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Abstract. Stability of steady states of a planar geometry diode with counter flows of electrons
and positrons is studied. The study is related to the elucidation of pulsar RF radiation nature.
The equation for the electric field perturbation is derived. Its exact solution is obtained for
the case of a homogencous steady-state field. The study of the dispersion equation obtained
has shown that there is a threshold for the inter-electrode gap value, above which steady-state
solutions are unstable. The instability threshold turned out to be V2 times higher than the
known Pierce threshold._
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YCTOMYUBOCTb CTALLMOHAPHbIX COCTOSSHMM NMJIa3MEHHOro guoaa
CO BCTPEUHbIMM NyYKaM¥u 3JIEKTPOHOB U NO3UTPOHOB

B.N. Ky3HeuoB'®, JI1.A. bakanenHukos', E.}O. ®nerontosa’

L OU3MKO-TEXHNYECKUI MHCTUTYT UM. A.®. Nodde PAH, CaHkT-MeTepbypr, Poccus
® victor.kuznetsov@mail.ioffe.ru

AnHoranusa. VccienoBaHa yCTOMUMBOCTD CTALIMOHAPHBIX COCTOSIHUI IJIOCKOTO BAKYYMHOTO
IMOJa CO BCTPEYHBIMM ITyYKaMHU 3JIEKTPOHOB M TO3MTPOHOB. McciemoBaHuWe CBsSI3aHO C
BBISICHEHHEM TIPUPOIBI paIMOU3IydeHUs ITyiabcapoB. IlojlydeHO ypaBHEHUE, OIMCHIBAIOIICE
9BOJTIOIIAIO MAJIOTO BO3MYIIIEHUS DJIEKTPUIECKOTO TTOJIs1. B ciyyae oMHOPOIHOTO CTallMOHAPHOTO
2JIEKTPUYECKOIO II0JISI HaliIeHO ero aHajJuTU4yecKoe peleHue. McciaegoBaHue MOJIyYeHHOIO
MHUCIIEPCUOHHOIO YPaBHEHMSI 10Ka3aj10, YTO CYILIECTBYET IOPOT 110 JUIMHE BaKYyMHOIO 3a30pa,
BBIILIE KOTOPOTO CTAallMOHAPHBIE COCTOSIHUSI HEYCTOMYMBBI. I1OpOr yCTOMYMBOCTH OKa3ajcs B
\2 pa3 Bblllle U3BECTHOrO ropora Iupca.

KnaioueBble cioBa: Mjia3MeHHBIM IMOMA, MOTOKU 3JEKTPOHOB W TMO3UTPOHOB, IJIa3MEHHas
HEYCTOMYUBOCTD_
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Introduction

Since the discovery of pulsars in 1967, the understanding of the physical processes responsible
for their RF radiation has not advanced much compared to the classical works [1, 2]. Neither the
mechanism of this radiation nor the reason for switching between modes have been understood
so far. It is only in recent years that astrophysicists have come to understanding that the radiation
is associated with collective processes in plasma formed by electrons and positrons in a pulsar
diode [3]. In this case, it can be argued that the RF radiation of pulsars is caused by electric field
oscillations that occur during the development of instability in the plasma. It is like the Bursian-
Pierce instability that is characteristic of diodes with collisionless plasma [4].

Steady-state solutions for a planar geometry diode with counter flows of charged particles of
opposite signs moving in plasma without collisions were studied in detail in [5]. It was shown that
there are two modes: 1) all charged particles move in the inter-electrode gap without reflection
and reach the opposite electrodes, 2) the potential distribution has extrema reflecting the portion
of the particles. The paper examines the stability of steady-state solutions of the first type. The
equation for the electric field perturbation is derived. Its analytical solution is found for the case
of a homogeneous steady-state field. The study of dispersion relation has shown that there is a
threshold for the gap value, when exceeded, an aperiodic instability develops in the diode plasma.

Derivation of equations

We consider a diode of planar geometry. We assume that electrons enter the plasma from the
left electrode with a non-relativistic velocity v, and density »_ , and positrons enter from the right
electrode with a non-relativistic velocity —v (;and density ”,20- Charged particles move without
collisions, and when reaching the electrode tﬁey are absorbed. We assume that electrons and posi-
trons enter into inter-electrode gap with the same kinetic energies, i.e., W, =m, vj,o / 2=m B vf)’o / 2
(here m,and m,are the masses of the electron and positron).

For the convenience, we turn to dimensionless quantities, choosing the electron energy at
the left boundary W, and the Debye-Hiickel length A = [2¢,W,/(e’n, )]/ as units of energy and
length (here e is the electron charge, and g is the vacuum permeability).

