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Abstract. This paper continues studying stability features of steady states of a diode with
counter-streaming electron and ion flows. In our recent paper, an integral-differential equa-
tion for the potential perturbation amplitude in the mode without potential barriers reflecting
charged particles within the plasma was derived. Its exact solution was found for homogeneous
steady-state field distribution. In this paper, we propose a semi-analytical method to solve the
integral-differential equation for potential perturbation amplitude in the case of inhomogene-
ous steady-state solutions. It is based on the use of the piecewise linear approximation of the
integral operator kernel and the variable coefficient as well as the potential perturbation distri-
bution. A dispersion equation is obtained and five first dispersion branches are constructed. As
a result, we have proved that all steady state potential distributions with the values of dimen-
sionless inter-electrode gap up to 10x/\2 are unstable. Numerical calculations of the potential
perturbation development confirm analytical results.
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Aunnoranusa. CtaTbsl POJOJIKAET UCCAENOBaHUE YCTOMUMBOCTH CTALIMOHAPHBIX COCTOSTHUIA
NMOMa CO BCTPEYHBIMU ITOTOKAMHM 3JEKTPOHOB M HMOHOB. B mpenbiayuieit paborte ObLIO
MOJTy4eHO MHTETPO-auddepeHIInaTbHOe YpaBHEHWE U1 BO3MYIIIEHUS TTOTEHIMAa B PeXUMeE
0e3 OTpaXeHUs 3apSKEHHBIX YACTUL[ OT MOTEHUUAJIbHBIX OapbepoB. g OIHOPOIHOrO
pacnpe/eseHus MoTeHIMana ObIo HaliIeHO ero aHaJIuTUYeckoe peleHue. B 3Toil cratbe Mbl
MpeJiaraeM MojJyaHaAIUTUYECKU METO/ PELIEHUsT 3TOr0 YPaBHEHMUS B CIydyae HEOJHOPOIHBIX
pacnpeneneHnii nmoreHuuaga. C MOMOIIBIO 3TOrO METOAA MBI WCCIENOBATU YCTOWYUBOCTH
CTAIIMOHAPHBIX PEIIeHWii Wi WINH IMoja BILIOTH 10 10m/V2 M Mokasamy, 4To BCE OHU
HEyCTONYMBBI. YHCIEHHOE MOIEIMPOBAHKE SBOIOLIMY BO3MYILEHUS MOATBEPAUIIO PE3YIbTATHI,
MOJIyYEHHbIE aHAJTUTUYECKH.
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Introduction

The study of the stability of steady states of plasma diodes with counter-streaming electron and
ion flows is necessary to understand the mechanism of operation of a high-current plasma diode
modulator, which is used to convert a constant voltage of several tens of volts accumulated on a
series-connected thermionic energy converters into alternating voltage [1]. In such a diode the
flow of electrons coming from the hot emitter and passing through the plasma region is strongly
accelerated by a potential jump existing near the collector and ionizes caesium atoms. As a result,
a stream of ions moving towards the emitter appears in the narrow collector layer. When studying
the stability of steady-state solutions for the diode in the first approximation it can be assumed
that the ion flow comes from the collector surface.

Steady-state solutions for such a diode were studied in detail in [2]. It was shown that there
are several solutions for fixed inter-electrode gap. They are characterized by different values of
the electric field strength at the left electrode. The representation of such solutions on the (g,5)
plane, where § and ¢, are the dimensionless inter-electrode gap and electric field strength at the
left electrode, respectively, is given in Fig. 4 in Ref.[2]. They belong to two modes: 1) all charged
particles move in the inter-electrode gap without reflection and reach the opposite electrodes, 2)
the potential distribution has extrema reflecting a portion of the particles. Thus, the problem of
determining steady-states in a diode plasma can be considered solved.

Now, one needs consistently study the stability features of each type of steady-state solutions.
It is important because non-linear oscillation can develop in plasma instead of stationary states as
was reported in Refs. [1], [3]. In Ref.[4], stability features of steady-state solutions of the first type
were examined. The method of expanding of potential distribution and charged particles densities
into series in powers of small potential perturbation was used. It was assumed that the electrons
fly through the interelectrode gap in less time than it takes for the ions to displace to the distance
of the order of Debye-Hiickel length. This allowed us to believe that perturbations develop with
ionic velocities, i.e. to study ionic instability.

