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Abstract. The work is devoted to the improvement of the k-0 BSL turbulence model for
the closure of Reynolds averaged Navier-Stokes (RANS) equations with the use of machine
learning (ML) methods. The correction developed for this model enhances its accuracy in cal-
culating airfoil flows at stall angles of attack. Testing of the modified model on the flows around
different airfoils reveals its superiority for this type of flows. The results demonstrate efficiency
of the ML methods for turbulence model improvement.
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AnHotanuda. JaHHasg pa®oTa MOCBSIIEHA YAYYIIEHWI0 MOIETN TypOysIeHTHOCTH K-w BSL,
WCTIONIb3YeMOU I 3aMbIKaHUs OCpPeJHEeHHBIX Mo PeiiHonbacy ypaBHeHuit Hasbe-Crokca,
IIPY TIOMOIIA METONOB MAaIIMHHOTO o0yueHus1. Koppekims, pa3paboTaHHAasT 11T 3TOM MOMIEIIH,
MOBBIIIAET €€ TOYHOCTD IIPU pacyeTe 00TeKaHUI KPBLUIOBBIX ITpoduIIeil IIpH yriiax aTakKyd cpbiBa
notoka. TecTupoBaHue MOAUMUIIMPOBAHHONW MOAEIU ISl PA3JIUMYHBIX KPBLIOBBIX Mpoduicii
JIOKa3bIBaeT MPUOPUTETHOCTb €€ WCMOJb30BaHUS ISl JAHHOIO THUIAa TeyeHuil. PesynbTaThbl
NEMOHCTPUPYIOT 3(P(HEKTUBHOCTh METOOB MAIIMHHOIO OOyYeHUS IS YAy4YLIeHUS Moaeei
TypOYJIEHTHOCTH.
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Introduction

Models for closure the Reynolds Averaged Navier-Stokes (RANS) equations have been
developed for almost 100 years and up to the present time they occupy a dominant position in
solving applied problems of calculating turbulent flows. The main advantages of these models are
the simplicity of their implementation and efficiency, as well as the availability of well-established
computing technologies for performing calculations using them. This opens up the possibility
of carrying out serial calculations necessary for the creation and optimization of new designs.
However, even the best RANS models are not universal; provide a reliable prediction of averaged
characteristics only for a limited range of relatively simple flows, which serves as a stimulus for
numerous studies devoted to the construction of new and improving the accuracy of existing
models.

Until recently, the model improvement study was carried out “by hand” and largely relied on
physical intuition, and its success largely depended on the experience of researchers, which led to a
certain “stagnation” in this area. On the other hand, advances in the development of measurement
methods and computing systems have led to the fact that in recent years the knowledge base on
the results of physical and numerical experiments with a high accuracy (“reference” data) has
significantly expanded and effective tools have appeared that allow analysing large volumes of such
data. In this regard, the possibility of improving existing turbulence models based on information
obtained from the analysis of “reference” data has opened up. One of the most effective methods
for solving this problem are Machine Learning (ML) methods, which allow to analyse and
generalize huge arrays of reference data and connect many objects of the training sample with
many answers using a special function called the Neural Networks (NN). This function, which is
a correction to the model under consideration, can later be used to solve problems that were not
included in the training set.

The first works aimed at improving RANS models using “reference” data and machine
learning methods were devoted to eliminating the so-called parametric uncertainties caused by
inaccuracies in determining the empirical constants of RANS models [1-3]. However, as shown
in [4], a much more significant contribution to the discrepancy between the simulation result and
“reference” data is made by the so-called structural uncertainties due to the imperfect formulation
of the models. This gave impetus to the development of methods aimed at eliminating structural
uncertainties by introducing appropriate functional corrections into the model equations [5-7].
However, when using ML methods that use “reference” data to eliminate structural uncertainties,
the difficult task of matching between the learning environment (for example, DNS data) and the
learning object (RANS model) arises. Thus, according to [8,9], if even very accurate DNS data
are used as input data for ML, then the results of RANS modeling supplemented with such ML,
contrary to expectations, may turn out to be unsatisfactory.