For the density of electrons entering from the left electrode and moving without reflection in
a time-dependent field, the following expression is obtained in Ref. [6]

e,0°

n (%) =| (1+2n+2G,m) " -0, | - M
Here
: _ [0
G (LT, ,T,,) = j di—n(G.0)
0,6 tu,,,1,0) = (2)

d
dfe,o

€ [Q(t FT,0)U0>Teg

u, 0 =const

T-Tep
=— [ di(r—,,-1)
0
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For the density of positively charged particles entering from the right electrode and moving
without reflection in a time-dependent field, an expression similar to Eq. (1) is obtained in Ref. [7]

-1
1/2
n,(m,7) = {Hl -2(m-V)+2G,m)]| - } : 3)
Here
. f a
Gy (& Tt 0,T,0) = [ dt=(G,0),
0,6 Tu,0,T,,) = 4)
~ —T,0 d d .
= '[ H(t—71,,—1) I S[Z;(t +T,0)5U,05T,0 ]um:wm .
0 p.0 ’

In Egs. (1-4), 1, ¢, T] and ¢ are dimensionless time, coordinate, potential and electric field
strength, while t 0> Yoo T ,and u,,are the time moments and ve1001t1es of the departure of elec-
trons and p051tr0ns from the correspondmg electrodes. Note that in Egs. (1) and (3), the value of
G is equal to the amount of energy that a charged particle acquires (G > 0) or loses (G < 0) when
moving in a time-dependent field, and the function Q characterizes the additional (compared to
motion in a stationary field) compression (or extension) experienced by a group of particles that
have left the boundary with velocities within a narrow range.

The potential distribution (PD) at each moment t is found as a solution of the second order
equation, which is obtained after substituting expressions for the densities of electrons (1) and
positrons (3) into Poisson’s equation

2

dm 1/2 -l
Gz L an26.m)" -om | -

1/2 -! ©)
_{[1 —2(n-V)+ 2G, (n)] +0, (Tl)}

Studying the stability features of solutions, we consider small perturbations of PD in the form

n(G, 1) =My (6) +1(C) exp(-i€20),
[(C) << My ().

In this case, we can assume that G, (£, 1) = GEI(Q) exp(-iQr), 0,,(6,1) =0, (C)exp(-iQ),
and both of these functions are quantltles of the order of 7 [6], [7]. Expanding both parts of Eq.
(5) in a power series in small potential perturbation amplitude and taking into account the linear
terms only, we get

(6)

'(8) == (O AE) +G(©) [+ (©)0.(6) -

e ) (7)
1,5 (O (6~ G,(©) |+1,4,(©)0, ().

In Eq. (7),

u, () =[1+2n,(0)]",
u,, (&) =[1-2n,)+2r]"

are the undisturbed velocities of electrons and positrons corresponding to the monoenergetic par-
ticle velocity distributions. The following expressions are obtained for the functions G,, Q,, G

. e e p
and Qp in Refs. [8] and [7]:
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G.(§) =—A(Q) + [ dxiY (x)exp{iCo, (&)~ 5, (1)1},

~ & X
0, () ==iQu, () [ dx[u,, ()" [ dyiY (»)exp{iQc,(§) -5, (]}

G, =R)+ idxﬁ'(x)exp {iQs,(0) -0, ()]}, "
0,(0)= iQu,,,()(c)i dx{u, o (x)]” j dyf (x)exp|iQfc,(§) -0, ()]}
Here
0,(0)= [} dxlu, ()", 0,0 = [ dxfu, o ()T (10)

are times of electron and positron flight from the corresponding electrode to the point { in an
undisturbed field.

After substituting (9) into (7), we obtain an integral-differential equation for an amplitude of
the potential perturbation, which, after a single integration using the boundary condition for the
potential perturbation at the right boundary 1(8) =0 takes the following form:

Q X
A(6)+ [ dxfu, (0] [ dyi (»exp{iQo, (&)~ o, (]} +
s s (1)
+[dxfu, (0T [ dyexp{iQfc, (§) o, (M (») = 4.
¢ x

Here

A=H(®)+ [ dxfu, ()] [ dyexp {iQ[c,(8) -, (), (12)

and the value of the derivative 7)'(8) is an arbitrary parameter.
Thus, we have obtained for the first time an equation for the amplitude of the electric field
perturbation in a diode with counter flows of electrons and positrons.

Study of homogeneous steady-state solutions stability

Consider the special case of n(¢) = 0. Here u, ({) = 1, u, o(0) = 1 (the latter is the velocity
absolute value), ¢ () = C, cp(c) = § — (. After making simple calculations and getting rid of 2-fold
integrals, for the Eq. (11) we get

4 5
Q)+ [ dxK (G =) ()= [dxK (L= 0)F(x) = 4. (13)
0 ¢
Here
A=7()+ j dxK,(5—x)7(x), K, () = texp(+iQt). (14)

Eq. 13 is an integral equation of the convolution type. It is solved using the Laplace transform.
For the image f{p) of the function 1'(§) we get the following expression:
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F(p) [(p+iQ) p+iQ p 0s)
& & A 2g1(]92—Qz)+2g2(p2—Q2)_2A(p2—Q2).
(p+iQ)° p+iQ p (p+iQYP(p) (p+iVP(p)  pP(p)
Here
P(p)=(p*+Q*) +2(p*-@?),
(" +07) +2(p* - o

