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Abstract. The discrete element method (DEM) is used to reveal the main features of frac-
ture in materials with different degree of heterogeneity. It is shown that this method adequately
describes the main properties of materials in the fracture process such as brittle and ductile
behavior, two-staged nature of fracture in heterogeneous materials, heterogeneity of the spatial
distribution of local internal stresses depending on the degree of material heterogeneity.
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AnHoTanusa. Meton IVCKPETHBIX 3JIEMEHTOB IPUMEHEH IS BBISBICHUSA 3aKOHOMEPHOCTEN
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TCTCPOr¢HHbLIX MATCpHUAIOB, A4 TAKXC HCOAHOPOAHOCTb MPOCTPAHCTBCHHOI'O pAaCHpCacjaCHUA
BHYTPCHHUX JIOKAJIbHBIX HaHpH}KeHI/Iﬁ B 3aBUCUMOCTH OT Ir€TCPOTCHHOCTHU MaTcpuaia.

KnoueBbie cioBa: IIPOYHOCTb M Pa3pyHICHUEC MaT€praioB, METOA AUCKPETHBIX 9JICMCHTOB

®unancupoBanne: PabGorta BbimosHeHa B pamkax [ocymapcrBeHHoro 3aganus OTU
uMm. A.®@. Nodpde «IIpobiiembl GU3MKKM MPOYHOCTU: MPOLECCHl Pa3pylIeHUs] TBEPIAbIX Tell,
NPUHLMIIBI YIPOUHEHUSI MaTepUaaoB U MOBBILICHUSI TUHAMUYECKON MPOYHOCTU MaTepUaioB,
CcO3/aHue TPEUIMHOCTOMKUX, U3HOCOCTOMKMX MaTepuasoB, pa3paboTKa TEXHOJIOTUU JIerkou
npo3pauyHoit 6poHu» (kox Tembl [0040-2014-0008]).

Ccpuika mpu mutupoBanum: I'unspoB B.JI., Jlamackunckasi E.E. IlpumeneHue wmertoma
JIMCKPETHBIX 3JIEMEHTOB JIUISI MOACIMPOBAHUS pa3pyLICHUs IMTOJMKPUCTAINYSCKIX MAaTEPUAJIOB
// HayuHno-texuuueckue Benomoct CITI6I'TTY. ®usuko-maremarnueckue Hayku. 2023. T. 16.
Ne 1.1. C. 231—235. DOI: https://doi.org/10.18721/ JPM.161.139

CraTbsl OTKPBHITOTO AoCTyma, pacrnpoctpaHseMas no jguieH3uu CC BY-NC 4.0 (https://
creativecommons.org/licenses/by-nc/4.0/)

© Hilarov V.L., Damaskinskaya E.E., 2023. Published by Peter the Great St.Petersburg Polytechnic University.
231



4St. Petersburg Polytechnic University Journal. Physics and Mathematics. 2023. Vol. 16. No. 1.1

Introduction

Fracture of materials remains to be the actual problem in connection with ongoing natural and
technogenic catastrophes. At the same time, it is important to understand that fracture is not some
kind of critical event that can be prevented by using materials with a safety margin or geometric
dimensions with the ability to withstand the specified mechanical loads. On the contrary, fracture
is a process evolving in space and time [1], and the parameters of materials, such as elastic
moduli, local mechanical stresses and strains, structural rearrangements, and discontinuities, can
undergo significant changes in this process. This process can be accompanied by various types of
radiation (acoustic and electronic emission, mechanoluminescence), the parameters of which can
serve as indicators or precursors of various kinds of events in the fracture process.

In contrast to the continual mechanics methods, the discrete element method (DEM) used
in this work allows one to take into account explicitly the appearance of the local discontinuities
during fracture process. We used the model of spherical particles (simulating polycrystalline
grains) connected by bonds (simulating grain boundaries) located at the particle contacts. This
bonded particle model (BPM) is described in detail in [2], and its various modifications are
widely used to study the behavior of materials under mechanical load (for example, [3—8]). In the
BPM model, the formation of cracks is determined by the breaking of bonds between particles,
and their propagation is provided by the coalescence of many broken bonds [9].

