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Abstract. Multi-mode dynamics with Zitterbewegung of an electron in 2D Dirac crystal placed in
the field of monochromatic radiation is studied. For calculations, a model Hamiltonian taking into
account two independent Dirac points has been used. Calculations have shown that the spectrum
of electron oscillations contains a series of new (compared to the usual Zitterbewegung) frequencies.
The latter, in the case of a high radiation frequency, are a combination of the Zitterbewegung
frequency and frequencies that are multiples of the field frequency. In the case when the field
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component of the electron velocity in the field of monochromatic radiation is also discussed.
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Annoranuga. McciremoBana MHOTOMOIOBas TMHaAMKKa 3JIEKTPOHA ¢ yuyeToM Zitterbewegung’a
B IBYMEPHOM IMPAKOBCKOM KpHUCTayJIe, ITOMEIICHHOM B TIIOJIé MOHOXPOMATUYECKOTO
n3nrydeHus. JJIsT pacueToB MCIIOJB30BAJICSI MOIEJIBHBIM TaMUJIBTOHUWAH, YUWTHIBAIOIINI IBE
He3aBUCcUMBbIe TOuKM Jlupaka. PacueThl moka3saju, 4To CIIEKTp KOJIeOaHU 3JIEKTPOHA COIEPXKUT
psii HOBBIX (IO CpaBHEHHUIO ¢ OOBIYHBIM Zitterbewegung’om) yactoT. IlocnenHue, B ciayyae
BBICOKOI YaCTOThI U3JTy4eHUsI, MPEACTABISIOT COO0 KOMOMHALIMIO YacTOThl Zitterbewegung’a
M YacTOT, KpaTHBIX YacToTe ToJjsl. B ciyyae, Korma yacToTa ITOJIsS CpaBHMMa C YacTOTOM
Zitterbewegung’a, CIIeKTp KoJIeOaHMIT 2JIEKTPOHA OIIpeneIsieTcs aMIInTynoi mojs. [TokaszaHo,
YTO XapaKTep 3TOH 3aBUCUMOCTH MEHSIETCS IPU M3MCHEHWU HAIIPaBJICHUS TOJISIPU3ALINU
usnydyeHusi. OOCyXIaeTcss TakKe BO3MOXHOCTb ITOSIBJICHUMSI IOCTOSIHHOM COCTaBJISIOLIEH
CKOPOCTH 3JICKTPOHA B I0JIE MOHOXPOMATUYECKOTO M3JIy4yeHUs.
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Introduction

The discovery of new types of 2D crystals constituting the group of so-called Dirac materials
(graphene, germanene, silicene, etc.), as well as the study of their electrodynamics properties,
determined essentially the development of that part of the physics of solid-state structures that
stands at the junction of the condensed matter theory and high energy physics. The point is that
the relativistic form of the equations for electron states in 2D hexagonal lattices makes graphene-
like materials a convenient platform to study the effects of quantum electrodynamics [1, 2]. The
uniqueness of the above materials is explained by the presence of the components relating the
momentum of the charge carrier to its pseudospin degree of freedom in the quantum equation.
Examples of manifestation of such a relation are topological phase transitions [3—5], transitions
of “semi-metal—band insulator” [4, 6, 7] and “Dirac—semi-Dirac material” [8,9] types, as well
as the Zitterbewegung (ZB) — fast oscillations of the velocity of free (pseudo)relativistic electron
due to the interference of the states with positive and negative energies.

Previously the possibility of electron ZB had been shown theoretically for Dirac crystals
[10, 11], for solid state with Rashba/Dresselhaus spin-orbit coupling and the Zeeman splitting
[12], and for strained III-V semiconductors [13,14] as well. However for vacuum the experi-
mental realization of ZB is very difficult due to the high frequency (HF) of the corresponding
electron oscillations (~10?' Hz). The advantage of above solid state structures over the vacuum is
a much lower magnitude of ZB frequency, which greatly facilitates its experimental detection in
these materials [12,14—16]. In [14] the coherent electron ZB had been shown experimentally to
be triggered by initializing an ensemble of electrons in the same spin states. It had been probed
in strained n-InGaAs as an ac-current at GHz frequencies. In [17, 18] a computer simulation of
the damping of ZB oscillations for a wave packet of the Gaussian profile predicted theoretically in
[11] had been performed. It should be noted that the study of ZB in Dirac crystals is also of prac-
tical importance. So in [19] a path for creating a nanoresonator based on a system of oscillatory
circuits that exhibited the properties of an active load if external signal frequencies exceeded the
ZB frequency had been outlined. In [20] similar systems had been used in microcircuits, which
made it possible to simulate such relativistic quantum effects as the Klein paradox and ZB.

