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Abstract. A numerical procedure is presented for computing characteristics of Tollmien—
Schlichting (T-S) waves in the course of their downstream evolution. It is based on the Global
Stability Analysis of steady solutions of the full compressible Navier-Stokes equations and,
therefore, does not have the restrictions associated with the parallel or quasi-parallel flow as-
sumptions used in the classical methods of the linear stability analysis based on the boundary
layer approximation. Hence, the methodology may be applied not only to simple boundary lay-
ers on smooth surfaces but also to non-parallel flows, e.g. those over surfaces with irregularities
(steps, gaps, etc.). The developed procedure is validated by the comparison of the computed
distribution of the T-S amplification factor (N-factor) in the zero pressure gradient boundary
layer with the similar distribution computed based on the solution of the Orr-Sommerfeld
equation and is shown to be accurate and robust.
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AnHoranusa. [lpencraBieHa MeETOAMKA YMCIEHHOTO pacyeTa XapaKTEpUCTUK BOJIH
Tonnmuna-IInuxTUHra, PacHpoOCTPAHSIOUIMXCS BAOJb IOrpaHMYHOro cios. OHa OCHOBaHa
Ha TJ00aJbHOM aHaJu3e YCTOMYMBOCTM CTAallMOHAPHBIX PEIICHUN TIOJHBIX CXMUMaeMBbIX
ypaBHeHuit HaBbe-CTOKCa U ITOTOMY HE MMEET OrpaHUUCHUI, CBSI3aHHBIX C TTapajuIeIbHOCTHIO
WU KBa3UTPEXMEPHOCTHIO TIOTOKA, WCMOJIb3YeMbIX B KJIACCUYECKHUX METOoJax JMHEHHOTO
aHaJM3a YCTOMYMBOCTU YpaBHEHMI IorpaHm4YHOro cios. IlpeactaBieHHass METOMMKA MOKET
ObITh IPUMEHEHA HE TOJbKO K IIPOCTHIM IIOFPAHUYHBIM CJIOSIM Ha IJIAAKHUX ITOBEPXHOCTSIX,
HO U K HemapayleJIbHbIM TEYCHMSIM, HAIlpMMeEpP, Ha IOBEPXHOCTSIX C YCTylaMM, KaBepHaMu
¥ T.1. TOYHOCTh M YMCJICHHAsI YCTOMYMBOCTH pa3pabOTaHHOM Mpolenypbl BepuduIMpoBaHa
MpY TIOMOIIM CpaBHeHMsT pacripeaeseHnii N-dakropoB st BogH TosmMuHa-InuxtuHra
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Introduction

Development of T-S waves is a key mechanism of convective instability of wall-bounded
laminar flows, which plays a crucial role in the natural laminar-turbulence transition. This has
stimulated numerous experimental, theoretical, and numerical studies of the T-S waves (see,
e.g. monographs [1, 2] and a review paper [3]). In this paper we present first results of the
project funded by the Russian Scientific Foundation and devoted to the development of a general
methodology for predicting of the T-S waves evolution based on the Global Stability Analysis
(GSA) of steady solutions of the full compressible Navier-Stokes (N-S) equations. Unlike the
existing methods, the proposed methodology is applicable not only to simple boundary layers
forming on smooth surfaces (parallel and quasi-parallel flows), but also to essentially non-parallel
flows. It presents a three-stage numerical procedure. In the first stage, numerical solution of the
steady N-S equations is obtained for the flow which stability is analyzed, i.e., the “baseflow”
is defined. In the second stage, GSA of the baseflow is conducted which outcome is a set of
complex eigenvalues and corresponding eigenvectors. Imaginary parts of the eigenvalues present
the frequencies and the real part — the growth or decay (depending on the sign) rates of the
small disturbances, while the real parts of the corresponding eigenvectors define the spatial shape
of the disturbances. Finally, the third stage of the procedure consists in post-processing of the
results of GSA, which allows defining streamwise distribution of the T-S waves amplification
factor (N-factor), characterizing the growth rate of their amplitude in the course of downstream
propagations.