The goal of this work was to study how the degree of materials heterogeneity influence the
character of destruction and acoustic emission (AE) accompanying the fracture process. The
breaking of a single bond was considered an elementary act of AE. Calculations were carried out
in the freely distributed software package MUSEN [10]

Computer simulation

Cylindrical samples with a diameter of 10 mm and a height of 20 mm were modeled. The
dimensions were selected in such a way that it was possible to compare the results obtained by
computer modeling with the results of laboratory experiments obtained earlier on samples of the
same dimensions. The cylinders were filled with spherical particles of the same or different radii
and packed by the MUSEM packing generator until a porosity of 0.35—0.37 was reached. In this
case, the overlap of the contacting spheres did not exceed 0.0001 mm.

Mechanical parameters of materials such as Young modules, Poisson ratios, normal and
tangential strengths were set characteristic of rocks (quartz, orthoclase, oligoclase). We did not
have a goal to compare values of the calculated strength of materials with their experimental
strength, so the calibration of these parameters was not carried out. Two types of samples with
different degrees of heterogeneity were used:

1. Homogeneous sample: grains (particles) and bonds with the properties of granite. The
particle size was 0.4 mm, their number — 28125.

2. Grains (particles) with diameters obtained by a random number generator with a normal
distribution (mean value of 0.3 mm and a standard deviation of 0.1 mm). Three types of particles
(quartz, orthoclase, oligoclase) were generated with a percentage composition characteristic for
granite; their number is 48695.

Bonds were formed at the places of particle contacts. Particles of the same material were
connected by a bond from the matching material, and particles
of different materials were connected either by low-strength
brittle glass bonds (hereinafter referred to as the set of bonds
type 1) or by low-modulus bonds [11] (hereinafter referred
to as the set of bonds type 2). The bond diameter (d) was
automatically chosen by the bond generator to be equal to the
smaller diameter of the pair of connected particles 1 and 2:
d = min {d,, d,} [10]. The maximum bond length (L ) was
chosen in such a way that one more particle could not fit
between a pair of connected particles. The minimum length
Fig 1. The sample and the L, . was usually set to zero. It should be noted that with such

simulation scheme a choice of L _, the system can spontaneously explode, since
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the overlap of particles mentioned above was allowed. If this happened, then the minimum bond
length was taken equal to the maximum particle overlap (0.0001 mm) with the opposite sign.

The sample was placed in a virtual press, in which the lower plate was fixed, while the upper one
descended at a speed of v = 0.02 m/s until the sample was destroyed (Fig. 1). Various mechanical
parameters were recorded during the fracture process.

Results and Discussion

Figure 2 shows loading diagrams for samples of different heterogeneity and a homogeneous
sample. The deformation was calculated using the formula ¢ = v-#. Stress calculations were based
on forces acting on the loading plates. Since in the numerical experiment it is generally impossible
to maintain the equality of forces acting on the plates [12], the stress was calculated with the help
of the formula ¢ = 0.5 (F, + F,)/S, S'is the initial cross section, indices # and b correspond to top
and bottom.

One can see that more homogeneous samples (1 and 2 in Fig. 2, a and Fig. 2, b) are characterized
by brittle behavior (linear increase in stress versus deformation) and a sharp decrease after reaching
the maximum value. For more heterogeneous samples (curves 3—5 in Fig. 2, a), the presence of
a nonlinear (plastic) stage in the loading diagram is observed. This is because weaker bonds break
first, and only after that the strong ones.

