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Abstract. Tunable interactions under the influence of external electric and magnetic fields
open the way to controlled transport and self-organization in model and living systems. In this
paper, we establish new experimental system parameters for tuning interparticle interactions in
colloidal systems using a three-dimensional precessing conical magnetic field. The paper pre-
sents a digital twin of the experimental setup, simulation of electromagnetic fields in order to
find the optimal self-assembly parameters. The results of pilot experiments with magnetic par-
ticles of silicon dioxide 2.47 pm in size in deionized water are demonstrated, the phenomenon
of controlled self-assembly is shown.
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AHHOTanmusg. YTpaBisieMble B3aMMOICUCTBMSI TON OCHCTBHMEM BHEIIHUX SJICKTPUUICCKUX
M MarHUTHBIX IIOJICid OTKPBIBAIOT IYTh K YIPaBISEeMOMY TPaHCIOPTY M CaMOOpraHM3aLuu
B MOJEJIbHBIX M XMBBIX CHCTeMaX. B 3TOif cTaThe MBI yCTaHaBIMBAaeM IapaMeTpbl HOBOM
SKCIEPUMEHTATbHOM CUCTEMbI JUISI YIPaBICHUSI MEXYaCTUYHBIM B3aMMOJCICTBHEM B
KOJUTOUJIHBIX CHCTeMax C UCIOJb30BAaHUEM TPEXMEPHOTO BpAIIAIOIIETOCs KOHUYECKOTO
MarHUTHOTO ToNsI. B pabore mpencraBieH NU(GPOBOM ABOWHHMK 3KCICPUMEHTAIBLHOMN
YCTAaHOBKM, CUMYJISIIINH 3JICKTPOMATHUTHBIX ITOJIEH C 1IEJIbIO ITOMCKA ONITUMAJIBHBIX ITapaMeTPOB
camocOopku. [IpuBeaeHbl pe3ybTaThl MUJIOTHBIX SKCIIEPUMEHTOB ¢ MATHUTHBIMU YaCTULIAMU
JUOKCUIA KpeMHHUsS padMepoM 2,47 MKM B JACMOHM3UPOBAHHON BOJE, MOKAa3aHO SIBJIEHUE
yIIpaBJIsSieMOl CaMOCOOPKM.
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Introduction

Systems with tunable interactions [1] represent a promising class of model systems that are
important for fundamental and applied research. Tunable interactions directed by external electric
[2—7] or magnetic field [8—15] play a major role in many fields of colloidal matter, such as phase
transitions [10, 16—19], collective dynamics [20, 21], guided transport in colloidal [22—24] and
living [25—27] systems and pattern formation [28, 29].

Of particular interest is the formation of condensed phases from colloidal suspensions in a
precessing multi-axial magnetic field [11]. By varying the precessing angle of the 3D conical
fields, we get different colloidal patterns. It is known that at magic angle 54.7° [30, 31],
interactions become spatially isotropic being attractive or repulsive depending on particle and
solvent permittivity. In fact, such an interaction should lead to the appearance of equilibrium
micro-phases; however, to date the issue of tunable interactions across magic spatial hodographs
in colloids has not been well studied.

Moreover, multi-axial rotating magnetic field is a promising tool for additive manufacturing,
especially 3D printing, and for obtaining new materials. To address these issues, we have performed
numerical simulations of multi-axial rotating magnetic field and developed three-dimensional
magnetic setup to examine dynamics of colloidal and living systems at different precessing angles
of external rotating magnetic field.

Materials and Methods

At the stage of setup creation, an extremely important step is design and optimization of
experimental setup parameters and geometric features using an experimental setup digital twin.

In fact, the goal was to achieve a magnetic field with strength of the order of H = 100 Oe and
homogeneity 99% at the center with a square of 2.5 mm. In addition, due to the fact that the
objective of the microscope must fit close enough to the sample under study, we designed a coil
frame through the center of which the microscope passes.

The digital twin shown in Fig. 1 consists of four multilayer coils on a magnetic core in a
horizontal plane and two vertical coils on a frame. A sinusoidal current is applied to the winding,
which gives rise to the appearance of a rotating magnetic field. The test sample, placed on a glass
substrate, is illuminated by an external light source. The image is digitized using a microscope
objective, an infinity-corrected objective and a CCD camera.

