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Abstract. The acoustic Lauegram of the Rayleigh wave the Laue–Bragg–Wulff high-frequency 

scattering on a rectangle rough band of an isotropic solid, having periodic lattice of an arbitrary 
number of the roughness discontinuities, is theoretically investigated in details in dependence on the 
angle of scattering φs 

at a fixed ratio of the lattice unit cell size to the wavelength and parameters 
of the lattice. The Ewald conception of the circle of reflection is used. The problem of an arbitrary 
number, defined beforehand, of the resonances of scattering, i.e. nodes of the reciprocal lattice, for 
any φs, defined beforehand, lying on the Ewald circle of reflection, is first solved analytically in the 
present work in the classical case, i.e. without influence of the amplitude form-factor of the lattice. 
It is found, that increasing of the number of resonances for any φs  is necessarily accompanied by 
the increasing of the Ewald circle of reflection radius, i.e. of the Rayleigh wave frequency, at fixed 
sizes of a discontinuities lattice. It is obtained first, that amplitude form-factor of the discontinuities 
lattice strongly influences the structure of the acoustic Lauegram: arbitrary number of the resonances 
of scattering for any φs  can be placed on the Ewald circle of reflection without variation of its radius 
by using of the appropriate amplitude form-factor of a discontinuities lattice of a solid roughness. 
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Introduction

It is known, that the Bragg-Wulff mirror reflection and the more general Laue scattering of the 
waves on the periodically arranged inhomogeneities are broadly used in the science and technolo-
gies [1—18]. Both these types of the physical phenomena are described by the Bragg-Wulff law of 
reflection and the Laue conditions of scattering respectively [1—7]. These laws of reflection and 
scattering are conditions of the phase synchronism of the reflected and scattered waves respectively 
[7—9]. The great interest is aroused by the phenomena of the wave scattering on the non-perfectly 
periodic lattices of inhomogeneities, which take place in the real nature [9—13]. Theoretically 
these physical phenomena are investigated in a frame of the kinematic and dynamic theories of 
scattering [6, 11]. The first one deals with the Born approximation of the perturbation theory, 
the second one solves the problems of the multiple scattering of waves on inhomogeneities. The 
new physical topological [14, 15] laws of scattering were obtained first in [16—18] in a frame of 
the Born approximation of the perturbation theory in inhomogeneity amplitude. These laws are 
topological ones [14, 15], since they are the same for the sets of inhomogeneities, having definite 
configuration properties. They include both the Rayleigh and the Laue–Bragg–Wulff scatterings. 
It was earlier well-known [5] that the high-frequency Laue–Bragg–Wulff scattering takes place 
mostly on the medium discontinuities because continuous inhomogeneities are physically smooth 
for the wave, having the wavelength more less than the character size of inhomogeneity. The peri-
odic space arrangement of the medium discontinuities has the great importance for the conditions 
of the phase synchronism of the scattered waves according to the Laue–Bragg–Wulff laws [1—7]. 
But the amplitude form-factor of discontinuities lattice, i.e. dependence of the roughness left 
and right limit values difference in a point of discontinuity on a number of this discontinuity in 
a lattice [16—18], was not taken into account [1—13]. As for the Laue–Bragg–Wulff scattering, 
the new topological laws of scattering reveal the important role of this amplitude form-factor of 
the discontinuities lattice in a wave scattering, up to violation [16—18] of the Laue–Bragg–Wulff 
laws [1] of scattering.

It is interesting to investigate the fundamental properties of the acoustic Lauegram of scat-
tering, i.e. dependence of the indicatrix of scattering on the angle of scattering, in the frame of 
a conception of the Ewald sphere of reflection [3] without influence of the lattice amplitude 
form-factor on a scattering, for example, when all discontinuities have equal amplitudes, as it 
is described by the Laue–Bragg–Wulff laws, and with account of this form-factor. The Ewald 
sphere of reflection conception states that necessary and enough condition that definite angle of 
scattering corresponds to the resonance of scattering is location of the corresponding node of the 
reciprocal lattice on the Ewald sphere of reflection. But the conception of the Ewald sphere of 
reflection does not consider and solve the next problem: what is the radius of the Ewald sphere of 
reflection, i.e. the frequency of the incident wave, containing arbitrary number, defined before-
hand, of resonances for an arbitrary angles of scattering, defined beforehand? This problem is 
solved first in the present work for the scattering of the surface acoustic Rayleigh wave on a 
rectangle rough band of an isotropic solid, having periodic lattice of an arbitrary number of the 
roughness discontinuities [18]. In this case two transverse with respect to direction of the incident 
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Rayleigh wave propagation edges of the rough band violate the Laue–Bragg–Wulff law, but all 
the discontinuities amplitudes of the longitudinal lattice are the same, and so they do not influ-
ence the scattering. The scattered Rayleigh wave is cylindrical, so the Ewald sphere of reflection 
becomes the Ewald circle of reflection. The great influence of the amplitude form-factor of the 
transverse and longitudinal discontinuities lattices, i.e. of the new topological laws of scattering 
[16—18], on the solution of this problem is obtained and investigated.

