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Abstract. We present a brief overview of the main properties of electromagnetic fields of 
regular rotating electrically charged objects in non-linear electrodynamics minimally coupled 
to gravity (NED-GR). The basic features of electromagnetic fields follow from the analysis of 
the regular solutions to the NED-GR dynamic equations. For NED-GR regular objects the 
Lagrangian inevitably branches at a single minimum of the field invariant F. The study of the 
asymptotic of the solutions of the field equations at r → 0 reveals the fundamental features 
of the electromagnetic dynamics on the de Sitter vacuum disk (r = 0) in the deep interiors 
of rotating NED-GR objects. The disk has the properties of a perfect conductor and an ideal 
diamagnetic, zero magnetic induction, and is confined by a ring with a superconducting current, 
which replaces the Kerr ring singularity, serves as a non-dissipative source of electromagnetic 
fields of NED-GR regular objects and provides the origin of their intrinsic magnetic momenta. 
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Аннотация. Приведен краткий обзор основных свойств электромагнитных 
полей регулярных вращающихся электрически заряженных объектов в нелинейной 
электродинамике, минимально связанной с гравитацией (NED-GR). Основные черты 
электромагнитных полей следуют из анализа регулярных решений динамических 
уравнений NED-GR. Для обычных объектов NED-GR Лагранжиан неизбежно 
разветвляется в единственной точке минимума инварианта поля F. Изучение асимптотики 
решений уравнений поля при r, стремящемся к нулю, раскрывает основные черты 
электромагнитной динамики на вакуумном диске де Ситтера (r = 0) в глубоких недрах 
вращающихся объектов NED-GR. Диск обладает свойствами идеального проводника 
и идеального диамагнетика с нулевой магнитной индукцией и ограничен кольцом со 
сверхпроводящим током, заменяющим сингулярность кольца Керра, и, кроме того, 
служит недиссипативным источником электромагнитных полей для регулярных объектов 
NED-GR и обеспечивает возникновение их собственных магнитных моментов.
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Introduction

Electrically charged objects related by electromagnetic and gravitational interactions are 
described in general setting by nonlinear electrodynamics coupled to gravity (NED-GR). 
Nonlinear electrodynamics (NED) was proposed by Born and Infeld in 1934 with the aim to 
describe electromagnetic field and particles in the unique common frame which provides finite 
values for physical quantities, and presents an appropriate model of the electron [1]. In their 
theory electromagnetic energy has made finite by imposing an upper limit on the electric field 
related to the electron size, but geometrical quantities remained singular.

The Born-Infeld program can be realized in the frame essentially including gravity. Source-free 
NED-GR equations admit the class of regular axially symmetric solutions asymptotically Kerr-
Newman for a distant observer [2–4], which describe not only electromagnetic spinning solitons 
[5] (for a review see [6]) but also regular rotating electrically charged black holes.

Axially symmetric metrics are typically obtained from the spherical metrics of the Kerr–Schild 
class [7] by applying the Gürses–Gürsey formalism [8]. For this class of metrics the source terms 
have the algebraic structure [5]

( ). t r
t r rT T p= = −ρ (1)

In the Boyer–Lindquist coordinates the axially symmetric metric reads [8]
2

2 2 2 2

2 2
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Here a is the angular momentum, the Lorentz signature is [- + + +], Σ = r2 + a2cos2θ, 
Δ = r2 + a2 – 2f(r), and 2
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f r r x x dx= ρ∫   where ρ̃ is the density profile of a related spherical solu-

tions. The surfaces of constant r are the oblate confocal ellipsoids r4 – (x2 + y2 + z2 – a2)r2 – a2z2 = 0 
which degenerate, for r = 0 to the equatorial disk x2 + y2 ≤ a2, z = 0 bounded by the ring 
x2 + y2 = a2, z = 0.

Spacetime can have at most two horizons defined by Δ(r) = 0, and at most two ergospheres 
which are surfaces of a static limit gtt = 0 [2]. Ergospheres confine ergoregions where gtt < 0 which 
makes possible extraction of rotational energy. Geometrical structure of a regular rotating object 
with the metric (2) is determined by the weak energy condition (WEC) which requires ρ > 0 and 
ρ + p⊥ ≥ 0. The density and pressures are related by [2]
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The prime denotes the derivative with respect to r. In the equatorial plane r2/Σ = 1, and 
(p⊥ + ρ) = –rρ̃′(r)/2. For regular spherical solutions satisfying WEC ρ̃′ ≤ 0 and rρ̃′(r) → 0 at r → 0. 
Equation of state takes the form p = –ρ and describes the de Sitter vacuum in the co-rotating 
frame. The interior de Sitter vacuum disk is the generic feature of all regular rotating objects of 
this class [5, 2].

