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Abstract. The process of spinodal decomposition in two-dimensional system that was ob-
tained by molecular dynamics simulation has been analysed using the correlation of reciprocal
areas of the Voronoi cells. Correlation lengths dependence on the temperature and the critical
exponent of the LJ12-6 system in the fluctuation region by the general renormalization group
(RG) framework were calculated. We showed the agreement of the calculated critical exponent
v with both experiments and theory. The proposed methodology for correlations of the recip-
rocal areas of the Voronoi cells is well applicable in the experiments with 2D colloidal systems.
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Annoramusa. [IpoaHanm3mpoBaH TIpOIleCC CMWHONATBLHOTO pacmajga B JBYMEPHOM
CUCTEeME, IIOJTYYEHHBIII METOIOM MOJICKYJISIDHONM IWHAMUKU C TIOMOIIBIO KOPPESIIINU
oOpaTHBIX IUTolIaneil sueek Boponoro. Paccuumrana 3aBUCHMOCTb KOPPEASLIMOHHBIX IJIWH
oT 3GGEKTUBHON TeMIepaTypsl CUCTEMBI C TIOTeHIMaJioM B3ammopelicTeust LJ12-6 B
obnacTv cnuMHOAaJIbHOTO pacmaga. ITokazaHO COOTBETCTBME BBIYMCIEHHOTO KPUTHYECKOTO
MHACKCA v KaK B3KCIEPUMEHTAJIBHBIM HCCAeAOBAaHUSIM (ha30BBIX TIEPEXONOB B JBYMEPHBIX
(eppomarHeTukax, Tak U TEOpPeTUUECKUM HccenoBaHusiM cucteMm Msunra. [lpennoxeHHbIN
METOIl KOppeJNsauuii oOpaTHBIX IUIoWaneii sdyeek BOpOHOro MOXET ObIThb MPUMEHUM B
9KCIEPUMEHTAX C IBYMEPHBIMU KOJUIOUIHBIMU CUCTEMaMHM.
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Introduction

Method for the characterization various phases of matter is one of the central tasks of
condensed matter physics and materials science. In particular, the study of the phase transitions
in 2D systems has played a crucial role for understanding of the phase transitions and it can be
extended to other complex systems. Understanding the process of the phase transitions in 2D
systems plays important role in a number of areas, from photonics and electronics [1—8], to
novel materials [9, 10],and biophysics [11], since knowledge of the phase behavior opens way to
designing systems with the necessary properties.

A great number of phase transitions phenomena studies are carried out by methods of the
molecular dynamics (MD) and Monte Carlo (MC) simulation. One of the simplest model which
is capable of reproducing gas, liquid, and solid phases behaviour is the Lennard-Jones (LJ)
system. Such systems make it possible to study melting and crystallization [12—14], condensation
and evaporation [15], spinodal decomposition [16—18].

One of the platforms mimicing molecular behavior are colloidal systems [19—23]. The studies
in such systems include crystallization and melting [24—31], reentrant and solid-solid phase
transitions [32—34], condensation and critical phenomena [35—37], molecular-like interactions
[38, 39], sublimation [40], gelation, slow dynamics in glasses [41—44], the role of three-body
interactions of phase transitions [45].

Tunable interactions between colloidal particles can be provided using different physical
mechanisms [46]: electrostatic interactions in solvents, [47, 48], tunable interactions induced
by external magnetic fields [27, 49], alternating anisotropic and rotating electric fields [50, 51].
Rotating electric fields make it possible to induce and to control interparticle interactions in
colloidal systems, and collective dynamics of colloidal particles can be visualized in real time with
the spatial resolution of individual particles. In rotating electric fields, interparticle interactions in
a colloidal system monolayer are tuned by the following mechanism [51—54]: an external electric
field polarizes colloidal particles, that leads to anisotropic interactions; a fast (compared to the
particle diffusion time) rotation of the field in the plane of the system makes it possible to achieve
isotropic tuned dipole attraction at large distances [51, 54]. The colloidal system in the rotating
electric field provides a rich variety of different interactions, including repulsion, attraction,
combination of short-range repulsion with long-range attraction, barrier-type interactions
with short-range attraction and long-range repulsion, and double-scale repulsive (core—shell)
interparticle interactions [55]. This makes it possible to use such system for particle-resolved study
of phase transitions [17].

It is required a methodology to study critical phenomena in colloids. The divergence of
the correlation length for a mixed phase transition in a 2D colloid model system with nearest
neighbor interaction has been shown in Paper [56]. The authors in [57] attempted to calculate
the correlation length using the effective interfacial thickness in 2D LJ fluids. In our work, we
suggest using the correlation function of reciprocal areas of the Voronoi cells critical temperature
vicinity. It allows us to calculate the dependence of the correlation length on the temperature and
to determine critical exponent v in 2D systems.

Materials and Methods

To study the efficiency of density-density correlation method (correlation of reciprocal
areas of the Voronoi cells), we performed MD simulations of the system undergoing spinodal
decomposition.