Presently, the problem of controlling the electron ZB in Dirac materials by means of external
fields has become topical [21—23]. The possibility of ZB stabilization by a quantizing magnetic field
had been shown in [24, 25]. The combination effect from simultaneous allowance of ZB in Dirac
structures and an external HF electromagnetic (EM) field had been investigated in [21, 26, 27].

In [27] the so-called multi-mode ZB (electron oscillations induced by an HF electric field)
had been studied for free graphene. The spectrum of such oscillations contained new frequencies
equal to combinations of the monochromatic field frequency and the ZB frequency. However,
the calculations in [27] had not been performed for arbitrary electron momenta: the momentum
along the polarization line had been assumed zero. This does not correspond to the real situa-
tion, in which the momenta of charge carriers obey 2D statistics. Moreover, in some cases the
ac-field amplitude had been assumed sufficiently small. It had allowed solving the equations of
motion in the approximation linear in the ac-field amplitude. As a result, the multi-mode ZB
spectrum contained only two new frequencies (besides ZB frequency). Below both the rotating
wave approximation (RWA) and the approximation of high driving frequency (HDF) are used
for calculations as in [27]. However, in contrast to [27] analytical calculations are performed for
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arbitrary ac-field amplitudes and in the case of using HDF for arbitrary electron momenta. For
intensive fields the spectrum of the multi-mode ZB is shown to contain a series of new (compared
to conventional ZB) frequencies, which are the combination of the ZB frequency and frequencies
that are multiples of the pump field frequency. Among other things, the result is generalized to
the case of a Hamiltonian model describing two independent Dirac points [8].

Effect of velocity rectification in monochromatic field

Let 2D Dirac crystal associated with xy-plane is subjected by the monochromatic EM radi-
ation so that electric field oscillates along Ox axis. Spinor y describing the electron state in this
case obeys

i%—\:f =(Q6, +9,8, )y +ev, 4(1)5,v, (1)

where ¢ _are Pauli matrices, A(7) is vector potential of ac field, Q =v_p , the form of the term Q,
is determined by the crystal model For the conical model, for 1nstance one has Q, =vD,. Further
we use the model of 2D crystal with displaced Dirac points [8]:

Q=L 4, 2

and A > 0. We note that the change in the sign of the parameter A leads to the transition between
semi-metal and band insulator states. In the latter case, the crystal will be of semi-Dirac type.
The time dependence of ac-field is assumed to be harmonic: A(7) = (£ /w) cos (of + ¢,). Here
E, is amplitude of the electric field intensity, o is its frequency and o, is its initial phase. Electron
ZB is shown below modifies the spectrum of electron velocity oscillations in the monochromatic
ac-field. To investigate this modification the initial state in p-representation is assumed to be
given by a delta-like wave function: y, = 3(p — p')x,, where y, is eigenspinor of the matrix c
[27]: x,= (1 0)". Let us note here the next peculiarity of the electron dynamics in Dirac crystals.
If Q,= 0, then Eq. (1) admits the exact analytical solution

\If(t) _ e—i(QlHaOsin(chpo))c‘yXWO’ 3)

where a, = v.eE /o’. The components of quantum mechanical average velocity of electron which
are calculated as the matrix elements v, = vy &, ly) read

v, =0,0, =~V sin Q! + 24, sin (o +¢, ) ). (4)

0.8} .
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vf
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Fig. 1. Intensity of multi-mode Zitterbewegung (v?) vs. ac-field amplitude:
Q =0(a),Q =Q,0),Q :Q=2:1(c)
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Here Q, is ZB frequency in the absence of ac-field. There can be the next situation according
to Eq. (4). If 9, # st and ZB frequency is multiples of ac-field frequency, Q,.=kw (s and k are
integers), then electron velocity acquires the stationary component which reads

<Uy>t = (=1)" J, (2a, v, sin kg, 5)

where J, (x) is Bessel function of integer order. Particularly in the case when ¢, = n/2 one can
obtain (v ) =(-1)"J,,, (24,)v,. Such a “velocity rectification” is the nonlinear effect related
with theé combination of two vibrations of electron in Dirac crystal: ZB existing in the absence of

ac-field and forced vibrations arising due to the effect of ac-field.