An integral-differential equation for the electric field perturbation amplitude was derived. This
equation was solved analytically for a homogeneous steady-state solution (branch n, in Fig. 4
in [2]). The study of dispersion relation showed that there was a threshold in the magnitude of
the inter-electrode gap, when exceeded an aperiodic instability developed in the diode plasma.

This paper examines stability features of steady-state solutions with inhomogeneous electric field
distribution. For this purpose we have proposed a new original method for solving the equation
for the field perturbation amplitude obtained in [4], which is suitable for studying stability of any
potential distribution without potential barriers which can reflect charged particles. Applying this
method, we have investigated stability features of the solutions belonging to the #. branches with
j>0 (see Fig. 4 in [2]). In addition, we performed numerical calculations of the perturbation
evolution for these steady-state solutions. It has been established that all inhomogeneous steady-
state solutions of this type are unstable.

© bakaneitnukoB JI.A., Kysneuos B.U., ®@neronrtosa E.10., 2023. Uznarenb: Cankr-IleTepOyprckuii moauTeXHUYECKU
yHuBepcuret I[lerpa Benaukoro.
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Solution of the equation for the electric field perturbation amplitude

We consider a diode of planar geometry. We assume that a mono-energetic flow of electrons
enters the plasma from the left electrode with velocity v, ; and density n, ,, while ions enter from
the right electrode with a velocity —v, , and density 7, Charged partrcles move without collisions,
and when reaching any electrode, they are absorbed We assume also that electrons and ions
enter into inter-electrode gap wrth the same kinetic energies, i.e. W y=mv? /2 = My, 0/2 (here m
and M are the electron and ion masses). As in Ref.[4] we assume that electrons fly through the
inter-electrode gap in less time than it takes for ions to move the distance of the order of the
Debye-Hiickel length X,. This is equivalent to the condition L/}, < V(M/m). In this case, the
electrons “instantly” adjust to the existing electric field, and to study the time-dependent problem
it is necessary to take into account only the ion movement effects.

For the consideration convenience, we turn to dimensionless quantities, choosing W, and
A, = [2¢,W,/(e’n, )]/ as units of energy and length; here e is the electron charge, and ¢ 1s the
vacuum permeabrhty The electron velocity is measured in units Voo , while ion one is measured
in units v, = v, V(m/M).

When studymg the stability features of steady-state solutions, we track evolution of small
potential perturbation presenting the potential distribution (PD) as

(G, ) =My (Q) +1(Q) exp(=iQ1),  [N(C) [<< M, (0). (1

Here n,(C), n(¢) and Q are the unperturbed PD, the potential perturbation amplitude, and the
complex frequency respectively. In Ref.[4], mtegral differential equation for 1 ({) was derived

7'(0) =—u. (OA(C) +u; (C)I dxexp{iQ[o, (L) - o, (x)]}7'(x) +

+1Qu Q) dxu () dyexp ifo, ()~ o, ()

Here u(0) = [1+ 2m(0]7* and u() = [1-2n,() + 2V]7? are the electron and ion
undisturbed velocities corresponding to the mono-energetic particle velocity distributions, and
c(0) = P dx[u(x)]™" is the ion time of flight from the right boundary to the point (.

Boundary condition for n(¢) at the right boundary is 7(8) = 0. On the other hand, 1'(d) is
considered to be an arbitrary parameter.

A special case n(() = 0 was considered in [4]. An analytical solution of Eq. 2 was found. In this
paper, we study the stability features of inhomogeneous steady-state solutions without potential
barriers so that all charged particles move in the inter-electrode gap without reflection and reach
the opposite electrodes. The PDs typical for such solutions are shown in Fig. 1. As in the case
of homogeneous solution we use Eq. 2 for this purpose. After calculating the first integral on the
right-hand side of Eq. 2 in parts and substituting the result into the second term, we can rewrite

this equation as
A'Q)+[ 1@ +u (©) ]76) =
= Q] axu (o (©)+4” (¥ (©) Jexp iAo, () =0, (X)}A(x) + (3)
Q] O dvr' () exp iY0,(6) 0, (MM, o () = [ dxK (€. x)R().

