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Abstract. We present a brief overview of the main properties of electromagnetic fields of
regular rotating electrically charged objects in non-linear electrodynamics minimally coupled
to gravity (NED-GR). The basic features of electromagnetic fields follow from the analysis of
the regular solutions to the NED-GR dynamic equations. For NED-GR regular objects the
Lagrangian inevitably branches at a single minimum of the field invariant F. The study of the
asymptotic of the solutions of the field equations at » — 0 reveals the fundamental features
of the electromagnetic dynamics on the de Sitter vacuum disk (» = 0) in the deep interiors
of rotating NED-GR objects. The disk has the properties of a perfect conductor and an ideal
diamagnetic, zero magnetic induction, and is confined by a ring with a superconducting current,
which replaces the Kerr ring singularity, serves as a non-dissipative source of electromagnetic
fields of NED-GR regular objects and provides the origin of their intrinsic magnetic momenta.
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Annoranug. [lpuBegeH KpaTkuii 0030p OCHOBHBIX CBOICTB  3JE€KTPOMATHUTHBIX
MoJiell PEeryasipHbIX BpallaloIIMXCs 3JEKTPUUECKU 3apsSLKeHHBIX OOBEKTOB B HEJMHEHHON
2JIEKTPOAMHAMUKE, MUHUMaIbHO cBsi3aHHOM ¢ rpaBuTanuein (NED-GR). OcHoBHbIE 4epThbl
3JIEKTPOMArHUTHBIX IIOJIEH CJIENYIOT W3 aHajnd3a pPETYISIPHBIX pelIeHUM TUHAMWYCCKUX
ypaBHeHNIT NED-GR. [aa o0wsuHBIX 00bekTOB NED-GR Jlarpamkman Heu30exXHO
pa3BETBIISICTCS B €IMHCTBEHHOM TOUKe MUHUMYyMa MHBapraHTa rmoiist F. MU3yuyeHne acuMIITOTHUKYA
pellieHuii ypaBHEHUI IOJISI MpU F, CTPEMSIIEMCSI K HYJIIO, PacKpbIBaeT OCHOBHBIE UYEPTHI
9JICKTPOMAarHUTHOM AMHAMMKU Ha BakKyyMHOM aucke ae Currepa (r = 0) B r1yObOKMX Heapax
Bpawatomuxcst o00bektoB NED-GR. Iuck o6iagaeT cBoilcTBaMU MAEAJbHOTO TMPOBOJHUKA
W UAcaJbHOTO AUWaMarHeTWKa ¢ HYJEeBOW MAarHUTHOM WHIYKUIHWEH M OTpaHWYEH KOJIBIIOM CO
CBEPXIIPOBOMSIIIMM TOKOM, 3aMEHSIOIIMM CHHTYISIPHOCTh Koiblia Keppa, m, Kpome TOTO,
CITY>KUT HEAUCCUTIATUBHBIM NCTOYHUKOM 3JICKTPOMATHUTHBIX TTOJICH IJISI PETYISIPHBIX 00BEKTOB
NED-GR u o6ecneunBaeT BOBHUKHOBEHHUE MX COOCTBEHHBIX MAarHUTHBIX MOMEHTOB.
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Introduction

Electrically charged objects related by electromagnetic and gravitational interactions are
described in general setting by nonlinear electrodynamics coupled to gravity (NED-GR).
Nonlinear electrodynamics (NED) was proposed by Born and Infeld in 1934 with the aim to
describe electromagnetic field and particles in the unique common frame which provides finite
values for physical quantities, and presents an appropriate model of the electron [1]. In their
theory electromagnetic energy has made finite by imposing an upper limit on the electric field
related to the electron size, but geometrical quantities remained singular.

The Born-Infeld program can be realized in the frame essentially including gravity. Source-free
NED-GR equations admit the class of regular axially symmetric solutions asymptotically Kerr-
Newman for a distant observer [2—4], which describe not only electromagnetic spinning solitons
[5] (for a review see [6]) but also regular rotating electrically charged black holes.

Axially symmetric metrics are typically obtained from the spherical metrics of the Kerr—Schild
class [7] by applying the Giirses—Giirsey formalism [8]. For this class of metrics the source terms
have the algebraic structure [5]

=T (p, =—p). (1)
In the Boyer—Lindquist coordinates the axially symmetric metric reads [8]
2f-% )y 4af sin®
s =2/ =2 g +Zdr2 +3d0? — 34 S0 e
2 £q% sin? ‘ 2)
+(r2 +a’ +w) sin” 0d¢’.