The paper is organized as follows. Section 2 presents a brief overview of the methodology.
Section 3 contains an example of its application to the predicting the T-S waves evolution in the
zero pressure gradient boundary layer (ZPG BL), namely, the corresponding problem statement,
some numerical details, results of the computations and their comparison with those of the classic
1D linear stability analysis. Finally, Section 4 summarizes major results of the study and presents
its outlook.

Overview of the methodology

For the numerical integration of the compressible N-S equations performed in the first stage
of the proposed procedure, an in-house CFD solver is used. It employs an implicit finite-volume
formulation on structured multi-block overlapping grids. For approximation of the inviscid fluxes
in the compressible N-S equations, the third-order upwind-biased scheme of Roe [4] is used,
while the viscous fluxes are approximated with the second-order central scheme. The solver uses
local time-stepping, which provides an iterative procedure for obtaining a steady solution, if it
exists. In order to damp unsteadiness, the time integration is carried out with the use of a large
time step (large Courant—Friedrichs—Lewy number), which is enabled by the use of an implicit
scheme.

In the second stage, the GSA is conducted of the deeply converged (the maximum non-

© benses K. B., I'apdapyk A. B., T'onyokos B. 1., Crpenenr M. X., 2023. Uznatens: Cankr-IleTepOyprckuit moJuTeXHUUECKU
yHuBepcuret I[lerpa Benaukoro.

219



4St. Petersburg Polytechnic University Journal. Physics and Mathematics. 2023. Vol. 16. No. 1.1

dimensional residual is less than 107) steady N-S solution obtained in the first stage. This is done
with the use of the software earlier developed for GSA in the works [5, 6]. It is based on solution
of the linear equations for the small perturbations, which are derived from the unsteady N-S
equations. Unlike the original Roe scheme, the numerical scheme used for these linear equations
employs the simple upwind finite-difference approximations based on the sign of the cell-face
normal component of the baseflow velocity.

Finally, a post-processing of the GSA results is performed, which includes the following steps.

First, the complex eigenvectors are filtered with the use of the Kolmogorov-Zurbenko filter [7].
Then, streamwise distributions of the T-S waves amplitude, A(x), is computed. It is defined as a
local (at a given x) maximum amplitude of the filtered eigenvectors: A(x) = max{A(x,y)}. Then,
extracting is carried out of the streamwise distribution of the wavelength of the T-S waves, A(x),
which 1s defined as the difference of the streamwise coordinates of the neighbouring maximums,

kil _xk , in the real part of the eigenvector. After that, the group velocity of the T-S waves is
calculated with the use of the relation U =do, / da, where o, is the frequency of the disturbances
from the GSA and o = 2xn/A. Finally, the last’ step of the post processing consists in computing
the streamwise variation of the amplitude of the running T-S wave, B(x), and of its amplification
factor N(x). These parameters are computed based on the following consideration.

Let Ax = x-x, be the distance run by T-S waves for the time interval Az. Then, the spatial
decay-rate of these waves amplitude during this interval constitutes D = exp(w,Ar). Assummg that
the group velocity does not depend on x, the normalized distribution of B(x)/B(x) accounting
for this decay may be computed as: B(x)/B( o) = A(x)/A(x,)-exp(w,Ax/U ). This, in turn, allows a
direct computation of the N-factor defined as N = In[B(x)/ Bmm], where i 1S the minimum value
of B(x) within the considered interval.

Application to ZPG BL

In order to assess robustness and accuracy of the methodology briefly outlined above it has
been applied to the flow over a flat plate (zero pressure gradient boundary layer — ZPG BL).

Problem statement and results of the baseflow computations

We consider a ZPG BL at the Mach number M = 0.05 and the Reynolds number
Re, = L,U /v=3-10¢, where L, is the distance from the plate leading edge to the end of the T-S
mstability region at non- dimensmnal frequency normalized by the viscous time F = 10°%/U v
equal to 30 according to the 1D linear stability theory. Corresponding frequency normalized by
the convective time used in the GSA o, = o(U /L) = FRe /10° = 3F = 90 (hereafter, the bar
over o, is dropped).

