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Abstract. The paper presents temperature distribution analysis in activated on-chip chemical
sensor based on p-InAsSbP/n-InAsSb/n-InAs 1x3 diode array. Temperature distributions were
obtained both experimentally with the use of infrared microscopy, by I-V characteristic analysis
and by finite element modelling. The simulated temperature values are in reasonable agreement
with experimental data, allowing one to establish a relationship between the temperature of
active elements of the sensor. The relationship is important for the improvement of chemical
analysis accuracy.
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AnHoTanuda. B paboTe mpoBeneH aHAINU3 paclpefieIeHUs] TEMITEpaTypbl B aKTMBUPOBAHHOMN
MUKpPOOIITONape, MPeACTaBIsIoIeil co00i YMIT U3 MOHOJMUTHOW ABOMHON TeTepOCTPYKTYPHI
p-InAsSbP/n-InAsSb/n-InAs 1x3. PacrnpeaeneHusi ObIIM TONIYYeHBI KaK 3KCIIEPUMEHTAIBHO
¢ mnomomiplo WHGpakpacHO MHKpockonmuu U aHaimuza BAX, Tak u ¢ TIOMOIIbIO
MOJIEJIMPOBAHUSI METOIOM KOHEYHbIX 2JIeMeHTOB. CMOIeTMPOBaHHbIE 3HAUCHUST TEMIIEPATYPhI
YIOBJIETBOPUTEIBHO COIJIACYIOTCSI C 9KCMEPUMEHTATbHBIMU NaHHBIMU, 4YTO [O3BOJISIET
YCTAaHOBUTb 3aBUCUMOCTb MEXIY TEMIIEPATypOii aKTUBHBIX 3JIEMEHTOB JAaTYMKA U BaXKHO JJISI
MMOBBIIICHUSI TOYHOCTH XMMMYECKOTO aHaju3a.
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Introduction

Optical chemical sensors are widely used in medicine and industry due to their high reliability
and accuracy [1—3]. The expansion of their application areas is facilitated by the use of
semiconductor technology, resulting in miniaturized on-chip sensors consisting of an optically
coupled diode source and a radiation receiver integrated on a single semiconductor substrate [4—7].
Their operation principle is based on the phenomenon of attenuated total reflection resulting in
evanescent wave formation when reflecting light at the interface between the substrate and the
analyte. Reflected light intensity recorded by photodiode (PD) is weakening both by analyte
absorption and by the angle of total internal reflection increase.

As active part of the sensor (LED) is not solely a source of electroluminescence (EL), but also
a source of heat, LED and PD temperature measurements are required to be made especially in
miniature or/and monolithic sensors [4, 5]. To improve measurement accuracy in such sensors,
it is necessary to know a relationship between the PD and LED temperature. To address this
issue, in this work we propose an approach for the above improvement based on a combination of
experimental PD temperature values obtained from the analysis of its current-voltage characteristic
(I-V), infrared (IR) microscope data and results of numerical simulation.

Results and Discussion

We used liquid phase epitaxy grown InAsSbP/InAsSb/InAs heterostructure consisting of n-type
InAs (100) substrate with » = 2:10'¢ cm™, ~ 10 pm thick undoped n-InAs, Sb_active (absorbing)
layer and p-InAs,  Sb P (Zn) cladding (contact layer) (see Fig. 1, ). The band schematic of this
heterostructure and the ability to operate both as PD and LED have been previously described
in ref. [8]. The use of the term ‘‘double heterostructure” (DH) is not quite fair in relation to the
above heterostructure, but here we use it like in ref. [8].

Diodes were processed onto a 160 um thick wafer with 26 pm high circular mesas (3, = 190 pum)
by standard photolithography and wet chemical etching. Circular Au-based anode (@, = 170 pm)
and cathode contacts were formed on the same chip side by sputtering and thermal evaporation
in vacuum followed by thick (3 um) gold plating deposition as shown in Fig. 1, a. Chip contained
three diodes (the “1x3 linear array”), each diode lateral size was 580x400 um (see Fig. 1, a).
Flip-chip bonding/packaging procedure has been implemented using the 2x2 mm submount
made from insulating AIN with Cu-Ni-Au metallization at bonding pads, as shown in Fig. 1, b.
The diodes were connected via a pair of anode (A) — cathode (C) with a number corresponding
to the number of the diode (#D1, #D2 and #D3).