To eliminate this shortcoming, Duraisamy et al. [10] proposed a two-stage technique for
supplementing RANS models with “reference” FIML (Field Inversion and Machine Learning)
data. Within the framework of this technique, the result of solving the inverse problem is used as
input data for ML, which is the spatial distribution of the correction introduced into the model to
eliminate structural uncertainties. Later, this approach was developed and tested by the Duraisamy
group on various problems, including the flow around airfoils at high angles of attack [11, 12].

One of the task where computation accuracy can be significantly improved by modification
of the turbulence model is flow around airfoils at stall angle of attack where the flow is separated
and maximal lift coefficient is achieved. This task is very important for aviation and wind power,
as well as for turbomachinery flows. Even the best turbulence models systematically overpredict
the maximum lift coefficient and corresponding angle of attack [13].

Recently FIML method was implemented into ANSYS Fluent code. In the current work it is
used for improvement of the k-0 BSL [14] turbulence model for the flows around airfoils with
the double precision version of ANSYS Fluent 2022R1. The pressure-based coupled solver was
employed with the Second Order Upwind discretization scheme for the convective terms in all
transport equations. All the presented results are grid and iterative converged.

© Maromenko A.A., lonyokos B./L., l'apbapyk A.B., Crpenenr M. X., 2023. U3natens: Cankr-IletepOyprekuii moauTeXHUIeCKuit
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Considered testcases

Four aerodynamic airfoils were considered for development of the model modification and its
verification. S805 airfoil at o = 11° was chosen for the model development, whereas prediction of flow
around S805, S809, S827, DU-96-W-180 airfoils in wide range of angles of attack was used during
its verification study. Experimental investigations of the considered airfoils [15—18] were carried out
in low turbulence wind tunnels (/ <1%). at relatively high Reynolds number (Re > 106) based on
airfoils chord and freestream velocity. Since the experimental Mach number did not exceed 0.15,
incompressible flow is considered. For all cases, the computational domain shown a rectangular
shape representing a 2D slice of a wind tunnel test section with the height H corresponding to
experimental one. The angle of attack corresponds to the geometrical rotation airfoil in the tunnel.
The size of the computational domain and flow parameters are presented in Table 1.

Table 1
Setup parameters for the flow around considered airfoils

Airfoil H/C Re Tu, (%)

$805, 15% 3.6 1x10° 0.05

DU-96-W-180, 18% 3.0 2x10° 0.04

$809, 21% 5.0 4x10° 0.06

ikl

5827, 21% 3.0 3><106 0.08

Inlet and outlet boundaries are located at a distance of about 10C upstream and downstream
of the airfoil leading edge. The boundary conditions are set as follows. Non-slip conditions are
specified on the airfoil. A constant velocity is specified at the inlet section of the computational
domain. Inlet turbulent kinetic energy corresponds to experimental turbulence intensity and the
specific dissipation rate is specified as o = 10-U,_/C [14]. No-slip conditions are used on the
airfoil surface and constant pressure is specified on the outlet. The computational meshes were
refined normal to the wall in order to resolve the viscous sublayer (Ay,* <1), near the leading edge
in the streamwise direction for a proper resolution of thin boundary layer, and near the trailing
edge. This results in about 400 points along the airfoil and a total mesh size of about 100,000 cells.

Modification of the model

The modification was developed by adding source term S in o equation of the original BSL
model:

O(pu,®
Wo0) T 1 p e+ + 0,0 L2020 - 1) RO K20 g
ot Ox; , Ox; Ox; ® Ox; 0x,
m-equation of the original BSL model [14]
with
S, =C, po’ ()

where C is a function of non-dimensional parameters, obtained using machine learning methods
in several stages. At the first stage the optimized field of C was obtained using the adjoint solver
in combination with simple iterative optimizer by minimization of the cost function £

; OF

i-1
= Cw,adjoim - 7\’ i1 . (3)

6Cm,adjoint

Here A is the non-dimensional adaptive parameter responsible for the speed of optimization.

The definition of £ will be given later.

238

c, =C

®,adjoint



4 Simulation of physical processes >

The second stage is an approximation of the adjoint optimized C, field from the first stage by
neural network as a function of input non-dimensional parameters:

C,=C, w = NN(input,,..input,) 4)

Finally the C coefficient was applied to the o equation and verification study of the modified
model (BSL- NN) was performed.