The computations were carried out for the plate of the length 2L, In order to mitigate the
effect of the inflow boundary conditions on the baseflow solution which stability is analyzed by
the GSA, the computational domain is extended by adding the inviscid region with the length of
0.2L,upstream of the plate leading edge (see Fig. 1). This results in the total length of the domain
equal to 2.2L,. The size of the domain in the plate-normal direction is set equal to 0.2L,, which
corresponds to about 40 boundary layer thicknesses at the outflow of the domain.

y/L, Beginning of the plate

0.2
0.1 i .
slip / non-slip wall
wall x/L,
2

0 0 05 ] 15

Fig. 1. Computational domain used for N-S computation of ZPG BL

The boundary conditions for the baseflow computations are imposed as follows.

At y = 0 and x < 0 the free slip (symmetry) conditions are specified, whereas at y = 0 and
x > 0, the no-slip and non-permeability conditions for the velocity and the adiabatic conditions
for the temperature are used.
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At the free boundaries (inflow, outflow and upper ones) the characteristic boundary conditions
are employed with the Riemann invariants defined by the free-flow parameters.

A size of the computational (x, y)-grid used in the computation is 10500196 (2.058x10°
cells total). The grid is gradually refined in -direction near the plate surface (y = 0) and in the
x-direction near the leading edge of the plate (x = 0). Outside the regions with the refined grid,
its streamwise step Ax/L, = 2-10* (e. g., at F = 30, this corresponds to about 100 points per
wavelength) and the wall-normal one Ay/L; = 5-10*. Note that this grid is actually designed for
the GSA and is definitely excessive for the baseflow computation. However, this allows getting
100% grid-independent solution, on the one hand, and, on the other hand, permits avoiding
interpolation of the baseflow solution on a finer GSA grid, which would be needed otherwise,
with an insignificant penalty in terms of the additional CPU time because of the relatively low
cost of the baseflow computation.

Figure 2 shows the baseflow velocity profile at x/L;, = 0.5. One can see that it virtually coincides
with the self-similar Blasius profile for the incompressible ZPG BL, which is not surprising for
the considered low Mach number flow.

y/iL,
|———— Baseflow (M =0.05) at x/L,=0.5
|-————= Blasius solution (M=0)
0.002
0.001
0 1 L L 1 n L L 1 L L L 1 L L L 1 L L L 1
0 0.2 0.4 0.6 08 wuU_1

Fig. 2. Comparison of computed baseflow streamwise velocity profile at x/L; = 0.5 with self-similar
Blasius solution

GSA problem setup and results

The problem setup has been defined based on results of a series of preliminary GSA computations
with different sizes of the computational domain and two types of the boundary conditions (BCs)
for the disturbances at its free boundaries, namely, Robin’s conditions [8] and zero Dirichlet
ones. These computations were aimed at finding a combination of the domain size and the BCs
ensuring a minimum damage of results of the GSA caused by the approximate BCs. Their results
(not shown) suggest that in this sense an optimal combination is the Dirichlet conditions imposed
at the boundaries of the domain shown by red lines in Fig. 3. Its inlet and outlet are located
at x,/L, = 0.15 and x,/L; = 1.8 respectively. According to the 1D linear stability theory, at the
considered Reynolds number Re, this domain covers the entire range of the T-S instability for
the frequencies within the range 40 > F> 20 or 120 > o, > 60. The upper boundary of the domain
is located at y/L, = 0.12.

0.2Yko Beginning of the plate
0.11{ slip y/L,=0112
0 wall non-slip wall XL,
0 x/L,=0.15 05 1 1.5 x/L,=1.8 2

Fig. 3. Computational domain used in GSA of ZPG BL

Major results of the second stage of the proposed methodology, i.e., “raw” results of the GSA
of the baseflow presented above are shown in Fig. 4 in the form of the growth rate — frequency
map and of an example of the real part of the v-component of the eigenvector at o, = 90 (£ = 30).
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Fig. 4. Growth rate — frequency map (a), contours of real part of v-component of eigenvector
corresponding to o, = 90 (), and its zoomed in fragment (c)

These results look quite reasonable and qualitatively similar to those available in the literature
(see, e.g. [9, 10]).

