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Abstract. The directional coupler formed by a system of two dual-mode optical waveguides
is studied with the aim of being used as a switcher for a nonlinear optical CNOT quantum
gate. The paper focuses on simulation of behaviour of electromagnetic radiation in regions of
juxtaposition and separation, that surround the main coupling region and are composed of
several circularly bent waveguides. The modes of bent waveguides are approximated as linear
combinations of the guided and leaky modes in the straight waveguide with the same width
and refractive indices. An advanced coupled mode theory is applied to describe the coupling
between bent parts of the coupler. The system of differential equations for amplitude coeffi-
cients is solved with a finite difference method. The influence of signal distortions is analyzed.
The results obtained are applied to correct the geometrical parameters of the coupler. The
computational error of the whole device due to waveguide bends distortions is estimated to not
exceed 5%.
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AnHoramusa. JlaHHasi paboTa TIOCBSIIEHA MOJAEIUPOBAHUIO B3aWMOJEUCTBUSI CHUCTEMBI
OJIM3KO PACTIOJIOXEHHBIX ONTUUYECKUX BOJHOBOIOB C IIEJIBIO €€ MCITOJb30BaHMSI B KaueCTBE
nepexiovarenss i peanusauuu kBaHtoBoro CNOT Bentunsg. B pabore mnpoBoautcs
MOJECIMPOBAHUE IIOBEACHUS 3JEKTPOMArHUTHOIO U3JIy4YeHUs B 00JacTsIX COMMKEHUs u
yOaJeHUsT BOJTHOBOAOB, CMEXHBIX C IPSIMbIM Y4aCTKOM OOMEHA SHEPrUsIMM, M COCTOSIILIMX
W3 HECKOJbKUX W30THYTBIX BOJHOBOMOB. MOIBI HM3O0THYTHIX BOJHOBOIOB ITPUOIMKEHHO
paccMaTpuBalOTCS Kak JIMHEHHBIE KOMOWHAIIMM HAIPaBISIEMBIX W BBITCKAIOIIUX MO
IIPSIMOTO BOJTHOBOMA C TEMM K€ TOJNIIMHON M KO3(PPUIIMEHTOM IIpeToMIcHus. I ormmcaHus
B3aUMOIEUCTBUS MEXIY M30THYTbIMM YACTSIMU CXEMbl IIPUMEHSIETCS MOAMMPULIMPOBAHHAS
Teopust CBsI3aHHBIX MoA. Cuctema nuddepeHUnalbHbIX YpaBHEHUI pelaeTcsl C MOMOIIbIO
MeTOoJa KOHEYHBIX pasHocTeil. M3yuaercs BauMsHUE HWCKaxeHUil curHajia. [losydyeHHbIe
pe3yabTaThl TPUMEHSIIOTCS IS TOTO, YTO CKOPPEKTHPOBAaTh TEOMETPUUECKME IMapaMeTphI
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cucreMbl. B pe3yabTat€ MOACIMPOBAHMA II0OKa3bIBACTCA, UYTO BBIYMCIWUTCIIbHASA omunobka
BEHTUJIS BCIASACTBUE MCKAXEHUI CUTHAJIa Ha M3rnbdax He NPEBLIIIACT 5%.

Kniouesbie ciaoBa: BOJIHOBO/bI, KBAHTOBbLIC BBIYUCJICHUA, TCOPUA CBA3AHHLIX MO, CNOT
KBAHTOBBIN BCHTUWJIb, U30THYTHIC BOJITHOBO/bI, BEITCKAIOIINC MO/JbI
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Introduction

The problem of physical implementation of the prototype of quantum computer is indeed an
important question since the idea was proposed by Feynman [1], so it would be possible to solve
a series of numerical problems with notable computational acceleration. Quick decoherence is a
major obstacle encountered in this way (see, e.g., [2]). The optical model of quantum computations
is an essential way to get around this hurdle since photons are known to be characterized with a
relatively low interaction efficiency.

There are two main approaches to the optical model, namely linear optical and nonlinear. The
former [3] is based on employing various linear optical devices, such as mirrors, beam splitters
and phase shifters. In [4] it is shown that this approach allows to create a probabilistic CNOT
gate with 1/9 probability of success. Such a low probability makes these gates hardly applicable
for a practical computational scheme. The latter approach is described in [5]. It increases the
probability of successful gate operation, but at the cost of long optical paths effectively making
the gates susceptible to computational errors.

