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Abstract. This paper continues studying stability features of steady states of a diode with 
counter-streaming electron and ion flows. In our recent paper, an integral-differential equa-
tion for the potential perturbation amplitude in the mode without potential barriers reflecting 
charged particles within the plasma was derived. Its exact solution was found for homogeneous 
steady-state field distribution. In this paper, we propose a semi-analytical method to solve the 
integral-differential equation for potential perturbation amplitude in the case of inhomogene-
ous steady-state solutions. It is based on the use of the piecewise linear approximation of the 
integral operator kernel and the variable coefficient as well as the potential perturbation distri-
bution. A dispersion equation is obtained and five first dispersion branches are constructed. As 
a result, we have proved that all steady state potential distributions with the values of dimen-
sionless inter-electrode gap up to 10π/√2 are unstable. Numerical calculations of the potential 
perturbation development confirm analytical results.
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Аннотация. Статья продолжает исследование устойчивости стационарных состояний 
диода со встречными потоками электронов и ионов. В предыдущей работе было 
получено интегро-дифференциальное уравнение для возмущения потенциала в режиме 
без отражения заряженных частиц от потенциальных барьеров. Для однородного 
распределения потенциала было найдено его аналитическое решение. В этой статье мы 
предлагаем полуаналитический метод решения этого уравнения в случае неоднородных 
распределений потенциала. С помощью этого метода мы исследовали устойчивость 
стационарных решений для длин диода вплоть до 10π/√2 и показали, что все они 
неустойчивы. Численное моделирование эволюции возмущения подтвердило результаты, 
полученные аналитически. 
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Introduction

The study of the stability of steady states of plasma diodes with counter-streaming electron and 
ion flows is necessary to understand the mechanism of operation of a high-current plasma diode 
modulator, which is used to convert a constant voltage of several tens of volts accumulated on a 
series-connected thermionic energy converters into alternating voltage [1]. In such a diode the 
flow of electrons coming from the hot emitter and passing through the plasma region is strongly 
accelerated by a potential jump existing near the collector and ionizes caesium atoms. As a result, 
a stream of ions moving towards the emitter appears in the narrow collector layer. When studying 
the stability of steady-state solutions for the diode in the first approximation it can be assumed 
that the ion flow comes from the collector surface. 

Steady-state solutions for such a diode were studied in detail in [2]. It was shown that there 
are several solutions for fixed inter-electrode gap. They are characterized by different values of 
the electric field strength at the left electrode. The representation of such solutions on the (ε0,δ) 
plane, where δ and ε0 are the dimensionless inter-electrode gap and electric field strength at the 
left electrode, respectively, is given in Fig. 4 in Ref.[2]. They belong to two modes: 1) all charged 
particles move in the inter-electrode gap without reflection and reach the opposite electrodes, 2) 
the potential distribution has extrema reflecting a portion of the particles. Thus, the problem of 
determining steady-states in a diode plasma can be considered solved.

Now, one needs consistently study the stability features of each type of steady-state solutions. 
It is important because non-linear oscillation can develop in plasma instead of stationary states as 
was reported in Refs. [1], [3]. In Ref.[4], stability features of steady-state solutions of the first type 
were examined. The method of expanding of potential distribution and charged particles densities 
into series in powers of small potential perturbation was used. It was assumed that the electrons 
fly through the interelectrode gap in less time than it takes for the ions to displace to the distance 
of the order of Debye-Hückel length. This allowed us to believe that perturbations develop with 
ionic velocities, i.e. to study ionic instability. 

An integral-differential equation for the electric field perturbation amplitude was derived. This 
equation was solved analytically for a homogeneous steady-state solution (branch n0 in Fig. 4 
in [2]). The study of dispersion relation showed that there was a threshold in the magnitude of 
the inter-electrode gap, when exceeded an aperiodic instability developed in the diode plasma.

This paper examines stability features of steady-state solutions with inhomogeneous electric field 
distribution. For this purpose we have proposed a new original method for solving the equation 
for the field perturbation amplitude obtained in [4], which is suitable for studying stability of any 
potential distribution without potential barriers which can reflect charged particles. Applying this 
method, we have investigated stability features of the solutions belonging to the nj branches with 
j > 0 (see Fig. 4 in [2]). In addition, we performed numerical calculations of the perturbation 
evolution for these steady-state solutions. It has been established that all inhomogeneous steady-
state solutions of this type are unstable.
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Solution of the equation for the electric field perturbation amplitude

We consider a diode of planar geometry. We assume that a mono-energetic flow of electrons 
enters the plasma from the left electrode with velocity ve,0 and density ne,0, while ions enter from 
the right electrode with a velocity −vi,0 and density ni,0. Charged particles move without collisions, 
and when reaching any electrode, they are absorbed. We assume also that electrons and ions 
enter into inter-electrode gap with the same kinetic energies, i.e. W0 ≡ mve,0

2   /2 = Mvi,0
2 /2 (here m 

and M are the electron and ion masses). As in Ref.[4] we assume that electrons fly through the 
inter-electrode gap in less time than it takes for ions to move the distance of the order of the 
Debye-Hückel length λD. This is equivalent to the condition L/λD ≪ √(M/m). In this case, the 
electrons “instantly” adjust to the existing electric field, and to study the time-dependent problem 
it is necessary to take into account only the ion movement effects. 