Here a is the angular mo e;ntum the Lorentz signature is [- + + +], £ = r + a*cos®,
A=r+a—2f(r),and f(r)= p(x)x dx where p is the density profile of a related spherical solu-
tions. The surfaces of constant rdre the oblate confocal elhpsmds =+ y+z2—-adr—a2=0
which degenerate, for » = 0 to the equatorial disk x> + 3> < @?, z = 0 bounded by the ring
X+ y=d, z=0.

Spacetime can have at most two horizons defined by A(r) = 0, and at most two ergospheres
which are surfaces of a static limit g, = 0 [2]. Ergospheres confine ergoregions where g, < 0 which
makes possible extraction of rotational energy. Geometrical structure of a regular rotating object
with the metric (2) is determined by the weak energy condition (WEC) which requires p >0 and
p +p, > 0. The density and pressures are related by [2]

I"2 7’2 ~ r |
p(r,6)+pl(r,6) ::E[z[g—ljp(l’)—ap}_

r|p |S(r z); S(r,z)=r" _2c|1~’|

3)

P-p.)-
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The prime denotes the derivative with respect to r. In the equatorial plane /X = 1, and
(p,+p) = —rp'(r)/2. For regular spherical solutions satisfying WEC p’ <0 and rp'(r) — 0 at r — 0.
Equation of state takes the form p = —p and describes the de Sitter vacuum in the co-rotating
frame. The interior de Sitter vacuum disk is the generic feature of all regular rotating objects of
this class [5, 2].

If the function S(r,z) in (3) vanishes only on the disk » = 0, WEC is satisfied. This type of
structure is shown in Fig. 1 (Left) together with the horizons r,, r and the ergosphere. There can
exist an additional surface of the de Sitter vacuum p, + p = 0, S-surface which incorporates the
de Sitter disk as a bridge [2]. Then WEC is violated in the cavities between the S-surface and
the disk, filled with an anisotropic phantom fluid, p. = —p; p, =w,p with w, < —1 [3]. This type
of interiors is shown in Fig. 1 (Middle) for the case o < np?/8, and in Fig. 1 (Right) for the case
a > np?/8, where a = a/m is the specific angular momentum and B = g/m is the specific charge.
The parameter r denotes the characteristic radius r, = ng’/8m for the regularized Newtonian/
Coulomb profile applied for pictures [2].

— =0
ra ; prp=l

porp=0

Fig. 1. Typical structure satisfying WEC (Left), and two cases of typical structure
violating WEC: the cases with o < np?/8 (Middle) and a > nB?/8 (Right)

NED-GR solutions for electrically charged objects belong to this class automatically since
for any gauge-invariant Lagrangian L(F) stress-energy tensor of an electromagnetic field,
Ih = =2LF, P+ 0.58L has the algebraic structure specified by (1) [9, 5]. In the Maxwell weak
field limit the metric tends to the Kerr—Newman metric with fr) = mr — ¢*°/2, where m is the
mass of an object and ¢ its electric charge.

The first problem encountered by regular electrically charged NED-GR objects, is the problem
of their existence itself, which appears forbidden by “the nonexistence theorems” [10].

This existential problem is addressed in Section 2 where we outline the typical behavior of
Lagrangians. Section 3 presents the basic features of regular solutions for electromagnetic fields
in the limit » — 0 and » — o, and Section 4 contains conclusions.

Typical behavior of the Lagrangian for NED-GR regular objects
In the minimally coupled NED-GR the action is given (in geometrical units ¢ = G = 1) by

1 4 — —_ . — uv
S_Ej d*x\-g[R-L(F)}; F = F, F*. )

Here R is the scalar curvature, F,, = 0,4,— 0,A,is the electromagnetic field, and A, is the
Maxwell limit of electromagnetic potential. The gauge-invariant electromagnetic Lagrangian L(F)
should have the Maxwell limit, £ — F, £, = dL/dF — 1 in the weak field regime. Variation with
respect to Au and the Bianchi identities yield the dynamic field equations

VH(LFF“V)zo; V}L”‘F*lV =0, (&)
where *Fv = 1/2n"FF p and the antisymmetric unit tensor is defined as n,,, = \—g.
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In the spherically symmetric cases the only essential component of F,, describes a radial elec-
tric field F;, = —E(r). Dynamical Egs. (5) give L F"' = g [10] where g is constant of integration
identified as an electric charge. The field invariant F is given by

2 2
F=2F,F"=—=1 . (6)

rl

For electrically charged NED-GR structures the density and pressures are given by [9]
p=—p, =(L/2-FL.); p,=—L/2; p +p=-FL,. (7)
WEC imposes two general constraints on the Lagrangian £(F). Equation (7) leads to
L, >0; L(F)>2FL,. (8)

The theorem of non-existence of electrically charged structures with the regular center [10]
requires the Maxwell behavior at the center, L — F, £ — [l as F — 0 [10]. The proof is that
regularity of stress-energy tensor requires |F£ | < oasr— 0, while F£2 — —oo by virtue of (6). It
follows that L — 0, while F — 0 which is not compatible Wlth the Maxwell behavior.