The statement of the problem and method of a solution

Let us consider the theoretical problem of the surface acoustic Rayleigh wave scattering on a 
rough finite size part of an isotropic solid in the Laue–Bragg–Wulff case and in a more general 
case of the new topological laws of scattering [16–18]. The results of this completely concrete 
problem, obtained from the first principles of the dynamical theory of elasticity [5], give the pos-
sibility to understand the general laws of a wave scattering physical phenomena [1–13]. 

 The problem on the number of the reciprocal lattice nodes, 
lying on the Ewald circle of reflection

Let the plane surface acoustic Rayleigh wave, propagating along the x1-axis of a free surface of 
an isotropic homogeneous solid, occupying half-space x3 ≥ 0 of the Cartesian coordinates system 
(x1,x2,x3), is incident on the surface rough region, having the form of a rectangle with the finite 
sizes L1 and L2 along the x1- and x2-axes respectively. That is the roughness occupies a rectangle 
region 1,2 1,2 1,2/ 2 2./L x L  − < <  It is described by the next function

( ) ( ) ( )
( ) ( ) ( )

2
3 1 2 0 0 1 2

0  1 1 1 2 2 2 1 1

, ,

; 2; / 2   ;  / 2; / 2/

x f x x f x x

f x L L f x L L f x

 

θ   θ   

= = δ =

= δ  −   −  
(1)

where δ0 is the roughness amplitude, having dimension of a length; the step function fθ(x,a,b) = 1 
for a < x < b and 0 otherwise;  f1(x1) is arbitrary dimensionless deterministic (not statistical) func-
tion. The problem of the plane Rayleigh wave scattering on the roughness (1) into the cylindrical 
Rayleigh wave in the Laue–Bragg–Wulff short-wavelength limit λ ≪ L1,2 is solved in [18] in the 
Rayleigh–Born approximation of the perturbation theory in a roughness amplitude (1). Conditions 
of the Rayleigh wave scattering resonances are expressed through the wave-vector q  ((12) in [18]), 
transmitted from the incident to the scattered Rayleigh wave. This vector is defined uniquely by 
the absolute value of the wave-vector of incident or scattered wave kR and the angle of scattering 
φs. So, two patterns of scattering can be considered. The first one is the frequency spectrum of the 
indicatrix of scattering, i.e. its dependence on the Laue–Bragg–Wulff parameter 

lNp  ((10) in [18]) 
at arbitrary fixed value of the angle of scattering φs. The new topological laws of scattering [16–18] 
reveal that the frequency spectrum of scattering is always periodic independently on the periodicity 
or aperiodicity of the discontinuities lattice and on amplitude form-factor of a lattice [17]. The 
second pattern of scattering, mentioned above, is the structure of the indicatrix of scattering in 
dependence on the angle of scattering  φs at a constant value of the Laue–Bragg–Wulff parameter 

lNp . This dependence is known to name the acoustic Lauegram of the surface roughness on the 
analogy of the X-Rays Lauegrams of a solid surface [1,10]. Let’s investigate the fundamental prop-
erties of the acoustic Lauegram. The results and designations of [18] are used for this investigation 
of the present work. The frequency spectrum of scattering contains the resonances of scattering in a 
general case, but there is not such general case for the Lauegram of scattering. The question about 
the presence of resonances in the Lauegram is considered by the conception of the Ewald sphere of 
reflection [3]. The Lauegram contains resonances of scattering if and only if it contains the nodes of 
the reciprocal lattice in the space of the transmitted wave-vectors q , corresponding to the scattering 
lattice and to the conditions of resonances of scattering ((18–21) in [18]). But this conception and 
result [3] does not consider and solve the analytical problem about the number of such resonances 
and angles of scattering, corresponding to them. For the cylindrical scattered Rayleigh wave the 
sphere of reflection becomes the Ewald circle of reflection (Fig. 1). Let us consider and solve the 
next analytical problem: what is the radius  kR of the Ewald circle of reflection, i.e. the frequency 
of the incident wave, containing arbitrary number, defined beforehand, of resonances for arbitrary 
angles of scattering  φs, defined beforehand? 
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Let’s investigate this problem in the case without influence of the longitudinal lattice ampli-
tude form-factor, accounting only the presence of the two transverse edges of the lattice (1), 
[18], violating the classical Laue–Bragg–Wulff law of scattering [18]; and consider the role of the 
amplitude form-factors of the longitudinal and transverse lattices in the formation of the acoustic 
Lauegram of scattering.