Multi-mode ZB in HF electric field

To analyze the behavior of electron velocity at arbitrary values of Q, it is convenient to use the
unitary transformation by means of operator

(j — eiQtévo , (6)

where we have define 6,=(Q,6, +Q,6 )/Q, Q=,Q +Q>. In [27] to study the nonlinear
dynamics of Dirac electron within the HD picture the solution of Eq. (1) had been limited by
an approximation linear in the ac-field amplitude a,. The unitary operator (6) used here differs
from that used in [27] and allows one to obtajn analytical results for arbitrary ac-field amplitudes.
Having put in Eq. (1) y=U"y, X, _(t)=U6, . U" and ¢,= 0, we arrive at

oy, . &

—/ = ~ioa, cos otz (1) (7)

Now the condition ® » Q (HDF approximation) is assumed to be performed. Then it is easy
to verify that the spinor

X(t) — e—iaosincotﬁx(t)xo (8)

is the solution of Eq. (7). Indeed, terms, which are the result of differentiation of the spinor
PN (t)xo can be neglected, because of they will contain as a multiplier the frequencies which are
much less than o. To prove it let us write the time-derivative for spinor (8) explicitly:

o —ioa,| cosmrS + lsin ot aﬁ)‘ 9)
ot ’ Y o )*

Using the definition (6) one can find that ix = inz. After substitution of latter derivative
into Eq. (9) and neglecting of the term containinf Ta/m (132 < Q << @) we arrive at Eq. (8). The
X2y | X

average quantum mechanical velocity v , =V is derived by means of spinor (8).
After some algebra one obtains

L = Lifd, sin 2Q¢, (10)
Q

X

L _ by
v

cos (2a, sinwt)sin 2Q¢ — v, sin (24, sin o ) cos 2Q¢. (11)

As expected the velocity vibrations, according to Eq. (11), are not harmonic. To analyze the
spectral composition of these vibrations, we expand the right side of Eq. (11) into a Fourier series:

_ b

y

JO(ZaO)sin2Qt+UFTQ‘iJ2n (2a,)(sin2(no - Q)¢ —sin 2(no+ Q) ) -
n=1
. (12)

—0p 3 S, (26, ) (sin (27 +1) 0+ 2Q) ¢ +sin ((2n+1) 0 —2Q)¢).

n=0
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Thus, the spectrum of electron velocity vibrations contains, as the main frequency, the ZB
frequency equal to 2Q, and additional frequencies nox2Q, where # is an integer. This type of
motion of Dirac electron in a monochromatic field has been called as multi-mode ZB in [27]. If
p.= 0 and a,« 1, then, as expected, Egs. (10) and (12) are transformed into the corresponding
formulas from [27]. The multi-mode ZB intensity is proportional to the time-averaged square of
the electron velocity {. Sn { (Sl ( [27]. Using Egs. (10) and (12), we find

2 2 Qz QZ 2 2
(V') =0} oot (2a,) +2ZJ (2a,) +Z 2 . (2a) |- (13)

n=1 =

The dependence of (v?) on the dimensionless amplitude of ac-field a, plotted by Eq. (13) is
shown in Fig. 1 for different Values of Q and Q,. If Q,= 0 then (v?) does not depend on the
amplitude g, and is equal to UF /2.

Rabi frequency

In this section as in [27] we put p = 0. However the model (2) is used here instead of conical
model of Hamiltonian. RWA allows us to find the solution of Eq. (1) in the case 21| - offo.
The components oscillating with frequency 2|Q | + o are neglected within RWA. In this situation
spectrum of vibrations will still contain three frequencies: Q,, Q. £ o, where Q_ is so called Rabi
frequency, which reads

Q, =\/(2|Qz|—w)2+u§p§. (14)