We now move to the results of the last stage of the proposed procedure (GSA post-processing),
which are presented in Fig. 5-7.

A, /A
a) A ‘ b) ML,
I
|
102 ------ -
. | 0.023
10°F------ —
|
10°F - ----- A
| 0.022
; |
R et TR EEE TR EE T /
Tl e [ Y |
; 0.0211 g
1012________: _______ I________\ ______
I 1 I
-14 1 1 1
%% 05 1 1.5 XL, 00256 08 1 1.2 14 XL,

Fig. 5. Streamwise distributions of normalized amplitude of v-component of disturbances (a) and of
T-S wavelength (b) at o, = 90 (F = 30)
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Fig. 6. Streamwise distribution of amplitude of running T-S wave with account of its decay (@) and its
N-factor (b) at F = 30 (o, = 90 ). Blue vertical lines show the instability boundaries on the first and
second branches of T-S neutral curve according to Orr-Sommerfeld theory

In particular, the left frame of Fig. 5 shows the streamwise distributions of the normalized
T-S waves amplitude A(x) = A ., where A is the maximum value of A (x) reached at
x/L = 1.3. The right frame of the ﬁgure depicts ‘the plot of the streamwise distribution of the T-S
wavelength A(x). One can see that the variation of the latter is marginal (about 7%). Considering
this, for the further post-processing we use the value of M(x) at x/L = 1.3 where A4 (x) reaches its
maximum. This value is shown by the circle in the figure.

Given the wavelength dependence on the frequency is known, the group velocity of the T-S
waves may be calculated as U, = do /do (see Section 2). At F = 30, this gives U, = 0. 36U_which
is close to the value of U =0. 38U predicted by the 1D stablhty theory. ThlS in turn allows
computing the streamwise *distribution of the amplitude of the running T-S wave with account of
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its decay (see Section 2). An example of such distribution at F'= 30 (w, =90) is shown in the left
frame of Fig. 6, while the corresponding distribution of the T-S N-factor N(x) = In[B(x)/B, . |
is presented in its right frame. ’

The figure also compares results of the present study with the similar Orr-Sommerfeld results
for the incompressible flow. The comparison suggests very close agreement of the both approaches.
This observation is supported by Fig. 7, which depicts a plot of N as the function of frequency.
Thus, the results obtained are in good agreement with the theory, which indicates the reliability
of the GSA itself and the developed technique as a whole.

——o— GSA
———o—— Orr-Sommerfeld

0 L I I L |
60 70 80 920 100 Frequency, o,

Fig. 7. Comparison of N-factor of T-S waves as function of frequency computed in the present study
with Orr-Sommerfeld solution

Conclusion and outlook

The paper presents an outline of a general numerical methodology for predicting characteristics
of the Tollmien—Schlichting waves based on the Global Stability Analysis of steady solutions of
the full compressible Navier-Stokes equations. Unlike existing methods, this methodology does
not rely upon the assumptions of parallel or quasi-parallel flow character, which opens a way
to analyses of essentially non-parallel wall-bounded flows. It presents a three-stage procedure
including 1) numerical solution of the steady Navier-Stokes equations for the flow in question,
2) Global Stability Analysis of this solution, and 3) post-processing of the results of this analysis
aimed at extracting major characteristics of the Tollmien—Schlichting waves. Robustness and high
accuracy of the proposed approach are demonstrated by its application to the canonic flat plate
boundary layer, as an example: obtained results are in a good agreement with similar results of
the classic linear stability analysis based on the Orr-Sommerfeld equation. This justifies applying
the approach to studding the Tollmien—Schlichting waves in complex flows, particularly in the
boundary layers on curved smooth surfaces and those with geometric irregularities (gaps, steps,
etc.), which will be performed in the further work.
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