For the consideration convenience, we turn to dimensionless quantities, choosing W0 and 
λD = [2є0W0/(e

2ne,0)]
1/2 as units of energy and length; here e is the electron charge, and є0 is the 

vacuum permeability. The electron velocity is measured in units ve,0, while ion one is measured 
in units vi,0 = ve,0√(m/M).

When studying the stability features of steady-state solutions, we track evolution of small 
potential perturbation presenting the potential distribution (PD) as

 
(1)

Here η0(ζ), η
∼(ζ) and Ω are the unperturbed PD, the potential perturbation amplitude, and the 

complex frequency respectively. In Ref.[4], integral-differential equation for η∼(ζ) was derived

 
(2)

Here ue(ζ) = [1 + 2η0(ζ)]
1/2 and ui(ζ) = [1 − 2η0(ζ) + 2V]1/2 are the electron and ion 

undisturbed velocities corresponding to the mono-energetic particle velocity distributions, and 
σi(ζ) = ∫ζ

δ dx[ui(x)]
–1 is the ion time of flight from the right boundary to the point ζ.

Boundary condition for η∼(ζ) at the right boundary is η∼(δ) = 0. On the other hand, η'∼ (δ) is 
considered to be an arbitrary parameter.

A special case η0(ζ) ≡ 0 was considered in [4]. An analytical solution of Eq. 2 was found. In this 
paper, we study the stability features of inhomogeneous steady-state solutions without potential 
barriers so that all charged particles move in the inter-electrode gap without reflection and reach 
the opposite electrodes. The PDs typical for such solutions are shown in Fig. 1. As in the case 
of homogeneous solution we use Eq. 2 for this purpose. After calculating the first integral on the 
right-hand side of Eq. 2 in parts and substituting the result into the second term, we can rewrite 
this equation as

 

(3)

The RHS of Eq. 3 is the Volterra integral operator with a degenerate kernel. To solve this 
equation, we propose the numerical-analytical method. It is as follows. We divide the entire 
interval [0, δ] into subintervals with boundaries at the ζk points: 0 = ζ0 < ζ1 < ··· < ζN−1 < ζN = δ, and 
approximate Eq. 3 in each subinterval, replacing the functions ue

–3(ζ), ui
–3(ζ), ui

–1(ζ), ue
–3(ζ) + ui

–3(ζ) 
with their linear approximations. We solve the equations sequentially in intervals [ζk−1,ζk] starting 
from the right boundary. We designate an approximation for the perturbation amplitude η∼(ζ) in 
the interval [ζk−1,ζk] as η

∼
k(ζ) . The integral on the RHS of Eq. 3 is represented as

 (4)
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Fig. 1. PDs specific to inhomogeneous steady-state solutions: solid curve corresponds to n1, solid +  
+ dashed one to n2 and solid + dashed + dash-dotted one to n3 branches; ε0 = 0.453
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Here the kernels K
∼

j (ζ, x) are given by the same formulas as the kernel K (ζ, x), but instead of 
the functions ui

–3(ζ), ui
–1(ζ) and σi(ζ) their linear approximations on the interval [ζj−1,ζj] are used. 

Thus, the function η∼k(x) obeys the following equation

 
(5)

 
(6)

Here, Rk and Qk are the coefficients of the linear approximation of the function ue
–3(ζ) + ui

–3(ζ)   
on the kth interval. Note that by the moment the problem is solved on the interval [ζk−1,ζk], 
functions η∼j(x), j = k +1,…,N have already been found. Therefore the term Hk(ζ) on the RHS 
of (5) is known. Due to the smallness of the interval [ζk−1,ζk], the term Fk(ζ) is small. Therefore, 
the solution to problem (5), (6) within each interval [ζk−1,ζk] can be obtained using iterations. 
Assuming the RHS to be known, one can find the solution to problem (5), (6). When Qk ≠ 0 its 
general solution is

  
(7)

Here
   

                                                                       When Qk = 0 the general solution is

 

(8)

The constants ck
1 and ck

2 in Eqs. (7), (8) are determined using conditions (6). Due to the weak 
dependence of the functions Fk(ζ) on η∼k(ζ) the solution η∼k(ζ) can be sequentially refined using the 
iterations on the base of solution (7) or (8).

Using the described algorithm for a given value of the inter-electrode gap δ, it is possible to 
calculate an amplitude of the potential perturbation η∼k(ζ) for a number of values Ω = ω + iΓ, 
and, in particular, to build a dependence η∼(0) on Ω. Having the boundary condition on the left 
boundary η∼(0, Ω) satisfied, one can determine the eigen-frequencies. (Note that the value of the 
η∼' (δ) does not affect the solution of the equation η∼(0, Ω) = 0; the value η∼' (δ) = 1 was used in the 
calculations). Thus, we calculate dependencies Ω (δ), i.e. dispersion branches corresponding to 
steady-state branches nk for k > 0.

