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Abstract. We apply the random matrix theory to the study of quasi-localized modes in
amorphous solids having correlated disorder due to the stability criterion. We demonstrate
that the number and properties of quasi-local vibrations depend significantly on how much the
statistics of the dynamical matrix elements differs from the Gaussian one. The quasi-localized
regime of the vibrational density of states can be understood in the framework of a perturbation
theory, which managed to identify the low-frequency asymptotic.
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Introduction

Revealing the microscopic nature of the vibrations of strongly disordered mechanical systems is
the main goal of past and current research. Examples of such systems are amorphous dielectrics,
or glasses. It is well-known that there are two fundamentally different types of delocalized
vibrations propagating in glasses: low-frequency plane waves, or phonons, with a certain mean
free path and diffusons, which propagate through the system by diffusion energy transfer [1].
The universal properties of amorphous systems critically depend on the transport properties of
phonons and diffusons and are evident in many important experimental research methods and
practical problems [2, 3].

In addition to phonons and diffusons, the so-called quasi-local vibrations (QLVs) are
responsible for the low-frequency properties of amorphous solids at frequencies around 1 THz [4].
These excitations are long-lived vibrations of small groups of atoms, weakly connected with their
surroundings [3]. The study of QLVs properties is complicated by the fact that they are difficult
to distinguish from the usual Rayleigh scattering of phonons on disorder [5, 6].

As recent studies show, a population of quasi-localized modes is affected by glass cooling
processes and its preparation protocol [7—9]. Anomalously soft regions near the loss of stability
are inherent in such systems and lead to force constants correlation due to microscopic disorder
of glass and mechanical frustration [10, 11]. However, the main features of QLVs are independent
of spatial dimension [5, 12], cooling rate [7], microscopic details [5, 13, 14], and even persist
in the most deeply supercooled computer glasses [8]. One can assume that there is a universal
relation between QLVs and structural correlated disorder in amorphous solids formed during the
cooling processes.

There are various theoretical works aimed at investigating QLVs, in particular, the soft-potential
model [15—17]. In these works, it was shown that QLVs determine the main contribution to the
scattering of acoustic phonons. However, the question about the influence of structural correlated
disorder in amorphous solids on QLVs remains open. Since glass-forming systems settle into
disordered configurations, their dynamical matrices are naturally characterized by a specific
distribution of elements, which so far has received very little attention. In the present paper we
shed light on this aspect in the framework of the random matrix theory.

Materials and Methods

In our earlier investigation we applied the random matrix theory approach to detailed study
of the low-frequency excitations of strongly disordered systems [18, 19]. In this model the main
glasses properties like the boson peak and the Ioffe-Regel crossover between phonons and diffusons
are manifested. Now we study how the random matrix theory reproduces the soft regions and how
the statistic of matrix element affects the statistic of QLVs.

The vibrations of solids are characterized by the eigenvectors and eigenvalues of the dynamical
matrix M, which has a relation with the force constant matrix M= (mm) VZ(I) [20]. The elements
of M have a specific nature depending on the medium in hand. However the dynamical matrix
M has a common structure caused by the symmetrical mechanical properties. One of them is the
mechanical stability of the system near its equilibrium position. It leads to the positive definite
symmetric M with non-negative eigenvalues which are eigenfrequencies squared »?. Second, the
potential energy is invariant under the continuous translation of the system which leads to the
sum rule ¥ M, =¥ M

Taking into account the above properties, the dynamical matrix M can be written in the form
M = AA”. The matrix A plays the role of an incident matrix, whose rows indicate the degrees of
freedom and columns indicate the bonds of a system. In general, the matrix A is a rectangular
Nx K matrix A. We consider a scalar model in which the displacements of the atoms are collinear
and are described by scalar quantities. In this model, the number of atoms is equal to the number
of degrees of freedom N. The parameter » = (K — N)/N defines the relative excess of the total
number of bonds K in comparison to the total number of degrees of freedom N. According to the
Maxwell counting rule [21], in a stable system with a finite rigidity the number of bonds should be
larger than the number of degrees of freedom. Therefore, the parameter » varies in a wide range
0 <% < o and controls the relationship between stiffness and disorder in the system. For » « 1
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we obtain a strongly disordered amorphous solid, which is the most important case for the current
study. It must be stressed that elements of A correlated by the sum rule } A, = 0 to satisfy the
condition of the translational invariance.

