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Abstract. Here we propose the different simple building block of the three-dimensional (3D) 
magnonic network in the form of the joined orthogonal sections of magnonic waveguides. It 
was shown, that the proposed 3D structures allows the transmission of spin-wave signals in 
the regime of surface magnetostatic wave propagation without the significant losses due to the 
junction region. Micromagnetic simulation was used to reveal the mechanism of spin-wave 
propagation across 3D junction. An electrodynamic problem is considered by the finite element 
method and the dispersion characteristics of spin waves (SW) are constructed with a change 
in the geometric parameters of the meander. The nature of the change in the frequency ranges 
of the Bragg band gaps depending on the meander profile has been studied in detail. It was 
demonstrated that spin-wave waveguiding 3D structure with broken translational symmetry 
exploiting the vertical spin-wave transport provides the transmission of the information signal 
in three-dimensional configuration of magnonic networks.
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Аннотация. В работе исследованы различные элементы трехмерной (3D) магнонной 

сети в виде соединенных ортогональных секций магнонных волноводов. Было показано, 
что предложенные 3D структуры позволяют передавать спин-волновые сигналы в режиме 
распространения поверхностных магнитостатических волн без потерь в нерегулярной 
области структуры. Для выявления механизма распространения спиновых волн через 
3D-переход использовалось микромагнитное моделирование. Методом конечных 
элементов рассмотрена электродинамическая задача и построены дисперсионные 
характеристики спиновых волн (СВ) при изменении геометрических параметров 
меандра. Подробно изучен характер изменения частотных диапазонов брэгговских 
запрещенных зон в зависимости от профиля меандра. Продемонстрировано, что спин-
волновая 3D-структура с нарушением трансляционной симметрией, использующей 
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вертикальный спин-волновой транспорт, обеспечивает передачу информационного 
сигнала в трехмерной конфигурации магнонных сетей.
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Introduction

The transition from a two-dimensional architecture of magnon networks to a three-dimensional 
one is currently of great interest due to the development of data processing and storage concepts 
based on magnonic principles [1]. In electronics, 3D circuits require efficient removal of Joule 
heat from computational elements, which is a technological challenge. Magnonics allows you to 
transmit an information signal encoded in the amplitude and phase of spin waves (SW), while 
the transport properties of spin-polarized electrons are not used, and information is transferred 
by signal transmission using spin wave [2]. With this approach, it is possible to implement a 
number of signal processing functional blocks with low power consumption compatible with 
semiconductor electronic circuits and the possibility of miniaturization to nanometer sizes of 
structures [3].

One of the options for creating interconnect elements based on magnetic quasi-two-
dimensional and three-dimensional (3D) structures in lateral and vertical topologies with micro- 
and nanometer-sized waveguide elements is a base element made in the form of ferrite microwave 
guides located on the same substrate and connected through the side wall [4]. In this case, 
the interconnections will perform not only the transmission of the information signal, but also 
functional processing, implementing the modes of parallel and multi-stream (de)multiplexing of 
the spin-wave signal in the frequency, time and space domains. Most circuits based on magnon 
logic are magnetized in a plane, which imposes restrictions on signal routing, since magnon 
networks limited to one functional level have a critical signal propagation length and a large 
device area [5]. Structures with the possibility of vertical transport of a spin-wave signal [6] make 
it possible to create three-dimensional magnon networks (MS) with a large number of functional 
blocks in a smaller volume.

Meander-type ferromagnetic films grown on the surface of periodically structured substrates 
can be considered as a three-dimensional magnonic crystal structure. Composite magnon crystals 
are in fact magnonic metamaterials with periodically varying parameters that exhibit SW delay 
control, and analysis of the dispersion response of such structures indicates that the SW spectrum 
can be divided into periodically alternating frequency bands in which SW propagation is observed 
(passbands), and frequency bands in which no SW propagation occurs due to additional attenuation 
arising from Bragg interference of incident and reflected waves. The formation of such band gaps 
in the magnon spectrum makes it possible to use MCs as filters for the SW signal. The study of 
MC with different periodicity in one and two dimensions [7] led to the development of the field 
of magnonics [8].

The 3D structures considered in this paper can be used as interconnection elements for multilayer 
topologies of magnon networks that perform the functions of information signal processing [9].

Vertical interconnection elements of 3D magnonic networks

We investigate vertical transport of spin waves in two structures shown in Fig. 1, a, b. The 
structure in the form of an orthogonal connection of two magnetic thin-film sections S1 and 
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Fig. 1. Schematic view of interconnect element in the form of an L-shaped (a) and step-shaped (b) 
junction of magnetic films; the transmission spectrum of the output signal for the L-shaped (c) and 

for step-shaped (d) structure

S2 is shown in Fig. 1, a. A stepped structure consisting of the connection of three separate 
sections S3, S4 and S5 is shown in Fig. 1, b. Thin film yttrium iron garnet (YIG) [Y3Fe5O12 
(111)] 1 μm thick and saturation magnetization M0 = 1.39×105 A/m on a gallium-gadolinium 
garnet substrate 500 μm thick (GGG) [Gd3Ga5O12 (111)]. YIG film exchange constant was taken 
equal to Aвх = 3.614×10-12 J/m. Waveguide width in the numerical calculation w = 100 µm was 
changed to the case of a transversely limitless YIG film. The length of the waveguides S1, S2 
was L1 =L2 = 1000 µm. The structures were placed in an external magnetic field H0 = 1200 Oe 
directed along the y-axis to effectively excite a magnetostatic surface spin wave (MSSW) in the 
S1 region [10]. The stepped structure shown in Fig. 1, b is formed by sections S3 = S4 = S5 with 
length L3 =L4 = L5 = 1000 µm.