The spatial inhomogeneity of bonds breakage is shown in Fig. 3. The sample was divided into
10 layers perpendicular to its height, and the fracture characteristics were calculated in each layer
for each saved time point. Fig. 3, a shows the time dependence of the number of intact bonds
averaged over layers (IN) for the three samples under consideration: homogenous sample with
the stress-strain curve on the Fig. 2, b, the sample with stress-strain curve 1 on the Fig. 2, a and
the sample with the bonds of type 1 described above. Diameter of bonds in all these cases was
0.1 mm. Coefficient of variation (the ratio of N to its standard deviation) was chosen as a measure
of spatial heterogeneity and is shown in Fig. 3, b.
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Fig. 2. Loading diagrams for samples with different types of bonds (@) and a homogeneous sample (b)
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Fig. 3. Time dependence of the number of intact bonds averaged over the layers (V) (a) and
the coefficient of variation (CV): 1 — homogeneous sample, 2 — sample with orthoclase bonds,
3 — sample with type 1 bonds (see text)
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Brittle fracture is observed for samples 1 and 2: a negligible decrease in the number of intact
bonds with a low coefficient of variation (spatial homogeneity) for quite a long simulation time
and an after that, the rapid increase in CV close to the moment of destruction (localization of
fracture and crack propagation). For heterogeneous sample 3, damage accumulates at much
shorter times. However, the coefficient of variation at this stage is also small, which indicates that
the damage accumulates more or less uniformly throughout the sample volume. This confirms
the validity of the two-staged destruction model of heterogeneous materials proposed in [13, 14].
The rapid increase in the coefficient of variation is not very large too. This corresponds to the
homogeneous nature of fracture in heterogeneous samples previously discovered in laboratory
experiments [15], and a similar result obtained in the cellular automaton model [16].

For each layer, maximum tensile stresses acting on bonds 6, _were calculated. The reasons for
the appearance of local tensile stresses under the action of an external compressive stress are well
known (see, for example, [2]) and are not discussed here. Fig. 4, a shows the time dependences
of the layer-averaged (o, ) values. Fig. 4, b shows the time dependences of the coefficient of
variation over the layers of the ¢ values.
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Fig. 4. Maximum tensile stresses averaged over layers (@) and their coefficients of variation (b):
1 — homogeneous sample, 2 — sample with orthoclase bonds, 3 — sample with type 1 bonds. The
numbers on the graphs represent timestamps

In order to understand the time behavior of tensile stresses, one must keep in mind that the
structure of grains and their boundaries (particles and bonds) created at the stage of material
formation is not an equilibrium one and contains significant internal local stresses. At the initial
stage of mechanical loading, these stresses relax. This relaxation time is so short compared to the
characteristic loading time that it does not affect significantly the results obtained. This results in
the nonmonotonicity of their time dependence at this stage (Fig. 4, a) and a significant coefficient
of variation in Fig. 4, b. As stresses relax, they become more homogenous in the volume of the
sample (Fig. 4, b) and increase in time (Fig. 4, a) until the conditions for the creation of a
fracture center are formed. After this center is formed, local stresses again become significantly
inhomogeneous in volume (Fig. 4, b). In a heterogeneous sample, the rate of this inhomogeneity
is less than in samples that are more homogeneous.

Conclusion

The considered model of polycrystalline materials realistically describes some features of their
destruction in cases where the main processes occur along grain boundaries. These features include
the brittle nature of the destruction of homogeneous materials and the presence of nonlinear
elasticity (plasticity) for more heterogeneous materials, revealed via the sigma-epsilon loading
diagram (equation of state). For heterogeneous materials, the model predicts a two-stage nature of
their fracture process, when at the first stage, the accumulation of defects occurs uniformly over the
sample and at the second stage the formation and growth of the fracture center takes place.

The calculation of the maximum local stresses showed that the homogeneity of the material
leads to greater spatial heterogeneity of local stresses and vice versa. The same behavior of local
internal stresses calculated based on the kinetic concept of S.N. Zhurkov, was noted in laboratory
experiments in [16].
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