(2)

The RHS of Eq. 3 is the Volterra integral operator with a degenerate kernel. To solve this
equation, we propose the numerical-analytical method. It is as follows. We divide the entire
interval [0, 3] into subintervals with boundaries at the { points: 0 = { <{ <--<{, <, =, and
approximate Eq. 3 in each subinterval, replacing the functions u>(C), u;*(C), u;(C), u3(0) + u>(C)
with their linear approximations. We solve the equations sequenually in intervals [Ck 1G] starting
from the right boundary. We designate an approximation for the perturbation amplitude 7({) in
the interval [¢, (] as 1,(¢) . The integral on the RHS of Eq. 3 is represented as

5 Ck N G B
[dxK(@0)f00) = [ dxK (G0, @)+ Y, | dxK (C0R,(0)=FQ+H,Q). (4
¢ ¢

J=k+1 ¢;-1
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Fig. 1. PDs specific to inhomogeneous steady-state solutions: solid curve corresponds to 7, solid +
+ dashed one to n, and solid + dashed + dash-dotted one to n, branches; g, = 0.453

Cr ~ N ¢ B
F(¢) = j dxK, (G 0R, (), H Q)= Y [ dxK (50, (). (4)
Jj= k+1(; o
Here the kernels K, (€, x) are given by the same formulas as the kernel K ((, x), but instead of
the functions «,7(¢), u;'(¢) and o (() their linear approximations on the interval [C 1,C] are used.
Thus, the function n k(x) obeys the following equation

M (O[R, + 0, (6~ )] () = F () + H, (C). )

M) =y M (&) =2 (6)

Here, R, and Q, are the coefficients of the linear approximation of the function u3(¢) + u>(C)
on the kth mterval Note that by the moment the problem is solved on the interval (¢, l,gk],
functions i n, (x), j = k+1,...,N have already been found. Therefore the term H,({) on the RHS
of () is known. Due to the smallness of the interval [{_,,{ ], the term F,(0) is small Therefore,
the solution to problem (5), (6) within each interval [{_,,(,] can be obtalned using iterations.
Assuming the RHS to be known, one can find the solution to problem (5), (6). When Q, # 0 its
general solution is

w(o)

7,(8) = L Ai(w(©) +¢ Biy(©) ~t | do[ £ () + H,(0) [ 4i(w(©) Bi(g) - Bi(w(©) 4i(@)](7)

Here y(C) = _[Rk + Qk (- Ck)] Qk—2/3’ Vi = _RkQ/;2/3, F}C(W) = Q/;2/3F;( (Xk (v)),
H,(y)=0""H, (1, (W), %)=, —(\|1Q,f/3 +R, )/Qk . When Q, = 0 the general solution is

i, (§) = cycos (R (6 —C,)) + ] sin (R, (c—ck))—fdw[ﬂwnlfk(w)]x
Gk
[ cos (R G =C) sin (VE, (v =6,)) =sin(R (=€) Jeos (R, (w =€) |/ V..

The constants ¢,' and ¢ in Egs. (7), (8) are determined using conditions (6). Due to the weak
dependence of the functlons (©) on 1 (0) the solution 7,(¢) can be sequentially refined using the
iterations on the base of solutlon (7) or (8).

Using the described algorithm for a given value of the inter-electrode gap d, it is possible to
calculate an amplitude of the potential perturbation 1 ,(¢) for a number of values Q = o + T,
and, in particular, to build a dependence 1(0) on Q. Having the boundary condition on the left
boundary n(0, Q) satisfied, one can determine the eigen-frequencies. (Note that the value of the
n'(8) does not affect the solution of the equation n(0, Q) = 0; the value 1'(8) = 1 was used in the
calculations). Thus, we calculate dependencies Q (8), i.e. dispersion branches corresponding to
steady-state branches n, for k£ > 0.

We have implemented the described approach in the study of the aperiodic stability features
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of the n_branches for k>0 at zero electrode potential difference. The unperturbed PDs, 1 (0),
for the solutions belonging to these branches at § =2,4 and 6 are represented in Fig. 1. The
PDs for g, <0 can be obtained from the ones shown in the figure by reflection about { axis. The
dependences of the aperiodic mode growth rate I'(5) for the n, and n, branches are shown in
Fig. 2. It can be seen that the steady-state solutions relevant to these branches turn out to be
unstable with respect to small aperiodic perturbations both for ¢, > 0 and ¢, <0. We have also
shown that n, branches with j = 3, 4 and 5 are also unstable. At pomts g, =0, 6 = nkV'2 the growth
rate vamshes which corresponds to the bifurcation at the points, found in Ref [4] when studying
the stability features of the solution corresponding to homogeneous steady states.

a) 5 b)
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0,24 ~
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5 1
Fig. 2. Aperiodic mode growth rate I'vs. 3 for n, (a), n, (b) branches: solid (dashed) curves correspond
to the values g, > 0 (g, < 0)

Thus, we have established that in a diode with counter flows of electrons and ions, steady states
corresponding to the n, branches with j = 1,...,5 cannot exist. It should be noted that investigation
of the stability features of homogeneous steady-state solution by the developed method produces
the same results as in Ref.[4].

