
218

St. Petersburg Polytechnic University Journal. Physics and Mathematics. 2023. Vol. 16. No. 1.1 
Научно-технические ведомости СПбГПУ. Физико-математические науки. 16 (1.1) 2023

Conference materials
UDC 532.517.3
DOI: https://doi.org/10.18721/JPM.161.137

Application of global stability analysis to predicting 
characteristics of Tollmien-Schlichting waves

K.V. Belyaev 1, A. Garbaruk 1, V.D. Golubkov 1✉, M.Kh. Strelets 1

1 Peter the Great St. Petersburg Polytechnic University, St. Petersburg, Russia
✉ golubkovvd@gmail.com

Abstract. A numerical procedure is presented for computing characteristics of Tollmien–
Schlichting (T-S) waves in the course of their downstream evolution. It is based on the Global 
Stability Analysis of steady solutions of the full compressible Navier-Stokes equations and, 
therefore, does not have the restrictions associated with the parallel or quasi-parallel flow as-
sumptions used in the classical methods of the linear stability analysis based on the boundary 
layer approximation. Hence, the methodology may be applied not only to simple boundary lay-
ers on smooth surfaces but also to non-parallel flows, e.g. those over surfaces with irregularities 
(steps, gaps, etc.). The developed procedure is validated by the comparison of the computed 
distribution of the T-S amplification factor (N-factor) in the zero pressure gradient boundary 
layer with the similar distribution computed based on the solution of the Orr-Sommerfeld 
equation and is shown to be accurate and robust. 
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Аннотация. Представлена методика численного расчета характеристик волн 
Толлмина-Шлихтинга, распространяющихся вдоль пограничного слоя. Она основана 
на глобальном анализе устойчивости стационарных решений полных сжимаемых 
уравнений Навье-Стокса и потому не имеет ограничений, связанных с параллельностью 
или квазитрехмерностью потока, используемых в классических методах линейного 
анализа устойчивости уравнений пограничного слоя. Представленная методика может 
быть применена не только к простым пограничным слоям на гладких поверхностях, 
но и к непараллельным течениям, например, на поверхностях с уступами, кавернами 
и т.д. Точность и численная устойчивость разработанной процедуры верифицирована 
при помощи сравнения распределений N-факторов для волн Толлмина-Шлихтинга 
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в пограничном слое без градиента давления с распределениями, посчитанными по 
решениям уравнения Орра-Зоммерфельда.
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Introduction

Development of T-S waves is a key mechanism of convective instability of wall-bounded 
laminar flows, which plays a crucial role in the natural laminar-turbulence transition. This has 
stimulated numerous experimental, theoretical, and numerical studies of the T-S waves (see, 
e.g. monographs [1, 2] and a review paper [3]). In this paper we present first results of the 
project funded by the Russian Scientific Foundation and devoted to the development of a general 
methodology for predicting of the T-S waves evolution based on the Global Stability Analysis 
(GSA) of steady solutions of the full compressible Navier-Stokes (N-S) equations. Unlike the 
existing methods, the proposed methodology is applicable not only to simple boundary layers 
forming on smooth surfaces (parallel and quasi-parallel flows), but also to essentially non-parallel 
flows. It presents a three-stage numerical procedure. In the first stage, numerical solution of the 
steady N-S equations is obtained for the flow which stability is analyzed, i.e., the “baseflow” 
is defined. In the second stage, GSA of the baseflow is conducted which outcome is a set of 
complex eigenvalues and corresponding eigenvectors. Imaginary parts of the eigenvalues present 
the frequencies and the real part – the growth or decay (depending on the sign) rates of the 
small disturbances, while the real parts of the corresponding eigenvectors define the spatial shape 
of the disturbances. Finally, the third stage of the procedure consists in post-processing of the 
results of GSA, which allows defining streamwise distribution of the T-S waves amplification 
factor (N-factor), characterizing the growth rate of their amplitude in the course of downstream 
propagations.

The paper is organized as follows. Section 2 presents a brief overview of the methodology. 
Section 3 contains an example of its application to the predicting the T-S waves evolution in the 
zero pressure gradient boundary layer (ZPG BL), namely, the corresponding problem statement, 
some numerical details, results of the computations and their comparison with those of the classic 
1D linear stability analysis. Finally, Section 4 summarizes major results of the study and presents 
its outlook. 

Overview of the methodology

For the numerical integration of the compressible N-S equations performed in the first stage 
of the proposed procedure, an in-house CFD solver is used. It employs an implicit finite-volume 
formulation on structured multi-block overlapping grids. For approximation of the inviscid fluxes 
in the compressible N-S equations, the third-order upwind-biased scheme of Roe [4] is used, 
while the viscous fluxes are approximated with the second-order central scheme. The solver uses 
local time-stepping, which provides an iterative procedure for obtaining a steady solution, if it 
exists. In order to damp unsteadiness, the time integration is carried out with the use of a large 
time step (large Courant–Friedrichs–Lewy number), which is enabled by the use of an implicit 
scheme.

