomly distributed 
impurities with antiferromagnetic interaction. In our previous works [6, 7], we used a more 
correct expression for the dependence of the exchange energy on the distance. In the hydrogen-
like model, the exchange energy of two spins at a distance r can be expressed as [8, 9]:

2.5

0
2exp .r rJ J

a a
   = −   
                                                                

 (1)

It was found in [6] that magnetic ordering is possible in a system of randomly distributed 
magnetic impurities. As the impurity concentration increases, the so-called spin-fluctuation phase 
transition occurs. In this case the amplitude of fluctuation of the magnetic moment increase, 
while the average magnetic moment of the system is equal to zero on both sides of the phase 
transition.

The magnetic properties of a system of randomly distributed impurities are often calculated 
using numerical methods, in particular, the Metropolis-Hastings algorithm [7, 10]. This algorithm 
starts with a random state of the spin system which is then thermalized to the required temperature. 
At low temperatures, the number of steps required for thermalization increases exponentially. In 
addition, the system may get in a pseudoground state, separated from lower energy states by a 
high energy barrier. In other words, at low temperatures the system is in the spin glass phase. 
Therefore, the Metropolis-Hastings algorithm is not efficient at low temperatures. In the present 
work, we used the Wang-Landau algorithm for accurate numerical calculation of the density of 
states and proposed an analytical expression for the density of states for a system of randomly 
distributed spins.

Numerical calculation

In this paper, we consider a system of randomly distributed spins and numerically and 
analytically calculate the dependence of the density of states on the total exchange energy E 
and the magnetic moment of the system M. For convenience, we denote the average magnetic 
moment of one spin, normalized to unity, by m. Then the total magnetic moment of the system 
M = μmN. Here μ is the magnetic moment modulus of one spin, N is the total number of spins 
in the system. Knowing the density of states g(E, m), it is easy to calculate the average magnetic 
moment and magnetic susceptibility of the system as a function of temperature and magnetic 
field.

In the Ising model each spin can be directed up or down. That is, each spin has only two 
possible states. However, the number of possible states for a system of N spins is 2N. For example, 
the number of different states for a system of only 100 spins is more than 1030, and it is impossible 
to enumerate all the states even with the help of the fastest computers. The density of states 
can be found by the random walk method [10]. However, this method is only effective near the 
maximum of the density of states, producing large noise at the tails. A variation of the random 
walk method known as the Wang-Landau algorithm [11, 12] was used in this study. 

Below we briefly consider the main idea of the Wang-Landau algorithm. Energy and magnetic 
moment are divided into small intervals. Initially, it is considered that the density of states for 
all values of energy and magnetic moment is equal to 1. Then random walks start, at each step 
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the density of states in the corresponding interval is increased by f times, where f is the so-called 
modification factor. Initially, modification factor is taken equal to e, this value is chosen for 
convenience. Then the modification factor is gradually reduced to increase the accuracy of the 
calculations. In addition to the density of states, we will count how many times the system appears 
in each interval during a random walk and save the corresponding value in the histogram h(E, m).

At each step, we randomly select one spin and try to flip it. We calculate the energy E1 and 
the magnetic moment m1 before the spin flip, and the energy E2 and the magnetic moment m2 

after the spin flip. The flip is accepted with probability ( ) ( )
( )

1 1

2 2

,
1 2 min ,1 .

,
g E m

p
g E m

 
→ =   

 
That is, 

we always accept transitions to less probable states, and the probability of transition to a more 
probable state depends on the ratio of densities of state in the initial and final states. Thus, the 
Wang-Landau algorithm is non-Markovian chain, the probability of transition to the next state 
depends on the history of previous transitions.

At the moment when the histogram h(E, m) is flat enough, that is, the maximum and 
minimum values differ by no more than some specified amount (usually 80–90%), we decrease 
the modification factor and reset the histogram to zero. The algorithm terminates when the 
modification factor becomes small enough, so the density of states is known quite accurately.

Fig. 1 shows the calculated density of states for a system of N = 512 spins. The size of the 
system was chosen based on a reasonable calculation time. For example, it took about a week 
to calculate the density of states shown in the figure. The color in the figure shows the decimal 
logarithm of the density of states, that is, the maximum and minimum value of the density of 
states differ in this figure by 130 orders of magnitude. Notice that the noise on the tails of the 
density of states is minimal.