Here p, = eE/o. Rabi frequency is seen from (14) to be determined by three structure
parameters v, m and A instead one parameter v, as it was in conical model [27]. In addition the
anisotropy of the Hamiltonian model [8] which takes into account two Dirac points leads to the
fact that the character of the dependence of the Rabi frequency on the amplitude of ac-field will
be determined by the direction of the polarization of this field in the 2D crystal plane. Now we
make sure of this clearly. To do this we change the direction of the field polarization so that it
oscillates along the Oy axis. Then instead of Eq. (1) one should write

ia_wzglarw+f)26y\y+m B cos 20t + 22 cos ot 6.V, (15)
ot “ 4mw mo

where we deﬁne Q, =Q, + p2 / 4m. Further we put Q, =0. The latter can be reached if A > 0
and eE, <2ovm Then after transformations by means of operator S = ™% we arrive at

Z—f-—zm(al cos of +a, cos 20t ) Z x. (16)

Here 2 =56 5%, a,=+q,p,/ mo, a, = p; / 4mo, g, =+2mA—p; /2. To solve Eq. (16)

we use RWA, which can be applied in two cases: (a) [2|Q |-0| < @ or (b) 2|Q | - 0| < ®. In the
case (a), we leave in Eq. (16) only terms oscillates with a frequency 21Q) - . As a result we have

(a1 cos ot +a, cos 203t)é ~ (al /2) POl g So instead of Eq. (16) one obtains
oy, iowt1 120 o), A
—=——0e """ G . 17
ot 2 X (17
After some transformations we write

o’y . Oy oa

——i(2|Q|-0)6, L +—Ly=0. (18)

o Rl o)e T T
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—(i/2)( 02|+ )16

Particularsolutions of Eq. (18) have the form . (¢)=e

QR:\/(2|QI|—0))2+2AP§ (1— i ] (19)

*%,» where Rabi frequency reads

m dmA

In the case 2||Q | - o| < o only terms oscillates with a frequency 2(/Q | - ) should be leaved in
Eq. (16). After similar transformations, one obtains for the Rabi frequency the expression

4
Q, = \/4(|Ql|_@)2 +ﬁ (20)

The dependence of Rabi frequency on amplitude p, = eE/w is seen from Egs. (14), (19) and
(20), to be different for different polarizations of ac-field. It is explained by the anisotropy of the
spectrum of 2D Dirac crystal with the Hamiltonian [8].

Conclusion

We have considered the nonlinear dynamics of an electron in 2D Dirac crystal placed in AC
electric field of monochromatic radiation with frequency . In contrast to [27] the model of
Hamiltonian [8] used in the above calculations has taken into account the presence of two inde-
pendent Dirac points and has been characterized by significant anisotropy. Taking into account
ZB (oscillations of free Dirac electron) has led to the modification of the spectrum of nonlinear
oscillations of an electron in the external ac-field. In HDF approximation, when the external
field frequency is much higher than the ZB frequency Q,,, this spectrum contains combinations
not2Q, . (nis an integer). It should be mentioned that the multi-mode dynamics of Dirac elec-
tron in monochromatic field had been studied earlier in [27], where three frequencies in the spec-
trum of electron oscillations had been predicted within HDF approximation: Q,, and 02Q, ..
However, stated in [27] theory had been limited by both 1D motion of an electron and linear
approximation of the amplitude of AC field. Here in contrast to [27] we have studied the case of
arbitrary directions of the quasi-momentum and arbitrary amplitudes of HF radiation. As a result,
the functional dependence of the multi-mode ZB intensity on the amplitude of ac-field g, has
been derived (Fig. 1). Moreover, Eq. (12) allows analytical calculation of dependence of arbitrary
n-harmonics of multimode ZB on a,.

The spectrum of electron oscillations obtained within RWA, when the frequency of the exter-
nal ac-field is comparable with ZB frequency, contains, as in [27], three frequencies: Q,, Q, + ®
(Q, is Rabi frequency). However, in contrast to [27], the dependence of Q, on the amplitude of
EM radiation is determined by the direction of its polarization (see Egs. (14), (19) and (20)). The
latter is related to the anisotropy of the Hamiltonian [8] used in the calculations. At the end, we
point out the possibility of the appearance of a constant term of electron velocity in 2D Dirac
crystal in the field of monochromatic radiation. To this end, it is necessary that ZB frequency
be a multiple of the frequency of ac-field. Moreover, according to Eq. (5), the value of such a
“rectified” velocity is determined by the amplitude of this field.
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