In the second stage, the GSA is conducted of the deeply converged (the maximum non-
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dimensional residual is less than 10-7) steady N-S solution obtained in the first stage. This is done 
with the use of the software earlier developed for GSA in the works [5, 6]. It is based on solution 
of the linear equations for the small perturbations, which are derived from the unsteady N-S 
equations. Unlike the original Roe scheme, the numerical scheme used for these linear equations 
employs the simple upwind finite-difference approximations based on the sign of the cell-face 
normal component of the baseflow velocity.

Finally, a post-processing of the GSA results is performed, which includes the following steps.
First, the complex eigenvectors are filtered with the use of the Kolmogorov-Zurbenko filter [7]. 

Then, streamwise distributions of the T-S waves amplitude, A(x), is computed. It is defined as a 
local (at a given x) maximum amplitude of the filtered eigenvectors: A(x) = m  ayx {A(x,y)}. Then, 
extracting is carried out of the streamwise distribution of the wavelength of the T-S waves, λ(x), 
which is defined as the difference of the streamwise coordinates of the neighbouring maximums,

        , in the real part of the eigenvector. After that, the group velocity of the T-S waves is 
calculated with the use of the relation Ug =dωi  / dα, where ωi is the frequency of the disturbances 
from the GSA and α = 2π / λ. Finally, the last step of the post-processing consists in computing 
the streamwise variation of the amplitude of the running T-S wave, B(x), and of its amplification 
factor N(x). These parameters are computed based on the following consideration.

Let Δx = x-x0 be the distance run by T-S waves for the time interval Δt. Then, the spatial 
decay-rate of these waves amplitude during this interval constitutes D = exp(ωi Δt). Assuming that 
the group velocity does not depend on x, the normalized distribution of B(x)/B(x0) accounting 
for this decay may be computed as: B(x)/B(x0) = A(x)/A(x0)∙exp(ωi Δx/Ug). This, in turn, allows a 
direct computation of the N-factor defined as N = ln[B(x)/Bmin], where Bmin is the minimum value 
of B(x) within the considered interval.

Application to ZPG BL

In order to assess robustness and accuracy of the methodology briefly outlined above it has 
been applied to the flow over a flat plate (zero pressure gradient boundary layer – ZPG BL).

Problem statement and results of the baseflow computations
We consider a ZPG BL at the Mach number M∞ = 0.05 and the Reynolds number 

Re0 = L0U∞ / ν = 3∙106, where L0 is the distance from the plate leading edge to the end of the T-S 
instability region at non-dimensional frequency normalized by the viscous time F = 106ωi/U∞

2 ν  
equal to 30 according to the 1D linear stability theory. Corresponding frequency normalized by 
the convective time used in the GSA ωi = ωi(U∞ /L0) ≡ F∙Re0 /106 = 3F = 90 (hereafter, the bar 
over ωi  is dropped).

The computations were carried out for the plate of the length 2L0. In order to mitigate the 
effect of the inflow boundary conditions on the baseflow solution which stability is analyzed by 
the GSA, the computational domain is extended by adding the inviscid region with the length of 
0.2L0 upstream of the plate leading edge (see Fig. 1). This results in the total length of the domain 
equal to 2.2L0. The size of the domain in the plate-normal direction is set equal to 0.2L0, which 
corresponds to about 40 boundary layer thicknesses at the outflow of the domain.

kk xx max
1

max −+

Fig. 1. Computational domain used for N-S computation of ZPG BL

The boundary conditions for the baseflow computations are imposed as follows. 
At y = 0 and x < 0 the free slip (symmetry) conditions are specified, whereas at y = 0 and 

x > 0, the no-slip and non-permeability conditions for the velocity and the adiabatic conditions 
for the temperature are used.
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Fig. 2. Comparison of computed baseflow streamwise velocity profile at x/L0 = 0.5 with self-similar 
Blasius solution

At the free boundaries (inflow, outflow and upper ones) the characteristic boundary conditions 
are employed with the Riemann invariants defined by the free-flow parameters.

A size of the computational (x, y)-grid used in the computation is 10500×196 (2.058×106 
cells total). The grid is gradually refined in -direction near the plate surface (y = 0) and in the 
x-direction near the leading edge of the plate (x = 0). Outside the regions with the refined grid, 
its streamwise step Δx/L0 = 2∙10-4 (e. g., at F = 30, this corresponds to about 100 points per 
wavelength) and the wall-normal one Δy/L0 = 5∙10-4. Note that this grid is actually designed for 
the GSA and is definitely excessive for the baseflow computation. However, this allows getting 
100% grid-independent solution, on the one hand, and, on the other hand, permits avoiding 
interpolation of the baseflow solution on a finer GSA grid, which would be needed otherwise, 
with an insignificant penalty in terms of the additional CPU time because of the relatively low 
cost of the baseflow computation.

Figure 2 shows the baseflow velocity profile at x/L0 = 0.5. One can see that it virtually coincides 
with the self-similar Blasius profile for the incompressible ZPG BL, which is not surprising for 
the considered low Mach number flow.