If the function S(r,z) in (3) vanishes only on the disk r = 0, WEC is satisfied. This type of 
structure is shown in Fig. 1 (Left) together with the horizons r+, r‒ and the ergosphere. There can 
exist an additional surface of the de Sitter vacuum p⊥ + ρ = 0, S-surface which incorporates the 
de Sitter disk as a bridge [2]. Then WEC is violated in the cavities between the S-surface and 
the disk, filled with an anisotropic phantom fluid, pr = –ρ; p⊥ = w⊥ρ with w⊥ < –1 [3]. This type 
of interiors is shown in Fig. 1 (Middle) for the case α < πβ2/8, and in Fig. 1 (Right) for the case 
α > πβ2/8, where α = a/m is the specific angular momentum and β = q/m is the specific charge. 
The parameter rq denotes the characteristic radius rq = πq2/8m for the regularized Newtonian/
Coulomb profile applied for pictures [2].

NED-GR solutions for electrically charged objects belong to this class automatically since 
for any gauge-invariant Lagrangian L(F) stress-energy tensor of an electromagnetic field, 
Tμ

ν = –2LFFναF
μα + 0.5δμ

νL has the algebraic structure specified by (1) [9, 5]. In the Maxwell weak 
field limit the metric tends to the Kerr–Newman metric with f(r) = mr – q2/2, where m is the 
mass of an object and q its electric charge.

The first problem encountered by regular electrically charged NED-GR objects, is the problem 
of their existence itself, which appears forbidden by “the nonexistence theorems” [10].

This existential problem is addressed in Section 2 where we outline the typical behavior of 
Lagrangians. Section 3 presents the basic features of regular solutions for electromagnetic fields 
in the limit r → 0 and r → ∞, and Section 4 contains conclusions.

Typical behavior of the Lagrangian for NED-GR regular objects

In the minimally coupled NED-GR the action is given (in geometrical units c = G = 1) by

41 [ ( )];  .
16

S d x g R F F F F µν
µν= − − =

π ∫ L (4)

Here R is the scalar curvature, Fµν = ∂µAν – ∂νAµ is the electromagnetic field, and Aµ is the 
Maxwell limit of electromagnetic potential. The gauge-invariant electromagnetic Lagrangian L(F) 
should have the Maxwell limit, L → F, LF = dL/dF → 1 in the weak field regime. Variation with 
respect to Aμ and the Bianchi identities yield the dynamic field equations

( ) 0;  0,*FL F Fµν µν
µ µ∇ = ∇ = (5)

where *Fμν = 1/2ημναβFαβ, and the antisymmetric unit tensor is defined as η0123 = √–g.

Fig. 1. Typical structure satisfying WEC (Left), and two cases of typical structure 
violating WEC: the cases with α < πβ2/8 (Middle) and α > πβ2/8 (Right)
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In the spherically symmetric cases the only essential component of Fµν describes a radial elec-
tric field F01 = –E(r). Dynamical Eqs. (5) give r2LFF

01 = q [10] where q is constant of integration 
identified as an electric charge. The field invariant F is given by

2

1 42
01

0
22 .

F

qF F F
r

= = −
L

(6)

For electrically charged NED-GR structures the density and pressures are given by [9]

( / 2 );  / 2;  .r F Fp F p p F⊥ ⊥ρ = − = − = − +ρ = −L L L L (7)

WEC imposes two general constraints on the Lagrangian L(F). Equation (7) leads to

0;  ( ) 2 .F FF F≥ ≥L L L (8)

The theorem of non-existence of electrically charged structures with the regular center [10] 
requires the Maxwell behavior at the center, L → F, LF → 1 as F → 0 [10]. The proof is that 
regularity of stress-energy tensor requires |FLF| < ∞ as r → 0, while FL2

F → –∞ by virtue of (6). It 
follows that LF → 0, while F → 0 which is not compatible with the Maxwell behavior. 