In fact, regularlty and WEC suggest existence of regular electrically charged structures without
the Maxwell limit in the center. Regularity requires p < co. WEC requires p > 0 and p + p, > 0
which leads to p’ < 0 since the tangential pressure satisfies p + p, = —rp'/2. As a result, the elec-
tromagnetic density 7", = p achieves its maximum, and one cannot expect the weak field behavior
in the region of the maximal density. De Sitter vacuum in the centers of regular solutions implies
p, + p = 0 which leads to FL, = 0 at r = 0. It follows, taking into account (8) and (6), that
£~ +o while F— -0 when 7 — 0.

Conditions for a Lagrangian and its derivative in the regular center are thus

L(0)=2p(0); L, —> oo. 9)
The Maxwell asymptotic at » — +oo imposes two conditions on Lagrangian in the limit ' — -0
L>F—>-0, L, —>1. (10)

The invariant F evolving between F = -0 at the center and at infinity, is not monotonic func-
tion, which leads unavoidable to branching of a Lagrangian [10, 9]. Lagrangian on its way from
(9) to (10) must change its sign; according to (7), it is opposite to the sign of the pressure p, which
can vanish only once for the case of one de Sitter vacuum scale [9].

As a result a Lagrangian has two branches, and the action takes the form [11]

S = Sint + Sext =

11
L[I L (F)W-gd'x+ [ (R-L,(F)J-gd']. v

B 16m

Each region of the manifold, @, and Q_, is confined by the space-like hypersurfaces 7 = ¢,
and 7 = 7, and by the time- hke 3-surface at 1nﬁn1ty, where electromagnetic fields vanish in the
Maxwell Timit. Internal boundary between Q, and Q__is defined as a time-like hypersurface X _at
which the field invariant Fachieves its minimum. In the case of the minimal coupling variation in
the action (11) results in the dynamical Eqgs. (5) in both regions Q_ and Q,_, and in the boundary
conditions on the surface X [11].

J; (‘EF (int)Fuv (int) _‘[:F (ext)va (ext)) V _g SAHdGV = O’ (12)
L (int) 2L F (int)F;nt =L (ext) ™ 2L F (exz)Fexz . (13)
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Eq. (6) defines in the first approximation the derivative d£,/dF in the minimum r = r,
of the invariant F by £, = —2L,/(Fr). In accordance with (8), £, has the same finite hmlt
as F— F+0and F— F 0, while /' changes its sign, so that £ tends to infinities of opposite
signs, and a Lagrangian L(F) has the cusp at F= F.

According to (8), the Lagrangian £(F) is a monotonic function of Fwhich decreases smoothly
along the first branch from its maximal value £(0) = 2p(0) to its value in the cusp £ at F=F =
and then increases along the second branch from its minimal value £ < 0 to its Maxwell 11m1t
L — F— —0 as Fincreases from F, to F— —0 as r — . Typical behavior of the Lagrangian and
its derivatives dependently on F'is shown in Fig. 2 [3].

Similar behavior of L(F) is generic for regular axially symmetric solutions where the invariant
F evolves between F= -0 on the disk » = 0 [2] and in the Maxwell limit at » — o [12].

L L £

F FF

F 1F f 0
0 0

Fig. 2. Typical behavior of the Lagrangian (Left), Lagrangian derivative (Middle),
and the second Lagrangian derivative (Right)

Electromagnetic fields

In the axially symmetric geometry the non-zero field components are F, F,, F,,, F,,, related

in the metric (2) by F, = asin’6F,; F,,= (*+ a’)F,, As aresult, Egs. (5) form the system of four

equations for two independent functlons [2]

—[(r +a’)sin0.L, F10]+ [51n9£ F,,1=0;
(14)
i{ﬁ_F}i{f—F}o

or| sin0 00| (r* +a”)sin®
or 00 0  or

Solutions to this system should satisfy the compatibility condition [2]

2 102 g
a 1 oL, L 9L, |, 4a’sin (G)L{raﬁuco a‘cF} =0, (16)
L, 20 Joo\ L, or > Ll oo 0

as the necessary and sufficient condition of compatibility of Egs. (14)—(15) and the necessary
condition for the existence of solutions [2].
Equations (14—15) and compatibility condition (16) are satisfied by the functions [5]