GSA problem setup and results

The problem setup has been defined based on results of a series of preliminary GSA computations 
with different sizes of the computational domain and two types of the boundary conditions (BCs) 
for the disturbances at its free boundaries, namely, Robin’s conditions [8] and zero Dirichlet 
ones. These computations were aimed at finding a combination of the domain size and the BCs 
ensuring a minimum damage of results of the GSA caused by the approximate BCs. Their results 
(not shown) suggest that in this sense an optimal combination is the Dirichlet conditions imposed 
at the boundaries of the domain shown by red lines in Fig. 3. Its inlet and outlet are located 
at x1/L0 = 0.15 and x2/L0 = 1.8 respectively. According to the 1D linear stability theory, at the 
considered Reynolds number Re0, this domain covers the entire range of the T-S instability for 
the frequencies within the range 40 ≥ F ≥ 20 or 120 ≥ ωi ≥ 60. The upper boundary of the domain 
is located at y/L0 = 0.12.

Fig. 3. Computational domain used in GSA of ZPG BL

Major results of the second stage of the proposed methodology, i.e., “raw” results of the GSA 
of the baseflow presented above are shown in Fig. 4 in the form of the growth rate – frequency 
map and of an example of the real part of the v-component of the eigenvector at ωi = 90 (F = 30).
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Fig. 4. Growth rate – frequency map (a), contours of real part of v-component of eigenvector 
corresponding to ωi = 90 (b), and its zoomed in fragment (c)

a) c)b)

These results look quite reasonable and qualitatively similar to those available in the literature 
(see, e.g. [9, 10]).

We now move to the results of the last stage of the proposed procedure (GSA post-processing), 
which are presented in Fig. 5‒7.

Fig. 5. Streamwise distributions of normalized amplitude of v-component of disturbances (a) and of 
T-S wavelength (b) at ωi = 90 (F = 30)

a) b)

In particular, the left frame of Fig. 5 shows the streamwise distributions of the normalized 
T-S waves amplitude Av(x) = Av,max, where Av,max is the maximum value of Av(x) reached at 
x/L = 1.3. The right frame of the figure depicts the plot of the streamwise distribution of the T-S 
wavelength λ(x). One can see that the variation of the latter is marginal (about 7%). Considering 
this, for the further post-processing we use the value of λ(x) at x/L = 1.3 where Av(x) reaches its 
maximum. This value is shown by the circle in the figure.

Given the wavelength dependence on the frequency is known, the group velocity of the T-S 
waves may be calculated as Ug = dωi/dα (see Section 2). At F = 30, this gives Ug = 0.36U∞ which 
is close to the value of Ug = 0.38U∞ predicted by the 1D stability theory. This, in turn, allows 
computing the streamwise distribution of the amplitude of the running T-S wave with account of 

Fig. 6. Streamwise distribution of amplitude of running T-S wave with account of its decay (a) and its 
N-factor (b) at F = 30 (ωi = 90 ). Blue vertical lines show the instability boundaries on the first and 

second branches of T-S neutral curve according to Orr-Sommerfeld theory

a) b)
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its decay (see Section 2). An example of such distribution at F = 30 (ωi =90) is shown in the left 
frame of Fig. 6, while the corresponding distribution of the T-S N-factor N(x) = ln[Bv(x)/Bv,min] 
is presented in its right frame.

The figure also compares results of the present study with the similar Orr-Sommerfeld results 
for the incompressible flow. The comparison suggests very close agreement of the both approaches. 
This observation is supported by Fig. 7, which depicts a plot of N as the function of frequency. 
Thus, the results obtained are in good agreement with the theory, which indicates the reliability 
of the GSA itself and the developed technique as a whole.

Fig. 7. Comparison of N-factor of T-S waves as function of frequency computed in the present study 
with Orr-Sommerfeld solution

Conclusion and outlook

The paper presents an outline of a general numerical methodology for predicting characteristics 
of the Tollmien–Schlichting waves based on the Global Stability Analysis of steady solutions of 
the full compressible Navier-Stokes equations. Unlike existing methods, this methodology does 
not rely upon the assumptions of parallel or quasi-parallel flow character, which opens a way 
to analyses of essentially non-parallel wall-bounded flows. It presents a three-stage procedure 
including 1) numerical solution of the steady Navier-Stokes equations for the flow in question, 
2) Global Stability Analysis of this solution, and 3) post-processing of the results of this analysis 
aimed at extracting major characteristics of the Tollmien–Schlichting waves. Robustness and high 
accuracy of the proposed approach are demonstrated by its application to the canonic flat plate 
boundary layer, as an example: obtained results are in a good agreement with similar results of 
the classic linear stability analysis based on the Orr-Sommerfeld equation. This justifies applying 
the approach to studding the Tollmien–Schlichting waves in complex flows, particularly in the 
boundary layers on curved smooth surfaces and those with geometric irregularities (gaps, steps, 
etc.), which will be performed in the further work.
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