In fact, regularity and WEC suggest existence of regular electrically charged structures without 
the Maxwell limit in the center. Regularity requires ρ < ∞. WEC requires ρ ≥ 0 and ρ + p⊥ ≥ 0 
which leads to ρ′ ≤ 0 since the tangential pressure satisfies ρ + p⊥ = –rρ′/2. As a result, the elec-
tromagnetic density Tt

t = ρ achieves its maximum, and one cannot expect the weak field behavior 
in the region of the maximal density. De Sitter vacuum in the centers of regular solutions implies 
p⊥ + ρ = 0 which leads to FLF = 0 at r = 0. It follows, taking into account (8) and (6), that 
LF → +∞ while F → ‒0 when r → 0. 

Conditions for a Lagrangian and its derivative in the regular center are thus

(0) 2 (0);  .F= ρ →∞L L (9)

The Maxwell asymptotic at r → +∞ imposes two conditions on Lagrangian in the limit F → ‒0 

0;  1.FF→ →− →L L (10)

The invariant F evolving between F = –0 at the center and at infinity, is not monotonic func-
tion, which leads unavoidable to branching of a Lagrangian [10, 9]. Lagrangian on its way from 
(9) to (10) must change its sign; according to (7), it is opposite to the sign of the pressure p⊥ which 
can vanish only once for the case of one de Sitter vacuum scale [9].

As a result a Lagrangian has two branches, and the action takes the form [11]

4 41 ( ( )) ( ( )) .
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int ext
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Ω Ω

= + =
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Each region of the manifold, Ωint and Ωext, is confined by the space-like hypersurfaces t = tin 
and t = tfin and by the time-like 3-surface at infinity, where electromagnetic fields vanish in the 
Maxwell limit. Internal boundary between Ωint and Ωext is defined as a time-like hypersurface Σc at 
which the field invariant F achieves its minimum. In the case of the minimal coupling variation in 
the action (11) results in the dynamical Eqs. (5) in both regions Ωint and Ωext, and in the boundary 
conditions on the surface Σc [11].

 ( )  ( )  ( )  ( ) 0,( )
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F int int F ext extF F g A dµ ν
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Eq. (6) defines in the first approximation the derivative dLF/dF in the minimum r = rc 
of the invariant F by LFF = –2LF/(F′rc). In accordance with (8), LF has the same finite limit 
as F → Fc + 0 and F → Fc – 0, while F′ changes its sign, so that LFF tends to infinities of opposite 
signs, and a Lagrangian L(F) has the cusp at F = Fc.

According to (8), the Lagrangian L(F) is a monotonic function of F which decreases smoothly 
along the first branch from its maximal value L(0) = 2ρ(0) to its value in the cusp Lc at F = Fmin = Fc, 
and then increases along the second branch from its minimal value Lc < 0 to its Maxwell limit 
L → F → –0 as F increases from Fc to F → –0 as r → ∞. Typical behavior of the Lagrangian and 
its derivatives dependently on F is shown in Fig. 2 [3].

Similar behavior of L(F) is generic for regular axially symmetric solutions where the invariant 
F evolves between F = –0 on the disk r = 0 [2] and in the Maxwell limit at r → ∞ [12].

Electromagnetic fields

In the axially symmetric geometry the non-zero field components are F01, F02, F13, F23, related 
in the metric (2) by F31 = asin2 θF10; F23 = (r2 + a2)F02 . As a result, Eqs. (5) form the system of four 
equations for two independent functions [2] 

2 2
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Solutions to this system should satisfy the compatibility condition [2]
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as the necessary and sufficient condition of compatibility of Eqs. (14)–(15) and the necessary 
condition for the existence of solutions [2].

Equations (14–15) and compatibility condition (16) are satisfied by the functions [5]

2 2 2 2 2 2
01 02( ) ( cos );  ( ) sin 2 ;F FF q r a F qa rΣ = − − θ Σ = θL L (17)

2 2 2 2 2 2 2 2
31 23( ) sin ( cos );   ( ) ( )sin 2F FL F aq r a L F aqr r aΣ = θ − θ Σ = + θ (18)

Fig. 2. Typical behavior of the Lagrangian (Left), Lagrangian derivative (Middle), 
and the second Lagrangian derivative (Right)
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in the weak field limit LF = 1, where they coincide with the solutions to the Maxwell-Einstein equa-
tions [13, 14, 15], and in the strongly nonlinear regime as the asymptotic solutions in the limit LF → 
∞ [2]. In terms of the field intensities defined as Ej = {Fj0}; D

j = {LFF
0j}; B j = {*Fj0}; Hj = {LF*F0j}; 

j = 1, 2, 3 [16, 5], the dynamical Eqs. (5) take the form of the source-free Maxwell equations