We have implemented the described approach in the study of the aperiodic stability features 
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of the nk branches for k > 0 at zero electrode potential difference. The unperturbed PDs, η0(ζ), 
for the solutions belonging to these branches at δ = 2, 4 and 6 are represented in Fig. 1. The 
PDs for ε0 < 0 can be obtained from the ones shown in the figure by reflection about ζ axis. The 
dependences of the aperiodic mode growth rate Γ(δ) for the n1 and n2 branches are shown in 
Fig. 2. It can be seen that the steady-state solutions relevant to these branches turn out to be 
unstable with respect to small aperiodic perturbations both for ε0 > 0 and ε0 < 0. We have also 
shown that nj branches with j = 3, 4 and 5 are also unstable. At points ε0 = 0, δk = πk√2 the growth 
rate vanishes, which corresponds to the bifurcation at the points, found in Ref. [4] when studying 
the stability features of the solution corresponding to homogeneous steady states.

Fig. 2. Aperiodic mode growth rate Γ vs. δ for n1 (a), n2 (b) branches: solid (dashed) curves correspond 
to the values ε0 > 0 (ε0 < 0)
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Thus, we have established that in a diode with counter flows of electrons and ions, steady states 
corresponding to the nj branches with j = 1,...,5 cannot exist. It should be noted that investigation 
of the stability features of homogeneous steady-state solution by the developed method produces 
the same results as in Ref.[4].

Numerical study of the steady-state solutions stability features

We also studied the stability features of inhomogeneous steady-state solutions numerically 
using the code described in [4, 5]. In the simulations, as in the above analytical study, it was 
assumed that at each time moment τs the electrons instantly adjust to the electric field distribution 
existing at that moment. Therefore, in the calculations, the electron density was determined by 
stationary formulas. We simulated the time evolution of a small perturbation introduced to the 
electric field stationary distribution.

The calculation was carried out for two gap lengths: δ = 2.15 and 2.2 and both signs of ε0. In 
all cases, the instability developed. For δ = 2.2 and ε0 > 0 the value of the growth rate Γ turned out 
to be 0.060, while the analytical result is Γ = 0.0616. We also compared the shape of the aperiodic 
eigen-mode of the potential perturbation amplitude obtained analytically with that obtained in 
the simulation. These curves coincide within the calculation error. For δ = 2.15 and ε0 > 0 it 
was found impossible to obtain the value of Γ from the results of simulation, since the instability 
develops too quickly and the time interval in which the transient process is still observed, goes 
directly into the region of τ values, where the linear theory is no longer applicable. On the 
other hand, at ε0 < 0, we obtained Γ = 0.029 for δ = 2.2 and Γ = 0.086 for δ = 2.15. Analytical 
calculation gives in these cases the values of 0.032 and 0.091, respectively.

After the process leaves the area where the linear theory is applicable, the PD extremum 
starts to decrease monotonically in absolute value in all cases considered. The rate of its change 
initially increases and then starts to decrease as the homogeneous solution is approached. In all 
cases, the evolution of the field distribution at last stage shows that it tends asymptotically to a 
homogeneous solution (Fig. 3). We found the values of the growth rate Γ when approaching to 
a homogeneous solution and compared them with those found analytically in [4]. For δ = 2.2, 
numerical calculations gave Γ = −0.0222, while the analytical value of the growth rate was −0.0216. 
In the case of δ = 2.15, Γ = −0.074 is obtained both numerically and analytically.

Thus, we have traced the evolution of the perturbed steady-state solutions from the n1 branch 
to reaching a stable homogeneous stationary solution. In addition, we have validated both the 
analytical results and the numerical ones.
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Conclusion

We have studied the inhomogeneous steady-state solutions stability features for a diode with 
counter-streaming electron and ion flows for the mode without reflection of charged particles 
from potential barriers, using the equation for the amplitude of the electric field perturbation 
derived in [4]. To perform the investigation, we have developed an original semi-analytical 
method for solving this equation, which works for any undisturbed potential distribution. It 
is shown that the inhomogeneous steady-state solutions corresponding to the nk branches 
with 0 < k ≤ 5 are unstable. The results of the theory are confirmed by numerical calculations 
using a high-precision numerical code. Based on our analysis we can suppose that in a diode 
with counter streams of electrons and ions, inhomogeneous stationary solutions in the mode 
without particle reflection cannot exist. Earlier [4], we found that for homogeneous steady-
state solutions there is a threshold in the value of the inter-electrode gap δth above which the 
steady-state solutions become unstable; the steady-state solutions without reflection can exist 
only when δ < δth. It is shown that in the mode without particle reflection, the main instability 
mode is aperiodic. 
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branch d0 (see Fig. 4 in [2]), there is a threshold in δ, above which the solutions turn out to be 
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counter-streaming electron and ion flows, it is necessary to develop a stability theory for the mode 
with reflection of charged particles from potential barriers. Besides, to describe the operation of 
real plasma switches, it is necessary to take into account also the scattering of ions by atoms, i.e. 
take into account the ion charge exchange [1, 3].
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