8 ~1 8 . ~1
g = [/ dxexp(iQ)T(x). g, = [ dxxexp(iQ)7 ().
and it is taken into account that the image of K, kernels look like k,(p)=(p FiQ)~. The poly-

nomial P,(p) has 4 roots:
1/2
o =i[—(92+1)i\/492+1} L i=1,...,4. (17)

The function 7'({) is found by the inverse Laplace transform using (15—17):

(@) @) o ‘, (0, ~iQ)" exp(e,§)
ne)= p (liH(OLi—OLJ) +H(—0Li) +,Z=1: H(OL,»—OLJ-) &

(18)
4 (o, —iQ) (o, +i€2) exp(a,C)

1% ey -

i#]

It can be seen from Eq. 18 that the function 7)'({) depends on three values: A, g, and g,. They,
in turn, depend on this function and are the solution of the system of linear equations obtained
after substitution of Eq. (18) to Egs. (14) and (16).

(I_Bl,l)'A_Bl,z "8 _Bl,3 -2, =7M'(9),
Bz,l 'A+(Bz,2_1)'g1+82,3'g2 =0, (19)
B3,1 'A+B3,2 & +(B3,3 -1)-g,=0.

Here the coefficients B, depend on the roots o, and the values Q and 5. We do not write them
out explicitly because of their cumbersomeness. The solution of the system (19) has the form:

A=Z27®), g ="LAE), g ="2T0) (0)
Here
AA = (Bz,z - 1)(33,3 - 1) - Bz,3 B3,2 >
A, =B, ,(B,,~1)~B,,B,,], A, = B,,B,, - By,(B,, - 1),
1-B, -B, -B, 1)
A= B, B,-1 B,

B3,1 B3,2 B3,3 -1
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Substituting (20) into (18), we find the function 7{'({) . After integrating the resulting expres-
sion over ¢ from 0 to § and taking into account 1(0) =0, we obtain the dispersion equation

]| (0 +9°) Texp@d) -1 o' (o, — Q) [exp(o,8)—1
A ; aiH(ai—ocj +1_[( ;) At ,le (xH(oc -a;) A=

(22)
o, — iQ)2 (o, +iQ)[exp(a,8) —1]

ANl
; aiH(ai_aj)

i#]

A, =0

The solutions of Eq. 22 are the dependences of the growth rate I' and the frequency o of the
eigen mode on the magnitude of the inter-electrode gap & (the so-called dispersion branches).
We have calculated and constructed some dispersion branches. In particular, several aperiodic
branches, i.e. dependencies of I'(8) at ® = 0, are shown in Fig. 1. It can be seen that they inter-
sect the axis of I = 0, i.e. solutions corresponding to the values of § with I" > 0, are unstable.
Calculations show that the growth rates of all oscillatory branches lie below the T = 0 axis, i.e.,
all oscillatory perturbations are stable.

. Y -

~————

Fig. 1. Dependence of the growth rate on the inter-electrode distance
for the first two aperiodic branches

We found the exact § values relevant to the points where the growth rate vanishes. For this
purpose, the roots a,, as well as the values A, A, A, and A, at I << 1, ® = 0 were calculated. As
a result, the dispersion Eq. (22) was reduced to the form

tan (8/+/2) = 0. (23)

The roots of this equation are §, = \2nk, k =1, 2, 3,.... The threshold of solution stability with
respect to small aperiodic disturbances corresponds to the minimum value of £ and is equal to

d =2, (24)

This value turned out to be \/5 times greater than the Pierce threshold. It should be noted
that in the Pierce diode, during the development of the disturbance, positively charged particles
(ions) are considered immovable. On the other hand, in a diode with counter flows of electrons
and positrons, where the masses of positively and negatively charged particles are the same, all
particles take part in the process of instability development. This leads to the fact that the insta-
bility threshold of such a diode differs from the Pierce one.
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Conclusion

The stability features of steady-state solutions in a diode with counter flows of electrons and
positrons in the mode when all charged particles reach the opposite electrode is studied. The
equation for the electric field perturbation evolution is derived. For a steady-state solution with
a homogeneous field distribution, its analytical solution is found and the dispersion equation
is obtained. Solutions of this equation show that there is a threshold for the gap value, when
exceeded, an aperiodic instability develops in the diode plasma.

Thus, we have taken the first step towards elucidating the nature of pulsar RF radiation.
Further, it is necessary to study the stability features of inhomogeneous steady-state solutions, as
well as solutions that have extremes on the potential distribution that reflect a portion of the flow
of charged particles. After that, numerical calculations need to be carried out to understand in
which states the process of instability development ends. This will allow us to determine the fre-
quencies of the electric field oscillations in the electron-positron plasma, which may be associated
with the RF radiation of pulsars.
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