0;  ;  0;  .
t t

∂ ∂
∇ ⋅ = ∇× = ∇⋅ = ∇× = −

∂ ∂
D BD H B E (19)

The electric induction D and the magnetic induction B are related with the field intensities by 
D j = ε j

kE
k; B j = μ j

kH
k where εk

j and μk
j are the tensors of the electric and magnetic permeability 

given by [5]

2 2 2 2( ) ( ) 1;  ;  ;  .r r
r F F r

F F

r a r aθ θ
θ θ

+ +
ε = ε = µ = µ =

∆ ∆
L L

L L
(20)

The relation connecting density and pressure with the electromagnetic fields reads [5]

2
2 20

10 2 22 .
sinF
Fp F

a⊥

 
+ ρ = + θ 

L (21)

According to (20) and (21), WEC should be satisfied for NED-GR structures, since LF defines 
the electric permeability, which cannot be negative in electrodynamics of continuous media.

Applying (17, 18) in the limit LF → ∞ we obtain
2

2
2 .

F

qp⊥ + ρ = ΣL (22)

It follows that LF → ∞ at the S-surface, including disk where ρ + p⊥ = 0. This testifies for 
zero magnetic permeability and infinite electric permeability, i.e., for the properties of a per-
fect conductor and an ideal diamagnetic of the disk and S-surface. On these surfaces the mag-
netic induction B vanishes [17].

The surface current on the disk is obtained, with taking into account (17, 18) and (20), as [17]

2 2 2
3 1 /  sin  ,

2 cos
qj q a

aφ
µ

= − + ξ
π ξ

(23)

where ξ is the intrinsic coordinate on the disk, 0 ≤ ξ ≤ π/2. The magnetic permeability µ = 0 on 
the disk by virtue of (20). As a result, the current jϕ is zero throughout the disk except the ring 
ξ = π/2, where both terms in the second fraction go to zero independently and the current on 
the ring can be any and amount to a non-zero value, which means that the basic condition for 
superconducting state [18] is satisfied.

The superconducting current (23) replaces the ring singularity of the Kerr–Newman geom-
etry, represents a non-dissipative source of the exterior fields and of the intrinsic magnetic 
momentum [19], and can in principle provide a practically unlimited life time of an object [17].

Conclusions

Analysis of regular axially symmetric solutions to the NED-GR dynamic equations, which 
describe electrically charged regular rotating black holes and spinning electromagnetic solitons, 
allows us to reveal the fundamental features of electrically charged regular rotating NED-GR 
objects. They can have two types of interiors suggested by geometry, whose detailed properties 
are determined by behavior of electromagnetic fields and by the weak energy condition involving 
dependence on the electric permeability which is regulated by the basic requirements of electro-
dynamics of continuous media. Their obligatory basic features are as follows:
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For regular solutions the electromagnetic invariant F is non-monotonic function evolving 
between F = –0 at r = 0 and at r → ∞. This results in branching of a Lagrangian in the minimum 
of the invariant F. The basic generic feature of the regular electrically charged NEDGR structures 
is the existence of a characteristic surface separating regions described by different branches of 
Lagrangians in the non-uniform variational problem.

All NED-GR electrically charged regular rotating objects have in their deep interiors de Sitter 
vacuum disks r = 0 with the properties of a perfect conductor and an ideal diamagnetic, and zero 
magnetic induction.

De Sitter disk is confined by the ring with a superconducting current which serves as a 
non-dissipative source of electromagnetic fields of a NED-GR regular object, and provides the 
origin of its intrinsic magnetic momentum.

There can exist additional interior de Sitter vacuum S-surfaces with de Sitter disk as a bridge 
and with the properties of a perfect conductor and an ideal diamagnetic and zero magnetic induc-
tion over the whole surface.

Violation of WEC is prevented by the basic requirement of non-negativity of the electric per-
meability in electrodynamics of continuous media, which prefers the NED-GR structures without 
S-surfaces, and distinguishes admissible models for interiors of NED-GR objects with S-surfaces: 
shell-like models with the flat vacuum and zero fields in the cavities between S-surfaces and disks, 
and models with the de Sitter vacuum cores within S-surfaces, with the properties of a perfect 
conductor and an ideal diamagnetic and zero magnetic induction over the whole core [2, 3]. Such 
models require further research.
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