To investigate the properties of propagation of a spin-wave signal in the investigated structures 
with broken translational symmetry, we used the method of numerical micromagnetic simulations 
based on a numerical solution of the Landau–Lifshitz–Gilbert equation [11, 12]:

where M
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To calculate the output signal spectrum, the problem of excitation of a SW was solved for the 
L-shaped structure using the excitation method in the region of the microwave S1 and receiving 
the SW in the waveguide S2. The SW excitation in the numerical counting was carried out by 
setting the value of the alternating magnetic field in the form Bx(t) =b0sinc(2πf0(t−t0)), where 
b0 = 10-3T, f0 = 4 GHz, t0 = 0.1 ns.

The frequency spectrum of such a function has a rectangular shape with a cut-off frequency 
f0. The source was localized in the signal source region inside the waveguide, the size of which 
was 5 μm in the direction of the x-axis. This method of excitation is close to the standard 
excitation of microwave oscillations of magnetization using a microstrip antenna with a thickness 

a) b)

с) d)
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of 2 µm and a width of 5 µm located on the surface of the YIG film [13]. After the excitation 
of the pulse, the magnetization behavior of time was fixed for Tm = 300 ns. Then the array of 
obtained data was subjected to Fourier transform and as a result, the output signal spectrum 
was obtained for the reference structure and the L-shaped microwave guide under study. Fig. 
1, c shows the results of calculating the spectrum of the spin-wave signal in the output section 
of microwave S2 of an investigated irregular structure with broken translational symmetry. The 
beginning of the frequency bandwidth of the structures under study corresponds to the frequency 
f0 = √fH (fH+ fM) = 5.096 GHz, where fH = γH0, fM = γμM0, γ is the gyromagnetic ratio for YIG.

At the frequencies f2 and f3, the irregularity region is the source of short dipole-exchange 
waves [14] due to the presence of a gradient of the internal magnetic field in the region of the 
bending of the L-shaped microstructure. This mechanism for generating short SWs in this case 
can explain the characteristic dips in the output power spectrum (Fig. 1, d) at frequencies f2 and 
f3. As shown in [15], MSSWs propagating along the x-axis are weakly reflected from the joints of 
the vertical and horizontal segments. 

The origin of multiple dips in the shaded region in Fig. 1, d denoted with f4 and f5 can be 
originated from inhomogeneous magnetic field in the double junction region in the case of step-
shaped junction (Fig. 1, b) in comparison with L-shaped structure (Fig. 1, a). The conditions for 
short spin wave generation in the former case are originated from the non-uniform distribution of 
the internal magnetic field in the two regions: junction of section S5 and S4; junction of section S4 
and S3. The detailed mechanism of this dips formation are beyond the current manuscript.

Control of band gaps in three-dimensional meander structures

Combining L-shaped interconnect elements into a meander array makes it possible to avoid 
the limitations associated with attempts to control SW [16], which are difficult to implement 
using plane magnetized films due to the anisotropic dispersion of SW, which depends on the 
relative orientation of the magnetization and the wave vector.

Figure 2, a shows a segment of a periodic 3D magnon YIG structure in cross section used 
to simulate a meander structure with the following parameters: modulation period L = 740 nm, 
height of the lower horizontal sections m1 = 50 nm, height of the upper horizontal sections 
m2 = 50 nm, thickness of the vertical sections m3 = 50 nm, drop height p = 120 nm. The direction 
of the external magnetic field was directed along the z-axis.

Numerical simulation was carried out by solving the system of Maxwell equations by the finite 
element method in the COMSOL Multiphysics software product. The calculation of the dispersion 
characteristics was carried out considering the fact that the components of the electromagnetic 
field depended on the frequency according to the harmonic law. The equation for the electric 
field strength vector E had the following form:

where k = ω/c is the wave number in vacuum, ω = 2π/f is the circular frequency, f is the frequency 
of the electromagnetic wave, and ε is the effective value of the permittivity. In this case, the 
magnetic permeability tensor for tangential magnetization has the form:

It should be noted that this method makes it possible to make calculations considering the 
non-single-year distribution of the internal magnetic field.

As a result of numerical simulation, dispersion characteristics were obtained for direct and 
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Fig. 2. Schematic view of the meander structure (a), dispersion characteristic at m2 = 90 nm (b), 
dependence of the frequency ranges of the Bragg band gaps on the change in the drop height p (c)
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