YL, F))=—q(r* —a’ cos’ 0); (L. F,,) = qa’rsin 20; (17)
S*(L,F,)=aqsin’0 (r* —a’ cos’ 0); *(L,F,;)=aqr(r’+a’)sin20 (18)

326



Mathematical Physics
A ysics

in the weak field limit £ = 1, where they coincide with the solutions to the Maxwell-Einstein equa-
tions [13, 14, 15], and in the strongly nonlinear regime as the asymptotlc solutions in the limit £ —
o [2]. In terms of the field intensities defined as E; = {F}; D/ = {L F}; B/ = {*"}; H = {L; Q/}
j=1,2,3][16, 5], the dynamical Egs. (5) take the form of the source-free Maxwell equatlons

V-D= OVH—aa—]t)VB OVE——a—B (19)

ot

The electric induction D and the magnetic induction B are related with the field intensities by
D/ = ¢/E*; B/ = p/H* where ¢f and p# are the tensors of the electric and magnetic permeability
given by [5]

- (V +a )£ £ . "_M' uezi. (20)

S D) r >
r A F u A£F 0 £F

The relation connecting density and pressure with the electromagnetic fields reads [5]

F2
p, +p=2L; (E%ﬁ%} (21)

a-sin“ 0

According to (20) and (21), WEC should be satisfied for NED-GR structures, since £, defines
the electric permeability, which cannot be negative in electrodynamics of continuous media.
Applying (17, 18) in the limit £, — o we obtain

2q
Ly (22)

2

p,tp=

It follows that L, — o at the S-surface, including disk where p + p, = 0. This testifies for
zero magnetic permeability and infinite electric permeability, i.e., for the properties of a per-
fect conductor and an ideal diamagnetic of the disk and S-surface. On these surfaces the mag-
netic induction B vanishes [17].

The surface current on the disk is obtained, with taking into account (17, 18) and (20), as [17]

jf—ﬁ 1+g°/a® sin® & OZL& (23)

where & is the intrinsic coordinate on the disk, 0 < & < n/2. The magnetic permeability g = 0 on
the disk by virtue of (20). As a result, the current j is zero throughout the disk except the ring
& = n/2, where both terms in the second fraction go to zero independently and the current on
the ring can be any and amount to a non-zero value, which means that the basic condition for
superconducting state [18] is satisfied.

The superconducting current (23) replaces the ring singularity of the Kerr—Newman geom-
etry, represents a non-dissipative source of the exterior fields and of the intrinsic magnetic
momentum [19], and can in principle provide a practically unlimited life time of an object [17].

Conclusions

Analysis of regular axially symmetric solutions to the NED-GR dynamic equations, which
describe electrically charged regular rotating black holes and spinning electromagnetic solitons,
allows us to reveal the fundamental features of electrically charged regular rotating NED-GR
objects. They can have two types of interiors suggested by geometry, whose detailed properties
are determined by behavior of electromagnetic fields and by the weak energy condition involving
dependence on the electric permeability which is regulated by the basic requirements of electro-
dynamics of continuous media. Their obligatory basic features are as follows:
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For regular solutions the electromagnetic invariant F is non-monotonic function evolving
between F'= -0 at » = 0 and at » — oo. This results in branching of a Lagrangian in the minimum
of the invariant F. The basic generic feature of the regular electrically charged NEDGR structures
is the existence of a characteristic surface separating regions described by different branches of
Lagrangians in the non-uniform variational problem.

All NED-GR electrically charged regular rotating objects have in their deep interiors de Sitter
vacuum disks » = 0 with the properties of a perfect conductor and an ideal diamagnetic, and zero
magnetic induction.

De Sitter disk is confined by the ring with a superconducting current which serves as a
non-dissipative source of electromagnetic fields of a NED-GR regular object, and provides the
origin of its intrinsic magnetic momentum.

There can exist additional interior de Sitter vacuum S-surfaces with de Sitter disk as a bridge
and with the properties of a perfect conductor and an ideal diamagnetic and zero magnetic induc-
tion over the whole surface.

Violation of WEC is prevented by the basic requirement of non-negativity of the electric per-
meability in electrodynamics of continuous media, which prefers the NED-GR structures without
S-surfaces, and distinguishes admissible models for interiors of NED-GR objects with S-surfaces:
shell-like models with the flat vacuum and zero fields in the cavities between S-surfaces and disks,
and models with the de Sitter vacuum cores within S-surfaces, with the properties of a perfect
conductor and an ideal diamagnetic and zero magnetic induction over the whole core [2, 3]. Such
models require further research.
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