Using the Finite Element Method (FEM), a numerical model of the experimental setup was
created. Breaking our three-dimensional model into a finite number of subdomains, we solve the
equations of electromagnetism:

VxH =] (1)
Vx4 = B )
J=cE+J 3)

with boundary condition nx A = 0.
In fact, the use of a high permeability core greatly influences the B—H curve and the intensity
of the magnetic field. The relationship between magnetic induction and magnetic field strength
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I
through magnetic permeability is introduced as:

B=uH 4)

It is more convenient to use the dimensionless relative magnetic permeability p = p/u,.

It is known that the relative magnetic permeability is related to the susceptibility through the

relationship p = I+4my. The magnetic permeability depends on the properties of the substance

and, as in our case, for anisotropic substances, on the magnitude and direction of the magnetic
field.

a
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Solenoids Copper Tetrahedrals
Winding Controlled

Element Size

Y. f/x

Fig. 1. Experimental setup digital twin: an external view of the installation, horizontal core solenoids
and vertical solenoids (a), a consideration of copper winding for the direction of the magnetic induction
vector (b), a decomposition of the 3D model into finite elements (c)

We considered a few variants of cores and the most convenient one turned out to be a ferrite
core with a relative magnetic permeability p_= 400.

To create a more intense magnetic field, it is much more rational to use multilayer coils. It is
known that the inductance of a multilayer coil on a core is calculated by the equation,

M, S N 5)
!

avg

L

where p, = 4n-107 H/m, p_is the relative permeability, S is the cross-sectional area of the
magnetic circuit, N is the number of turns, lavg is the average length of the magnetic field line.

From the Eq. 5 it can be seen that the inductance depends quadratically on the number of
turns and linearly on the magnetic permeability.

Using a copper wire with d = 0.5 mm and a frame with a long winding / = 19 mm, taking into
account the insulation, we got N = 1200 turns, consisting of 36 layers. The inductance of such a
coil is L = 67.8 mH.

The homogenized multi-layer circular coils used numerically, shown in Fig. 1, make it possible
to vary the current strength, the number of turns and the distance between the coils to achieve a
uniform magnetic field profile of the desired strength.

In fact, differences in the inductances of the coils are compensated by changing the distance
between them, which makes it possible to create unique conic fields.

The vertical coils in the final winding consist of 40 turns and 30 layers (N = 1200), and the
horizontal coils of 100 turns and 10 layers (N = 1000). Both coils are wound with copper wire
with a diameter of d = 0.5 mm and a conductivity of 6 = 10° S/m. The winding is supplied with
an alternating current with a power of / = 1 A with a frequency of v, = 1-20 Hz.

As a pilot experiment we examined a system of magnetic particles of silicon dioxide 2.47 pm
in size in deionized water.

Results and discussion

As a numerical solution result of Eq. 1—3, we obtained the field distributions in three different
operating modes shown in Fig. 2. The setup allows one to work with both two-dimensional and
three-dimensional rotating magnetic fields. The intensity of the magnetic field in the center is
controlled by the strength of the current supplied to the coil windings and varies from 0 to 170 Oe.
The independence of the vertical and horizontal coils makes it possible to control the precession
angle of the conical field by adjusting the current strength on the planar and vertical coils.

The results of pilot experiments are demonstrated in Fig. 3. In multi-axial regime there is a
colloidal system exhibiting precessing in a magnetic field with spatial hodograph at a conical
angle 0.
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Fig. 2. Numerical simulation of magnetic fields in three operating modes (averaged period): electric
field strength slices in horizontal plane (a, b, ¢); electric field strength slices in vertical plane (d, e, f)

Vertical field: ON
Horizontal field: ON

Fig. 3. Experimental snapshot of colloidal system: pilot experiments in horizontal and vertical fields
simultaneously

Conclusion

As we mentioned before, we are able to control the conical angle and systems precessing at different
conical and magical angles which is also a good testbed for prospective studies.

As a result, by creating a digital twin of the experimental setup, we were able to design the optimal
geometry and select the appropriate parameters for vertical and planar coils. This step is important in terms
of creating new equipment for observing various phenomena in the field of soft matter physics and general
condensed matter phenomena. By carrying out pilot experiments, we proved the possibility of self-assembly
of colloidal structures into aggregates.

In addition, this setup can be used to carry out promising studies in the field of targeted drug delivery,
3D printing and other applications in the field of colloidal and living matter.
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