Fig. 1. Decimal logarithm of the density of states g(E, m), normalized to the maximum 
value. Calculation for a system of N = 512 spins and concentration na3 = 0.03

The complexity of the problem can be reduced and the size of the system can be increased if 
the density of states is calculated for a fixed value of the magnetic moment. The algorithm differs 
only in that at each step we try to simultaneously flip two randomly selected, oppositely directed 
spins in order to preserve the total magnetic moment of the system. Performing the numerical 
calculation, we generated a configuration of N = 8192 spins and then calculated the density of 
states for various values of the magnetic moment of the system for the same configuration of spins 
in space. The calculations were performed on the supercomputer at Peter the Great St. Petersburg 
Polytechnic University, allowing to calculate the density of states in parallel for 25 different 
values of the magnetic moment. The size of the system was determined based on a reasonable 
computation time, provided that the required computational accuracy is achieved.

It should be noted that the value of the energy of the system at the maximum of the density 
of states depends on the spatial distribution of the spins. This dependence is purely statistical in 
nature, the relative dispersion of the average energy decreases as 1 N  with an increase in the 
total number of particles in the system. However, the spread was still significant with the available 
size of the system. For this reason, we did not average over different spatial configurations.
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The results of numerical calculations show that, at a fixed value of the magnetic moment, the 
density of states has a form close to a normal distribution (Fig. 2). Fig. 3 shows the position of 
the maximum and the dispersion of the distribution depending on the magnetic moment of the 
system m. It can be concluded that, in the considered range, the dispersion remains practically 
constant, and the position of the maximum has a quadratic dependence on m.

Fig. 2. Densities of states depending on the energy for different values of the magnetic moment m, the 
values are signed near the corresponding curves. Red lines correspond to numerical calculations using 

the Wang-Landau algorithm, blue dashed line to theoretical calculation by Eq. (5)
Calculations were performed for a system of N = 8192 spins and concentration na3 = 0.05

Fig. 3. Comparison of the average energy and dispersion of the distribution versus magnetic moment 
of the system, obtained by numerical simulation (dots) and by analytical equations (lines). The 

calculations were carried out for a system of N = 8192 spins and a concentration na3 = 0.05

Analytical model

The density of states g(E, m) can also be calculated analytically. The total exchange energy of 
the system of N interacting spins is the sum of N(N ‒1)/2 pair energies, each of which is a random 
variable. In accordance with the central limit theorem, the distribution of such a sum should be 
close to normal. This explains the form of the density of states obtained by numerical calculation. 
In order to write an analytical expression for the density of states, it is necessary to calculate the 
mean value and dispersion of the total exchange energy E. To calculate the average exchange 
energy, we first consider the system of spins with one orientation. We denote the average energy 
of the exchange interaction of one spin with all others as 

1J . The following expression [6] can be 
obtained for the exchange energy (1):

3
1 08

945 .
2 2

J na Jπ π
=

                                                                  
 (2)
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Then, in a system of p “up” spins and q “down” spins, the average exchange energy is

2
1 1

1 1 .
2 2

p q q pE p q J Nm J
p q p q

    − −
= + =    + +    

                          (3)

For a system of randomly oriented spins, the average exchange energy of one spin is zero and 
the dispersion of the exchange energy of one spin will be equal to 2

1 .J  Then the dispersion of the 

total exchange energy will be equal to 2 2
1

1 .
2

N Jσ =
 
For the exchange energy (1), one can obtain

2 3 2 3 2
0 015 11

7! 315 .
2 2

na NJ na NJπ π
σ = =                                     (4)

According to the results of numerical simulation, the dispersion of the exchange energy of the 
system is practically independent of m for |m| < 0.4. For large m, this is not the case; in particular, 
a fully magnetized system (m = ±1) has only one state, which means that the dispersion is zero. 
Therefore, the theoretical formulas written below are not applicable in the ferromagnetic phase 
at low temperatures.

Finally, in the Ising model, the total number of states in a system of N spins is 2N, and the 

number of states with exactly p “up” spins is 
( )1

2 .
N m

p
N NC C

+

=  Thus the density of states can be 
expressed as

( )
( ) ( ) ( )

2
22

1 1 1
2 2

2 2

1
1 1 2, exp exp .

2 22 2

N m N m

N N

E Nm JE E
g E m C C

+ +

  −    −     = − = −   σ σπσ πσ    
 

  (5)

Let us assume that the density of states g(E, m) is known from numerical or analytical 
calculations. In a magnetic field, the energy of the system will be the sum of the exchange energy 
E and the energy of interaction with the magnetic field MB = µNmB. Then the probability density 
versus energy E and magnetic moment m will be described by the Gibbs distribution and will 

be proportional to ( ), exp .E NmBg E m
kT

+µ ⋅ − 
   

Using this expression, we can calculate all the 

parameters of the system of spins, such as the average magnetic moment or magnetic susceptibility:

( ), exp ,
m

N E NmBM dE mg E m
Z kT
µ +µ = − 

 
∑∫                          (6)

where Z is statistical weight.