© CumxkuH U. B., fAxosnes E. B., Kptoukos H. I1., Kopcakosa C. A., FOpuenko C. O., 2023. U3znatens: Cankr-IletepOyprekuit
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We considered system of particles interacting via the potential:

oo )]

Where ¢, (r) is the usual Lennard—Jones potential (LJ12-6 potential), € and A are the strength
and range of the interaction, respectively. We use the dimensionless temperature 7/ — T, distance
r/A — r, surface number density #\?>/m — n, and time

t\/gx2 -t
m
(here, m is the mass of the particle).

To obtain correlation length dependence on the temperature the MD simulations of a system
containing N = 10* particles were performed in an NVT ensemble for different temperatures
above the critical. Initially particles were distributed uniformly over the simulation region with
periodic boundary conditions. Then at every temperature, it was integrated for 10° steps until the
equilibrium state was reached. The time step of Af = 5x10-° was used. The last 10 snapshots of
the system were used for correlation lengths calculations with a sampling rate of 5x10-3 steps. The
cutoff radius was set to r, = 5.

During spinodal decomposition a new state of reduced symmetry emerges continuously from
the disordered or symmetric phase as the temperature is reduced. To analyze the fluctuations in
the system, it is proposed to use correlation of reciprocal areas of the Voronoi cells C (r, r).

Let us define the correlation function C (r, r):

C(r.r)=(o(r)o(r)). )

The correlator of the system was calculated as reciprocal areas product of the Voronoi cells

of particles at the radius-vector r — #/, averaged over each particle » — . Figure 1 shows the

mechanism for calculating the correlator C (r, ). The area of the Voronoi cell ¢(r) corresponding

to the particle at the »* multiplied by the reciprocal area ¢(#") corresponding to the particle at the
r—r.

Fig. 1. The field of Voronoi cells for calculating correlator of the system. Voronoi cell corresponding
to the particle at the radius vector r is colored orange; Voronoi cells corresponding to the particles at
the radius vector $7-#$ over which averaging is carried out are colored blue

The correlator C (r, r’) of the system decreases rapidly with distance above the critical point
T and nonzero at and below 7.

In the self-consistent field theory, from the Ginzburg-Landau free energy equation, the
correlator C (r, r’) of the system is given as follows [38]:

C(r)=r K, @ 3)
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where due to symmetry we can write C(r) instead of C (r, '), & is the correlation length, d is the
dimension of the system and K is the Macdonald function of the n-th order.

Results and Discussion

The correlator (eq. 2) was calculated for the MD system in the vicinity of critical point
temperature range. The correlator dependence on the distance and its fit by (eq. 3) are shown in
Figure 2.
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Fig. 2. The correlator dependence on distance of the 2D LJ12-6 system. Red symbols ° correspond
to calculated correlation, o is the particle radius. Red solid line is the fit of the calculated correlator
(eq. 2) by the equation (3)

From the approximation of the correlator C(r) by the Macdonald function (eq. 3) the
correlation length & for different temperatures were calculated. Several MD simulation timesteps
were considered and Figure 3 shows the average correlation length dependence on reduced

temperature t= ., where T, is the critical temperature.

® Correlation length, &
Critical exponent, v =1/

Correlation length, &

Reduce(iot-emperature, T
Fig. 3 The correlation length dependence on reduced temperature 1. Red symbols ¢ correspond to
correlation length; vertical bars correspond to confidence interval of the averaged correlation lengths
at several timesteps (confidence level 0.95). Blue solid line is the fit of the correlation length critical
behavior (eq. 4)

Critical exponents phenomenologically describe the behavior of many-body systems close to

criticality. The behavior of the correlation length on reduced temperature in the fluctuation region
is described by the critical exponent v:

g=1". @)
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Using equation (4) the critical exponent for the 2D LJ system was determined to be
v = 1.00 £ 0.07. For comparison, Table 1 shows some estimations for the critical exponent v of
two-dimensional systems. One can see agreement with the proposed method.

Table 1
Experimentally measured critical exponents of some two-dimensional systems
System v Class Ref.
Rb,CoF, 0.99(4) Ising [59], [60]
K CoF, 0.97(4) Ising [61], [60]
Fe/W(110) 0.93(14) Ising [62]
LJ12-6 1.00(7) Ising Current work

The LJ12-6 interaction demonstrates a 2D Ising-like critical behavior [63]. For two-dimensional
Ising systems it is shown that the critical exponent v = 1 [64].

Conclusion

Thus, methodology for calculating the correlator of reciprocal areas of the Voronoi cells was
tested on the LJ12-6 two-dimensional system. Correlation lengths in the area above the critical
transition was estimated. The critical exponent v describing the behavior of the correlation lengths
in the fluctuation region was determined. Results were compared with both experimental and
theoretical data. This methodology of critical exponent estimation is well applicable for two-
dimensional systems and can be applied to experimental systems of colloidal particles in the
external electric rotating fields.
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