Solution of the problem

Let us consider analytical solution of the stated problem.

 The main scattering phase equations on the Ewald circle of reflection

The physical elastic process of the Rayleigh wave scattering corresponds to the circle of the 
radius  kR in the space of the wave-vectors. Different points on this circle gives the angles of scat-
tering φs. The φs = 0 is the direction of propagation of the incident wave. This circle, constructed 
in the two-dimensional space of the reciprocal lattice ((18) in [18]), is the Ewald circle of reflec-
tion (Fig. 1), [3]. The condition, that the node of the reciprocal lattice ( ) ( )1 2,rq n n

 ((18) in [18]) 
lies on the Ewald circle of reflection (Fig. 1), having the radius kR = pNl

/(L1/Nl) , gives the next 
main scattering phase equations, connecting the Laue–Bragg–Wulff parameter 

lNp  of the given 
physical process of scattering and the numbers (n1,n2), defining the node of the reciprocal lattice, 
lying on the Ewald circle of reflection of this process, and consequently the phase of the angular 
spectrum of scattering, i.e. of the acoustic Lauegram of scattering, 

( ) ( )

( )
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where ( ) ( ) ( )2 2
1 2 1 21, 2, ;  1 / 2, 0, 1, 2, ;  / / 4L

ln n m L N L  =   …   = −     …   = , ml is given by (22) in [18]. 
The second equation of (2) gives the angle of scattering for the resonance (n1,n2) ((18—21) in 
[18]). Since the system (2) connects integer numbers  n1 and 2n2 + 1, let us consider the next 
approximation of the real values pNl

/π and the form parameter m(L) by means of the rational num-
bers, which are the ratio of any two natural, i.e., positive integer, numbers 

Fig. 1. Ewald circle of reflection. ( )
1

rq , ( )
2
rq  ((18—21) in [18]) are the coordinates of the nodes  

of the reciprocal lattice in the space (q1,q2). n
(E) nodes of the reciprocal lattice lie on the Ewald circle, 

if the angle of scattering 0 < φs < π. The same amount of the resonance reciprocal lattice nodes, lying 
on the Ewald circle for the π < φs < 2π, have positions symmetrical with respect to the q1-axis
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( )
2

5 7
1 5 32

6 8
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π

(3)

where 3 5 6 7 8, , , , ,C n m m m m      are natural numbers; ( )1 /
lN R lp k L N =  is a positive real number. 

Representation (3) gives the next final system of equations, connecting sought natural numbers 
3 2, ,  2 1C n n  +  with each other and with the angle of scattering φs, instead of the system (2)
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where C, n3 are natural numbers, (2n2 + 1) is non-negative integer.

One possible schema of the solution

One possible schema of the (4) solution can have the next form

( ) ( ) ( )
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where ( ) ( )1 2,m mV V   are arbitrary natural numbers, ( )1, 2, , ;Em n=   …  

( ) ( ) ( )
( )

22 21 2 2 2 2
8 5 2

.

2 1 ,
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m m m

E

V V m m n

m n

χ = +

=   …  
(6)

It follows from (6), that ( )1
mV , ( )2

mV , where ( )1, 2, , Em n=   …  , are arbitrary odd natural numbers. 
Arbitrary natural number n(E) shows how many nodes of reciprocal lattice lie on the Ewald circle 
of reflection.

Results and Discussion

The Ewald circle of reflection in a frame of the Laue–Bragg–Wulff laws of scattering 
It follows from the system of equations (5), that sought natural number C is the least common 

multiple (lcm) of the next natural numbers

( ) ( ){ }
( )

2 21 22 2
7 6lcm ,

1 .,2, ,

m m

E

C V m m V

m n

= +
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The next relations follow from the (4–6)
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It follows from (4), (8) that the angles of scattering φ(m)
s , where m = 1, 2,..., n(E), corresponding 

to the two nodes of the reciprocal lattice under number m, have the next form

( ) ( )

( )
( )

1

6 72tan ,   1, 2, ,
2

m
Es m

m

V m m m n
V

ϕ
= ±   =   …  (9)

It follows from the solution (9), that predefining of the pairs of arbitrary odd natural numbers 
( )1

mV , ( )2
mV  means predefining of the arbitrary angles of scattering φ(m)

s , where m = 1, 2,..., n(E), 
corresponding to the full resonances of scattering ((18–21) in [18]), lying on the Ewald circle of 
reflection (Fig. 1), having the next sought radius ( ) ( )5 6 1/ / /R lk m m C L N = π .