In amorphous solids under consideration, the elements of A have a random nature due to
the presence of disorder in such systems. Also, in real amorphous solids short-range interaction
between atoms dominates over the far-range interaction, which leads to highly sparse matrix 4. In
this light, we consider a model of disordered system based on the following rules. For » = 0 the
matrix A is the square matrix, build on the simple cubic lattice with the lattice constants a, = 1
and atomic masses m, = 1. Each atom is placed in a site of lattice, but the interaction between
atoms is random, therefore, the elements of 4 are random numbers. We consider the case of the
short-range interaction in whrch A is a nonzero random number only if atoms with indices i
and j are nearest neighbors in this lattice. For the simple cubic lattice, the coordination number
n = 6, therefore, the matrix 4 has only 6 non-zero non-diagonal elements in every column. The
dragonal element A,=-3.A.

For » # 0 the matrix A is the rectangular matrix. To accurately account the sum rule, we do
the following procedure. We take two independent realizations of the square random matrrx A
constructed in accordance with the above rules, and we add randomly chosen »/N columns of one
matrix to the right of the other matrix. This random addition of the new columns corresponds to
a random addition of new bonds to the vibrational system. As a result of this addition of bonds,
we get a rectangular matrix A with » > 0 satisfying the sum rule.

There is a probability that all elements 4, in the ith row of the matrix 4 have small values. It
leads to a soft area, i-atom of which is weakly connected with its surroundings. Such a soft region
leads to the formatron of the QLV characterized by a small eigenfrequency o, . The density of
QLVs is defined by the distribution of o, . We assume that the matrix elements A for kK > N are
zero which has the probability (1 - %)”” m the model under consideration.

For small values of matrix elements in the ith row of the matrix 4, one can present the matrix 4 as

A=A+, (1)

where the matrix 4 has all zero elements in the ith row, and the perturbation matrix " has n non-
zero elements v, ...,v, which correspond to interaction with the nearest neighbor and one element
obeying the sum rule V., =2 Vj It must be stressed that matrices save the simple cubic lattice
structure for atomic arrangement and the sum rule is still imposed on them. Taking into account
the random matrix model M = AA”, the dynamical matrix takes the next form:

M= A AT+ AVT+ VAT + VVT, )

In the framework of the downfolding method [22], the frequency of QLV o, can be found
from (2) to the second-order perturbatron theory on the perturbation V:
={ruv’y (3)

u

where ]
H=1-A4(4A4]) 4, 4)

and [ is KxK identity matrix. From equation (3) it follows that the frequency of QLV can be
written from the sum of quadratic form:

2 n+l
Oy = 2 Cer ViV (%)
where v, for k"= 1, ..., nt1 are non-zero elements V, for k = 1, ..., K, and the matrix C is the
truncat10n of the matrrx H to the set of non-zero elements in the zth row of the matrix V.

The sum rule V= -3V, corresponds to the rule v, = -3, v where the element v, is the V,
and elements v are non-zero elements V of the ith column of the matrix V. Therefore equation
(5) takes the form:

2 n+l ~ ~ o~
o, = Z (Ck,,vk,v,, =2C,,v, v, +C,V,.V, ), (6)

qlv k=1
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As a result, we obtain the following low-frequency density of QLVs (QLVDOS):

=(detc™*)q1 o 20O e 7
P (@) =(de (1-x) (nH)H},lpk,( ), (7)
1—‘ I

2

where angle brackets denote the averaging over different realizations of the matrix A, T is the
Gamma-function, p,(v) is the probability density function of v,..

Results and Discussion

The theoretical result (7) compared with the vibrational density of states (VDOS) obtained
by the full diagonalization of matrices M. We consider the small systems in which the smallest
frequency of phonons is limited by the system size. In such systems, the quasi-localized modes
are well distinguishable from phonons due to their low number, and the QLVDOS is a low-
frequency region o « 1 of VDOS. Also, for additional identification of QLVs, we consider two
different cases of statistics of matrix elements A,: Gaussian and strongly non-Gaussian statistics.
This consideration is due to the significant dependence of the number of soft regions formed by
small values of matrix elements Aik on its statistics. How it was demonstrated in our early work,
for strongly non-Gaussian statistics the number of quasi-localized modes increases in comparison
with the Gaussian statistics [19].