Optimisation of Co field and NN training

As mentioned above, the model modification was developed based on the prediction of flow
around S805 airfoil at near stall angle of attack a = 11. For such flow regime the original BSL
model delays separation on the suction side and, as consequence, ovepredicts experimental lift
coefficient. Therefore the cost function £ from Eq. (3) is built based on the difference between
the computational C, and experimental C, = 1.19623 value of lift coefficient (first term) and
minimization of C (second term) reads as: )

+BZ(Cw,adjoint) . (5)

E=|C,-
cells

During the adjoint optimization design iterations the computational lift coefficient is adjusted
to the expenmental value by modification of the C fields shown in Fig. 1 (right). It is well
seen that the C is positive on the suction side of the airfoil. Thus S source term provides the
additional d1ss1pat10n and, as consequence, accelerated separation on the suction side. These
effect is confirmed by streamwise velocity contours and streamlines which visualize the separation
zone on the suction side of the airfoil for the original and the modified models (Fig. 2). The
modification strongly shifts the separation point toward leading edge and increases the size of
recirculation zone. This improves the agreement of the computed pressure coefficient with the
experimental data (Fig. 3).
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Fig. 1. Convergence history of simple optimizer and optlmlzed C field for S805 airfoil at o = 11°

o~ o~

Fig. 2. Contours of streamwise velocity component and streamlines for original (left) and optimized
(right) BSL model for S805 airfoil at a = 11°
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Fig. 3. Distribution of pressure coefficient on the S805 airfoil at o = 11° for the original and adjoint
modified BSL model
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During NN training of the C is considered as a function of three parameters

chNzNN( sk V'J. (6)

0.30°0.090d " v

The training is carried out using three hidden layers (24,16 and 8 nodes) with following
activation function:

1
1+ x|

S(x)= (7

The comparison of the skin friction and pressure coefficient on the airfoil shown in Fig. 4
demonstrates that the NN results is almost the same as results obtained with the adjoint solver.
Taking into account the good agreement of the adjoint results with the experimental data one can
see that the modified model also predicts experimental distribution well.
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Fig. 4. Distribution of pressure (left) and skin friction (right) coefficient for S805 airfoil at o = 11°
predicted with the adjoint and NN modified BSL model

Verification of modified model

Computations using the original and modified versions of the BSL model for the considered
airfoils show that both models predict virtually the same lift coefficient for low and angles of attack
(a<10°) when the flow is attached (Fig. 5). At higher angles of attack the modified BSL-NN model
predicts lower value of the lift coefficient due to the larger size of the recirculation zone. Thus
lift coefficient distribution for modified version is in better agreement with the experimental data
for all the considered airfoils over a wide range of angles of attack than the original BSL model,
which strongly overpredicts lift value. For S827 airfoil BSL-NN model improves prediction of the
lift coefficient even at low angles attack due to earlier stall than for other cases. For this airfoil
separation on the suction side starts at .= 1°. However for some angles of attack in stall regime
the BSL-NN results still differ from the experimental data. This phenomenon can be described
by the effect of the 3D so-called “mushroom cells” structures in the experiment, which cannot
be predicted in 2D setup.
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Fig. 5. Comparison of experimental and computational lift coefficient at different angles of attack for
original BSL and modified BSL-NN model
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Conclusions

Proposed modification of the k-@ BSL turbulence model with machine learning methods
significantly improves the accuracy of prediction of aerodynamic characteristics over airfoils
in wide range of angles of attack (o = 0°—20°). The results demonstrate the efficiency of the
machine learning methods for turbulence model improvement.

Acknowledgements

The results of the work were obtained using computational resources of Peter the Great Saint-
Petersburg Polytechnic University Supercomputing Center (http://www.spbstu.ru).

The study was carried out within the framework of the scientific program of the National
Center for Physics and Mathematics (project “Mathematical modeling on supercomputers with
exa- and zettaflops performance”).