The new topological laws of scattering and the Ewald circle of reflection

The new topological laws of scattering [16—18] include first the amplitude form-factor of the 
discontinuities lattices ((11) in [18]) into the theory of scattering on the basis of the first princi-
ples of the dynamical theory of elasticity. Let us consider the influence of the lattice amplitude 
form-factor on the presence of the resonances of scattering, i.e. nodes of the reciprocal lattice, on 
the Ewald circle of reflection (Fig. 1), [3]. For the Rayleigh wave scattering on the rectangle peri-
odic lattice of discontinuities (1), ((1) in [18]) with f1(x1)f2(x2) instead of f1(x1), having ( )1

lN  and 
( )2
lN  unit cells along the x1- and x2- axes respectively, bounded by the discontinuities, located at 

the next points ( ) ( )
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the indicatrix of scattering has the next form analogically to ((10) in [18])

( ) ( ) ( )
( )

( )( ) ( )
( )( )

( ) ( ) ( ) ( ) ( ) ( )
( )( )

( )( ) ( )( )
( )( )

2

1

1

2

25 24
2 2 1 1,2 3

||, 3 4 2 2 2 122

2 2 2 21 2
1 2

2 1 2 11 2
1 1 2 2

3/21

/
8

1 cos cos
 ,

/ /

l

d d

d d

NR R
n n

t
l l

s s

n n

l l

p L L A xcI
c R N N

J q J q

q L N q L N

 
 +

+

−

+

 
β ×

π

− ϕ γ + ϕ
×

=

 

(11)

where

( ) ( ) ( )
( )

( )
( )

( )
( )

( ) ( )

( ) ( )
( )

( ) ( )
( )

( )

1,2

1,2

1,2
1,2

1,2

21,2 1,2 1,2 1,2
1,2 0 1,2 1,21

11,2 1,2 1,2
1

1,2

1,2
1,2 1,2 1,2

1,21,2

0

0

,

.

2 cos ,

|

l

l

d
d

d

N
nn

l

N n
n m m nm

mn
n

m n

m

l

l

L
J q F F q n

N

F F F

dF L f x
d x

 
=

+ −

+=

 

−
 

 
+

 
= +  

 

=

 
 =  
   

∑

∑

  



(12)

( )1,2
mF  are dimensionless amplitude form-factors of the longitudinal and transverse lattices, i.e. 

lattices, arranged along the x1,2-axes respectively. 
Let us the amplitude form-factors (12) of the lattice have the next form
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Then the conditions of the full resonances of scattering have the next form [16, 17]
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It follows from the (14), that the reciprocal resonance lattice with account of the lattice ampli-
tude form-factor (12), (13), i.e. in the frame of the new topological laws (11), [16]-[18], has the 
next form

( )
( )( ) ( )( )

( )( ) ( )( ) ( )( )
( )( )1 1 2 2

1 2

2 2
1 2

1 1 1 2 2 2 ,2 2/ /l l l lN N N Nr
i iq a n a a a n a a   = − π ± ± π   

   
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 (15)

where 1,2 1,  2, ;n =   …  ( )
1,2

1,20 2ia
 

≤ ≤ π , ( )
1,2 1,21, 2, , ai n=   …  ; all the "±" are independent in the (15), 

but ( )
1 0rq <  (Fig. 1), ((18), (19) in [18]). The conditions (14) are the system of the linear alge-

braic equations with respect to the unknowns ( )
1,2

1,2
ia  (13), defining the amplitude form-factors of 

the lattice (12), (13). 
The radius of the Ewald circle of reflection kR and the resonance angles of scattering φs are the 

parameters of this system. It means that arbitrary number of the resonances of scattering (14), 
(15) can be placed on the Ewald circle of reflection, i.e. on the acoustic Lauegram of scattering, 
without increasing of its radius, i.e. the frequency of the Rayleigh wave at fixed sizes of the lattice, 
contrary to the case (7–10), when the amplitude form-factor of the longitudinal lattice does not 
influence the scattering, and one of the transverse lattice violates ((18), (21) in [18]) the Laue–
Bragg–Wulff law of scattering [1, 2].

Conclusion

The fundamental properties of the acoustic Lauegram of scattering are obtained in the frame of the 
new topological laws of scattering [16–18]. These results can be used in the physical research: from the 
solid state physics up to investigations on the X-Ray and acoustic microscopy materials imaging, and 
in acoustoelectronic technologies and physics of the acoustic metamaterials [10–13].
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