The idea described in [6] is an approach to curtail the optical paths by increasing the intensities
of nonlinear interaction. The article introduces the optical scheme to implement the nonlinear
CNOT gate that could be used to compute by using both single photon quantum states and
classical quantum-like photonic states. In [7] we studied the latter case. Quantum bits are encoded
by optical transverse modes of optical waveguides, namely 7, mode encodes |0) state and TE,
encodes [1). The stronger is the TE, part of the signal in control waveguide the larger part of it is
transferred into the upper arm of the MZI in the target waveguide and the stronger is the phase
shift in nonlinear parts with intensity dependent refractive index, while TE, mode is pertained in
the control waveguide. However, for the scheme to correctly work the coupling length L and the
distance between coupled waveguides R are required to be matched in a specific way.

Directional couplers

Control

waveguide
—_

L — ——

Target
waveguide < \
—

Phase compensator Kerr-like nonlinearities
Fig. 1. Optical CNOT quantum gate

In [7] we applied a conventional coupled mode theory [8] to the straight part of the directional
coupler and obtained an analytical solution for amplitude coefficients of the modes as trigonometric
functions of spatial coordinate, so an explicit condition on the coupling coefficients ratio allowed
us to adjust the geometrical parameters in a desired way. However, possible distortions to the
state of quantum bit due to coupling and losses in the bent parts of the directional coupler were
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not considered. In this paper these parts of the directional coupler are studied. The field in the
system is decomposed into a sum of bent waveguide modes and a modified coupled mode theory
is applied to access and correct the distortions.

Modes of the bent waveguide

The spectrum of an ideal bent waveguide unlike that of the straight one does not include a
discrete set of guided modes; it is fully continuous. However, not unlike the spectrum of straight
waveguide radiation modes it can be approximated with a set of modes with complex propagation
constants. This decomposition is not unique, in [9] one of the possible ways is discussed. The idea
is to represent bent modes as a linear combination of modes of the straight waveguide with the
same width and refractive indices. In the plane where the angular distance is zero the field in the
bent waveguide can be represented as a linear combination of them of the straight waveguide. The
angular distance accumulates the phase and attenuation with a propagation constant

exp[—iv’d@] E} (%) lpo= E} (X) lo_go= D@L E, (x)exp[—iBn (R, + x)dz], (1)
n=1

where E/ is the transverse field distribution of j-th bent mode, £ is that of n-th straight mode, R,
is a radius of bending and v, is a propagation constant of the bent mode. It is possible to rewrite
the equation (1) into the eigenvalue problem for eigenvalues v, and eigenvector @

(R,B+D”'CB)a’ =v’a’, j=0,1,2 ()
where
B, =B, 3)
C, = j: E'(X)E’ (x)xdx, 4)
D, = j“’ E'(x)E’ (x)dx. (5)

In [9] the numerical experiment shows that the set of straight waveguide modes composed of
all supported guided modes and one leaky mode of the lowest order is sufficient to get a valid
approximation of the field in the bent waveguide with sufficiently large radius of curvature.

Snyder [10] shows that leaky mode propagation constants can be found from the same
characteristic transcendental equation as that for guided modes, however it should be solved on
the complex domain. The root with the real part closest to that of the guided mode of the highest
order will represent a lowest order leaky mode. Thus, it could be found with a Newton-Raphson
method initialized with the propagation constant of the TE, mode. The complex propagation
constant describes a leaky mode, that behaves similar to the guided mode in the proximity of the
waveguide core, however, is attenuated due to the negative imaginary part. The solution of (2)
yields three propagation constants, each of them representing one of the bent modes. v, and v,
are expected to have significantly smaller imaginary parts than that of v, since bent TE, mode is
formed primarily by the straight leaky 7E, mode. Hence, the model describes two main sources
of the signal loss: an attenuation of weakly radiative TE, and TE, modes and a loss of the signal
at straight-to-bent waveguide transitions.

Simulation of coupling in juxtapositions and separations

In this paper regions of juxtaposition and separation that surround the straight part are divided
into two bent parts and one straight inclined part (see Fig. 2).

In order to estimate losses in the bent parts and coupling in the whole region a modified
coupled mode theory is employed. For simplicity only the coupling between the fields with the
same z coordinate is considered, which serves as an approximation of the real field behaviour
in the system, however, it is expected to suffice to estimate the distortions due to losses and
coupling in the bent parts. Under this assumption it is possible to conduct the same derivation
of differential equations for mode amplitude coefficients as it was done for the pair of straight
waveguides in [7].
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Fig. 2. The scheme of directional coupler
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However, it should be noted that coupling coefficients are integrals of bent modes field
distributions.