Fig. 4. Dependence of magnetic susceptibility and average magnetic moment per one spin on 
temperature
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The main difficulty of analytical calculations in such a model is the calculation of binomial 
coefficients for large numbers. For example, for the studied system of 8192 spins, their value 
reaches 102463. However, the modern programming language julia supports both work with 
numbers of arbitrary length and parallel calculations, makes it possible to perform calculations 
in a reasonable time. As an example, Fig. 4 shows the calculated temperature dependence of 
magnetic susceptibility and average magnetic moment in a weak magnetic field.

Conclusion

To summarize, in this paper, we describe an efficient algorithm for numerical calculation of the 
density of states in a system of randomly distributed spins. Furthermore, we propose an analytical 
method for calculating the density of states in such a system. It is shown that knowing the density 
of states of the system allows to easily find the thermodynamic parameters of the system, in 
particular, the dependence of magnetic susceptibility and magnetic moment on temperature.

Acknowledgments

The results of the work were obtained using computational resources of the supercomputer 
center in Peter the Great Saint-Petersburg Polytechnic University Supercomputing Center.

REFERENCES

1. Ohno H., Shen A., Matsukura F., Oiwa A., Endo A., Katsumoto S., Iye Y. (Ga, Mn)As: A new 
diluted magnetic semiconductor based on GaAs, Applied Physiсs Letters 69 (1996) 363‒365.

2. Veinger A. I., Zabrodskii A. G., Lahderanta E., Semenikhin P. V. Detection of the Ferromagnetic 
Properties of Si:P in the Region of an Insulator–Metal Phase Transition. Jetp Letters 115 (2022) 
685–690.

3. Zabrodskii A. G., Veinger A. I., Semenikhin P. V. Effect of Compensation on Low-Temperature 
Spin Ordering in Ge:As Semiconductor Near the Insulator–Metal Phase Transition. Appl. Magn. 
Reson. 51 (2020) 327–347.

4. Zabrodskii A. G., Veinger A. I., Semenikhin P. V. Anomalous Manifestation of Pauli Paramagnetism 
and Coulomb Blockade of Spin Exchange upon the Compensation of Doped Semiconductors, Phys. 
Status Solidi B, 257(1) (2020) 1900249.

5. Bhatt R. N., Lee P. A. Scaling Studies of Highly Disordered Spin-½ Antiferromagnetic Systems, 
Phys. Rev. Lett., 48 (1982) 344−347.

6. Bogoslovskiy N. A., Petrov P. V., Averkiev N. S. Spin-Fluctuation Transition in the Disordered 
Ising Model. Jetp Lett. 114, (2021) 347–353.

7. Bogoslovskiy N. A., Petrov P. V., Averkiev N. S. The Impurity Magnetic Susceptibility of 
Semiconductors in the Case of Direct Exchange Interaction in the Ising Model, Phys. Solid State 61 
(2019) 2005–2009.

8. Gor’kov L. P., Pitaevskii L. P. Term Splitting Energy of the Hydrogen Molecule Soviet Physics 
Doklady, 8 (1964) 788.

9. Herring C., Flicker M. Asymptotic Exchange Coupling of Two Hydrogen Atoms, Phys. Rev., 
134(2A) (1964) A362.

10. Landau D. Binder K. A guide to Monte Carlo simulations in statistical physics. Cambridge 
university press, 2021.

11. Wang F., Landau D. P. Efficient, multiple-range random walk algorithm to calculate the density 
of states, Physical Review Letters, 86(10) (2001) 2050.

12. Landau D. P., Tsai, S. H., Exler, M. A new approach to Monte Carlo simulations in statistical 
physics: Wang-Landau sampling, American Journal of Physics, 72(10) (2004) 1294−1302.



13

Bulk properties of semiconductors

Received 29.11.2022. Approved after reviewing 23.01.2023. Accepted 25.01.2023.

© Peter the Great St. Petersburg Polytechnic University, 2022

BOGOSLOVSKIY Nikita A. 
nikitabogoslovskiy@gmail.com
ORCID: 0000-0002-2265-0245

PETROV Pavel V. 
pavel.petrov@gmail.com
ORCID: 0000-0001-7791-567X

AVERKIEV Nikita S. 
averkiev@les.ioffe.ru
ORCID: 0000-0002-0772-7072

THE AUTHORS