Figure 1 shows the numerical calculation of VDOS in the case of Gaussian statistics. We
consider the simple case of independent Gaussian random numbers Aik with zero mean and unit
variance. In this case, the probability density function of v, is p,. (0) = 1A2nn, and p. (0) = A2n
for k%#i" Then, the QLVDOS (7) takes the form

B d tc_l/z . ol 2(1—n)/2 0\)n
pqlv (0‘))_< ¢ >( K)

n+1 ' ®)
r(z j&

In Fig. 1, this QLVs contribution p(®w) «© " is marked with a solid line. To obtain the
coefficient of equation (8) the averaging in (detC-'/?) may be performed numerically. For large

enough system size one can show that
<det Cc™? > oo "2 )]
since the typical value of the elements of matrix C is proportional to » if no finite-size effects
are present.
In order to set the non-Gaussian statistics of matrix elements and simulate a wide range of

different magnitudes of non-zero matrix elements, we multiply the standard Gaussian random
number by log-uniform random variable. In this case the random variable has a form

10°
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Fig. 1. Vibrational density of states in the case of Gaussian statistics for different parameters x. The
solid line marks the QLVs contribution p(w) « ©,. The matrix A4 is built on the simple cubic lattice
with 10x10x10 atoms
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Vi =Ny Xp Gy, (10)
where n,. is the Gaussian random number with zero mean and unit variance and (. is an
independent random number uniformly distributed in the interval (—b/2, b/2). The normalization
constant ¢ = V(b/sink(b) is chosen to provide the unit variance of v,. The resulting probability
density function of the random variable v, has a form

_ 1 vie? ) [vee” (11)
p(VkI)_zbvk,(erf(\/ZJ erf[ \/2—0 j}

For 6> 1 it is close to the Gaussian distribution. However, with the increasing of b, the
distribution of v, .becomes closer to the reciprocal distribution ~ 1/|v, |, therefore, the parameter 5
is treated as a non-Gaussianness parameter.

Figure 2 shows an increase in the number of quasi-localized modes with an increase in the
non-Gaussian parameter b. As in the case of Gaussian statistics, there is the low-frequency QLVs
contribution p(®) « o . The distribution of v,. can be viewed as a mixed distribution of Gaussian
random numbers in which the standard deviation is random. Then, the QLVDOS (7) takes the form

(1=n)2  n n
oy (©) = (det €12 ) (1) 2—@(%sin h%j <(Z & )/> (12)
I

n+l

which gives the low-frequency QLVs contribution p(o) «© ®". Here we use the averaging over
different realizations of (. distributed uniformly in the interval (—=b/2, b/2).
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Fig. 2. Vibrational density of states in the case of non-Gaussian statistics with parameter » = 0.1 for

different parameters b. The solid line marks the QLVs contribution p(w) «© ®”. The dashed line marks

the result p(w) o o' for intermediate range of frequencies. The matrix A is built on the simple cubic
lattice with 10x10x10 atoms

10-2 1072

However, in contrast to Gaussian statistics, in the case of strongly non-Gaussian statistics
the intermediate range of frequencies has additional contribution p(®) « @’ with y<n. For 6> 1
the random variables v and v are distributed over an exponentially large range of values, thus
o~max, vk’ is determined by the maximum value of v, and one can find the next relation for the v:

_4n—2_
b

This expression allows us to describe intermediate degrees of p(w) for the case of strongly non-
Gaussian statistics > 1, which corresponds to different slopes in Fig. 2. From the point of view of
statistical properties of the matrix 4, one can consider the y as an effective number of neighbors.

1. (13)

Conclusion

Summarizing, we apply the random matrix model to analyze the quasi-local vibrations, which
exist in strongly disordered systems like amorphous solids. In this model, the dynamical matrix
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is expressed as M = AA”, and numbers and properties of quasi-local vibrations are essentially
dependent on the statistic of matrix element A,. We have shown that as the degree of non-
Gaussianness b of the dynamic matrix elements increases, the number of quasi-local vibrations
increases too, which manifests itself in their vibrational dens1ty of states p_, (w). For accurate
analysis of quasi-local vibrations, we consider a small system with a low number of phonons,
atoms of which are placed in sites of a regular lattice. In a perturbation theory framework we
analyzed the low-frequency asymptotic of p(w) and found that p_ () =~ o for small frequencies
with coordination number n, and p () =~ o' with y < n in the intermediate range of frequencies
for strongly non-Gaussian dlStI‘lbuthIl
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