15":12 - jjw(mgo)(nfm -1, )Ef;1 (x)E,_ (x)cos(o)dx, ™
where o is an angle between the direction of the local longitudinal axis of waveguide and the
global one. By applying the decomposition (1) it is possible to express bent coupling coefficients

in terms of the straight ones as

2
D, = z Oam;amij;cos(a), m;,m, =0,1. (8)
my,my=
The coupled mode theory for inclined straight parts remains the same as for the straight except
for multiplication by cos(a).
In order to account for distortions at straight-to-bent transitions a mode matching procedure
is employed, the amplitude coefficients A  can be expressed from them of bent waveguide modes

A as
m

v A E OB () + 4, E (0 (x))dx
[E,0E, (x)dx '

The modes of bent waveguides are not orthogonal strictly speaking, however, numerical
calculations showed them to be small, thus for simplicity the reverse transition can be described
with similar equations

)

A

(10)

A B (OB, () + 4, B} (DE, (x))dx

A [ TELE (v)ax |
The system of differential equations (6) is solved with the finite difference method.
Numerical results

The technique discussed above was applied to the system with refractive indices of waveguide
core and cladding n,, = 1.57 and n, = 1.55 correspondingly, width of waveguide d =1.18
pm, radiation wavelength A = 1.064 pm, radius of bending R, = 100 um and the minimal
distance between the waveguides outside of the coupling zone R.= 100 um. The distance between
waveguides in the coupling zone is taken from [7] as R = 2.3/6 um. The resulting propagation
constants are given in Table 1. The resulting behaviour of amplitude coefficients of signal modes
is given in Figures 3—4.

Amplitude coefficients are normalized at they would be during the measurement at the output
since the relation |4 > + |4, [> = 1 must be fulfilled despite attenuation and losses at straight-to-
bent transitions. It can be concluded that attenuation and straight-to-bent transitions affect both
modes in a very similar way and hence do not distort the quantum states notably. However,
additional coupling regions do increase the phase of periodic energy exchange between the
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Table 1
Propagation constants
Propagation constant TE, TE, TE,
B. 9.234 9.156 9.049-0.241i
straight
B, . 9.264-0.005i | 9.130-0.005i | 9.044-0.236i
Notations: .. and B, are the propagation constants of given modes in the straight and bent waveguides respectively
61) Modes in control waveguide b) Modes in target waveguide
[A0o(2)]; 1A01(2)] 1A10(2)l; |A11(2)]
1.0/ 1.0
0.8 0.8
_TE _TE
0.6 e, 0.6 e,
0.4 0.4
0.2 0.2
0 200 400 600 8o 1000 ~F™ 0 200 400 600 so0 1000 > F™
Fig. 3. Amplitude coefficient in (a) control waveguide (b) target waveguide
a) ) i b) _ )
Modes in control waveguide Modes in target waveguide
1A0o(2)l; |A01(2)] [A10(2)l; 1A11(2)]
1.0/ 1.0
0.8 0.8
—TE — TE
0.6 1 0.6 _ e
0.4 0.4
0.2 0.2
0 200 400 600 800 zHm 0 200 400 600 800 z km

Fig. 4. Amplitude coefficient after corrections to parameter L in (a) control waveguide (b) target
waveguide

waveguides, thus the computational error of the devise cab be reduced by modifying the coupling
length L. The results are provided in Fig. 4.

The corrected coupling length L allows the device to transfer the TE, mode to the opposite
waveguide with the error of 2%, thus the error of the whole CNOT gate can be estimated to be 5%.

Conclusion

The model of directional couplers based on the coupled mode theory discussed provides a
tool to perform a computationally fast simulation of the behaviour of electromagnetic radiation
within the system. Moreover, it allows to estimate the influence of distortions due to waveguide
bending and straight-to-bent transitions. Application of this technique has shown that distortions
do not affect the state of waveguide quantum bits notably, while the coupling at juxtapositions and
separations do increase the phase of periodic energy exchange between the waveguides, however,
it could be negated by decreasing the coupling length L. It was shown that the cumulative
computational error due to distortions caused by bent parts and intermodal interaction does
not exceed 5%, which could be coped with by application of quantum correction algorithms.
However, despite both modes being attenuated similarly, the total attenuation of the signal in the
computational scheme was found to be around 25%. That could be a source of potential difficulties
for creating the device composed of a large number of CNOT gates applied sequentially.
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