REFERENCES

1. Cheung S.H., Oliver T.A., Prudencio E.E., Prudhomme S. and Moser R.D., Bayesian uncertainty
analysis with applications to turbulence modeling Reliab. Eng. Syst. Saf. 96 (2011) (9) 1137—1149.

2. Margheri L., Meldi M., Salvetti M. and Sagaut P., Epistemic uncertainties in RANS model free
coefficients Comput. Fluids 102 (2014) 315—335.

3. Edeling W.N., Schmelzer M., Cinnella P. and Dwight R.P., Bayesian predictions of Reynolds-
averaged Navier—Stokes uncertainties using maximum a posteriori estimates, AIAA J. 5 (6) (2018)
2018—2029.

4. Papadimitriou D.I. and Papadimitriou C., Bayesian uncertainty quantification of turbulence
models based on high-order adjoint Comput. Fluids 120 (2015) 82-97.

5. Dow E. and Wang Q., Quantification of structural uncertainties in the k—w turbulence model,
52nd AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics and Materials Conference,
Denver Colorado AIAA April Paper (2011) 2011-1762.

6. Singh A.P and Duraisamy K., Using field inversion to quantify functional errors in turbulence
closures Phys. Fluids 28 (2016) 045110.

7. Xiao H., Wu J.L., Wang J.X., Sun R. and Roy C., Quantifying and reducing model-form
uncertainties in Reynolds-averaged Navier—Stokes simulations: a data-driven, physics-informed
Bayesian approach J. Comput. Phys. 324 (2016) 115—136.

8. Poroseva S.V., Colmenares F.J.D., Murman S.M., On the accuracy of RANS simulations with
DNS data Phys. Fluids 28 (2016) (11)

9. Thompson R.L., Sampaio L.E.B., de Braganca Alves F.A., Thais L. and Mompean G., A
methodology to evaluate statistical errors in DNS data of plane channel flows Comput. Fluids
130(2016) 1-7.

10. Duraisamy K., Zhang Z.J., Singh A.P., New Approaches in Turbulence and Transition Modeling
Using Data-driven Tehniques 53rd AIAA Aecrospace Sciences Meeting AIAA SciTech AIAA Paper
(2015) 2015-1284.

11. Parish E.J., Duraisamy K., A paradigm for data-driven predictive modeling using field inversion
and machine learning J. Comput. Phys. 305 758—774.

12. Singh A., Medida S., Duraisamy K., Machine-Learning-Augmented Predictive Modeling of
Turbulent Separated Flows over Airfoils AIAA J. 55 (7) (2017) 2215—2227.

13. Matyushenko A.A., Kotov E.V. and Garbaruk A.V., Calculations of flow around airfoils using two-
dimensional RANS: an analysis of the reduction in accuracy St. Petersburg Polytechnical University
Journal: Physics and Mathematics 3 (1) (2017) 15—21.

14. Menter F.R., Zonal Two Equation k- Turbulence Models for Aerodynamic Flows AIAA Paper
(1993) 93-2906.

15. Somers D.M., Design and Experimental Results for the S805 Airfoil NREL/SR-(1997) 440-6917.

16. Somers D.M., Design and Experimental Results for the S827 Airfoil Period of Performance
(2005) 1998—1999.

17. Somers D.M., Design and Experimental Results for the S809 Airfoil, NRELSR-(1997)440-6918.

18. Timmer W.A. and R.P.J.O.M. van Rooij, Summary of the Delft University Wind Turbine
Dedicated Airfoils AIAA Paper (2003) 0352.

241



4St. Petersburg Polytechnic University Journal. Physics and Mathematics. 2023. Vol. 16. No. 1.1

I
THE AUTHORS

MATYUSHENKO Aleksey A. GARBARUK Andrey V.
alexey.matyushenko@gmail.com agarbaruk@mail.ru

ORCID: 0000-0002-2775-9864
GOLUBKOY Valentin D.
golubkovvd@gmail.com STRELETS Michael Kh.
ORCID: 0000-0001-9473-7430 strelets@mail.rcom.ru

Received 17.10.2022. Approved after reviewing 06.12.2022. Accepted 07.12.2022.

© peter the Great St. Petersburg Polytechnic University, 2023

242