Numerical study of the steady-state solutions stability features

We also studied the stability features of inhomogeneous steady-state solutions numerically
using the code described in [4, 5]. In the simulations, as in the above analytical study, it was
assumed that at each time moment t_the electrons instantly adjust to the electric field distribution
existing at that moment. Therefore, in the calculations, the electron density was determined by
stationary formulas. We simulated the time evolution of a small perturbation introduced to the
electric field stationary distribution.

The calculation was carried out for two gap lengths: § = 2.15 and 2.2 and both signs of g. In
all cases, the instability developed. For 6 = 2.2 and g, > 0 the value of the growth rate I" turned out
to be 0.060, while the analytical result is ' = 0.0616. We also compared the shape of the aperiodic
eigen-mode of the potential perturbation amplitude obtained analytically with that obtained in
the simulation. These curves coincide within the calculation error. For § = 2.15 and g, > 0 it
was found impossible to obtain the value of I from the results of simulation, since the instability
develops too quickly and the time interval in which the transient process is still observed, goes
directly into the region of t values, where the linear theory is no longer applicable. On the
other hand, at g, <0, we obtained I' = 0.029 for § = 2.2 and I' = 0.086 for 5 = 2.15. Analytical
calculation gives in these cases the values of 0.032 and 0.091, respectively.

After the process leaves the area where the linear theory is applicable, the PD extremum
starts to decrease monotonically in absolute value in all cases considered. The rate of its change
initially increases and then starts to decrease as the homogeneous solution is approached. In all
cases, the evolution of the field distribution at last stage shows that it tends asymptotically to a
homogeneous solution (Fig. 3). We found the values of the growth rate I' when approaching to
a homogeneous solution and compared them with those found analytically in [4]. For 6 =2.2,
numerical calculations gave I = —0.0222, while the analytical value of the growth rate was —0.0216.
In the case of § = 2.15, ' = —0.074 is obtained both numerically and analytically.

Thus, we have traced the evolution of the perturbed steady-state solutions from the n, branch
to reaching a stable homogeneous stationary solution. In addition, we have validated both the
analytical results and the numerical ones.
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Fig. 3. The electric field strength at the left electrode g, evolution during the process of perturbation
development at diode lengths § = 2.15 (dashed lines) and 2.2 (solid lines) for steady-state solutions
with g, > 0 (@) and g, < 0 (b)

Conclusion

We have studied the inhomogeneous steady-state solutions stability features for a diode with
counter-streaming electron and ion flows for the mode without reflection of charged particles
from potential barriers, using the equation for the amplitude of the electric field perturbation
derived in [4]. To perform the investigation, we have developed an original semi-analytical
method for solving this equation, which works for any undisturbed potential distribution. It
is shown that the inhomogeneous steady-state solutions corresponding to the n, branches
with 0 < k<5 are unstable. The results of the theory are confirmed by numerical calculations
using a high-precision numerical code. Based on our analysis we can suppose that in a diode
with counter streams of electrons and ions, inhomogeneous stationary solutions in the mode
without particle reflection cannot exist. Earlier [4], we found that for homogeneous steady-
state solutions there is a threshold in the value of the inter-electrode gap 5, above which the
steady-state solutions become unstable; the steady-state solutions without reflection can exist
only when 8 < §,. It is shown that in the mode without particle reflection, the main instability
mode is aperiodic.

The stability of some solutions with reflection of particles from potential barriers was studied
numerically in our previous paper [5]. It turned out that for the solutions corresponding to the
branch d; (see Fig. 4 in [2]), there is a threshold in &, above which the solutions turn out to be
unstable, and non-linear periodic oscillations develop. In this case, the main instability mode is
oscillatory one. To obtain a complete picture of solutions that are implemented in a diode with
counter-streaming electron and ion flows, it is necessary to develop a stability theory for the mode
with reflection of charged particles from potential barriers. Besides, to describe the operation of
real plasma switches, it is necessary to take into account also the scattering of ions by atoms, i.e.
take into account the ion charge exchange [1, 3].
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