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Abstract. This paper presents considerations on the topic of creating one-dimensional Fok-
ker-Planck equation with relativistic effects. The derivation of two-dimensional relativistic
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results are used for numerical simulations of LHCD.
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Introduction

The neutral beam injection and the injection of the electromagnetic waves are main methods
of current generation in a tokamak that have been experimentally verified and validated [1]. At
present, the method of generating current using slowed-down high-frequency waves of the lower
hybrid (LH) frequency range ( Af= (1-10) GHz) is widely used in classical tokamaks (with an
aspect ratio of R/a > 2). It has the highest theoretically and experimentally confirmed efficiency.
The method is based on the effect of the transmission of a pulse by a slowed-down RF wave in
the lower hybrid frequency range to electrons due to Landau damping. As a result, the electron
distribution function (EDF) is deformed, which ensures an increase in the total current in the
tokamak plasma.

In the FRTC [2, 3] code, the calculation of the quasilinear diffusion coefficient is performed
using the ray tracing method, where the wave equations for LH waves are solved under the
geometric optics approximation. The injected wave power is absorbed via the Landau resonance
by the electrons with velocities equal to the wave’s phase velocity. As a result, the process
of quasilinear diffusion on waves forms a plateau in the electron distribution function in the
region of resonant velocities (there is a transition of particles from the region of lower to higher
velocities with a concomitant increase in the kinetic energy of the particles). During the process
there are statistically more fast particles than in an equilibrium state, hence a current arises, the
time dynamics of which generate a vortex electric field. In its turn, this field begins to accelerate
continuously those electrons in the tail of the distribution function, in which the electric field
driving force is stronger than the minimum frictional drag force. Thus, a “tail” of fast particles
is formed. The problem with the existing method is that this tail can extend up to speeds of
0.5—0.6 ¢ since the code solves the one-dimensional Fokker-Planck equation without relativistic
effects. This leads to an increase in the value of the generated current. This can make a negative
impact on the planning of further experiments and on the scaling up of this technology to larger
machines. Therefore, this paper describes an attempt to develop a one-dimensional relativistic
equation, which would be possible to use in conjunction with ray tracing.

Fokker-Planck equation with relativistic effect

Let us consider a wave packet propagating at an angle to the external magnetic field B)= B,
in a homogeneous plasma. The wave field can be expressed as

E(F) = j dk_ Ak, ) exp(ik x + ik, z — o) + c.c. (1)
Vlasov’s kinetic equation Withign external magnetic field for magnetized plasma is [4]:
£+vii+(D 0 (E+eka) 0 1. =St(f.) (2)
ot ox, vy 00 p,

where 6 — azimuth angle of the cylindrical coordinate system in momentum space, o, = eB/mc,

1
pk = Y(V)mevka Y =—2
v
ﬁZ

We will only examine the left-hand side of our equation. We are looking for a solution in the

and St (f) — collision operator in Landau form.

1 o
form of £, =f, + f©, where f(p,f) — is an isotropic distribution function and /" = —J- dk_f (k)

— is the correction associated w ith the perturbation by waves in the plasma. Let us denote
by v, k. the compgnents of the vectors v, kK along B field, and by v, k, the components in
the perpendlcular B plane. Let 6 be the angle between v, and the plane B (so[exe]=¢.
Substituting all this 1nt0 equation (1), we can obtain
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From equation (3) it is clear that df, /98 = 0, i. e. f can be any function depending only on p,
and p: f, =/, (p,, p, )- By integrating equation (4), we obtain '

fO%)= | v —Lexp(iod —ik s1n(9))J- d0 exp(iksin(0)—iod)x

C
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Using the relation exp(iA sin(8) = %, J (1) exp(ip®) and holding back only the terms responsible
for Landau's resonant interaction with elpectrons we find the correction fV(k):

—ihsin(0)) - -
f(l)(kz):l,|e|yexp( il sin( ))l(kz)-A(kz)gfo(pupll) (6)

20 o

c

where [ (k)= [O iJ, (7\,) M oJ (7\‘)}

Substituting this into (2), we obtain an equation to describe the evolution of the function f:

o a |e| — vx(/;XA*) 6f(l)(kz)
9 4y, A —ce=S
[6to+v’ oy aejfo I—w T o 5 coSih)

Again, considering only the resonance terms w = kv, after averaging over the angle 6, and
averaging over the random phase ((FA(k))" (FA(k.))) = 271:|(l A(k))P we get

ao z|e| a |l ) A(k)P o
- — f,—cc.= St 8
— Lk o kv, o (/) ®)
Based on the Sokhotski-Plemelj theorem n () dx =v. p.'[ f( ) ——dx +inf(0).
- xtie
Reducing the corresponding integrals in the sense of the Cauchy principal value, we get:
of, n|el (= 0 - - 5 0
————| dk.— |l (k. )-A(k.)] O(0—kVv )— f, =5t 9
oy kg T (k) Ak )P 80—k )2 fy=St(1) ©)
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2
TC€|
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This is the Fokker-Planck equation, where
diffusion coefficient. 2

To reduce this equation further to a one-dimensional one it is necessary to make some
assumptions on the distribution function. In the absence of collisions, the relativistic collision
operator from [5] is going to zero and the solution of the equation should be the Maxwell—Jiittner
distribution function [5, 6]:

L 1 _l £Q_2 fﬁ_z
f(p)_4nm3c3[3K (IJ - B\/l—i_(mcj -{mcj (10)
B

where B = T/mc? and K2 — is the Macdonald function.
Provided that p, < p,

2 2 2 2

7(5) o exp| -~ 1+(ﬂ) A 2] xexpl =1 i+ 2| fexp| —L P | (1)

B mc 2B P 2

1+(“J

mc

Thus, the attempt to factorize the equilibrium distribution function leads to a nonlinear
dependence of the transverse component on the longitudinal momentum. That is, the
transverse temperature in such a case is a function of the longitudinal momentum even in
the equilibrium case. Accordingly, in the nonequilibrium case, after exposure to the wave
field and vortex field, followed by scattering on the cloud of “warm” particles, the transverse
component of the distribution function will continue to depend on y(p ), but only by a law
significantly different from the equilibrium one. Hence, it is necessary to average over an
arbitrary transverse distribution function. But then we will obtain moments of distribution
function that depend on y(p,). The calculation of the moments would already require further
assumptions on the form of the transverse component f{p). Any such assumptions introduce

only additional inaccuracy into the calculations, compared with the one-dimensional model
without relativism.

Conclusion

As a result, the correct approach from the computational point of view is the subsequent
refinement of the two-dimensional model to calculate the distribution function using the
ray-tracing module. This approach will allow us to calculate the scattering of particles more
correctly and, among other things, to take into account such effect as backward runaway
electrons.
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