To get the temperature distribution on the chip surface (IR map), the IR thermal radiation
was mapped using the UTK1 IR microscope developed at the Institute of Semiconductor Physics,
Siberian Branch of Russian Academy of Sciences [10]. Temperature distribution from the IR
maps was obtained via preliminary calibration that was made in the range of 290—360 K at zero
LED current.

© Jlyxmbipuna T.C., KmumoB A.A., KynkoB P.D., Jlebenea H.M., MatBeeB b.A., UepnsikoB A.E., 2023. U3znatens: Cankr-
IleTepOyprckuii monmrexuudeckuii yausepcuteT [letpa Bemmkoro.

120



4 Condensed matter physics >

a) b) g D1 D2 D3
0.2
No1 1
P N
0 e e e i SIS

= L
RS
LR

Fig. 1. Top view of the monolithic 1x3 chip (100) surface with three mesas. Al, A2, A3, C1, C2, C3

anodes and cathodes of diodes D1, D2, D3 accordingly (a). Schematic diagram of the cross section

of the sensor onto submount: 1) InAs substrate, 2) chip active layer and contact layer, 3) solder and
submount metallization, 4) AIN based submount (5)

Fig. 2 shows IR microscope sensitivity spectrum as well as the EL spectrum of the diodes
under study. These spectra do not overlap, and one can expect the absence of the luminescence
contribution to the IR maps.
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Fig. 2. IR microscope sensor sensitivity (dashed curve) and electroluminescence LED spectrum (solid
curve)

The above overlapping absence is confirmed by the measurements of the effective temperature
distribution on the chip surface at various ambient temperatures, with forward and reverse D2 bias
shown in Fig. 3. The experimental values presented by curves in Fig. 3 are close, which indicates
the absence of the EL (at forward bias) and negative luminescence (reverse bias) contribution.
The intensity values at 298 K in Fig. 3 are quite “noisy” due to low thermal radiation power; at
323 K this “noise” is not so pronounced because of thermal radiation power enhancement.

The I-V characteristics were measured in continuous wave (CW) mode using a SourceMeter
Keithley 6430 simultaneously with intensity distribution measurements (intensity maps). During
the first part of an experiment the diode D2 was activated, while the /-V characteristics were
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Fig. 3. Temperature distribution along the sensor substrate surface at diode D2 activation (see dots)

and curves averaging temperature values obtained from IR maps. The square dot group (O, O) was

obtained at a temperature of 323 K, and the round one (o, o) at 298 K. Red dot/curve data were

obtained at forward bias, and black dot/curve data at reverse bias, while the electric power for both
modes of operation was the same.
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measured in both D1 and D3 diodes, in the second part the diode D1 was activated, and the /-V
characteristics were measured in the D2 and D3 diodes.

Fig. 4, a shows the I—V characteristics of the diode D1 at various AIN submount temperatures,
depicting increase of the current with temperature growth. The temperature dependence of the
zero bias resistance R, shown in Fig. 4, b is described by the standard expression for the diffusion-
limited current:

Ro~ exp(Ea/(BkT)), (1)

here k is Boltzmann's constant, 7 is temperature, B~ 1, E = 0.26 e¢V. The R values obtained
from data in Fig. 4, b were used to determine the PD temperature.

The thermal conductivities of the sensor layers (Fig. 1, o) and their thermal resistances were
determined using the “Thermaltester T3Ster” tool (see Fig. 5). Left part of Fig. 5 relates to
the diode active and contact layers (item 2 in Fig. 1, b), which have a total thermal resistance
R, = 33 K/W (thermal conductivity K = 24 W/(K*m)). Middle part corresponds to the composite
layer consisting of solder, submount metallization and transition sublayer plating-submount
(item 3 in Fig. 1, b) with a total R, = 33 K/W (K = 31 W/(K*m)), and right sector is responsible
for the thermal resistance of the AIN submount (item 4 in Fig. 1, b) with R, = 18 K/W
(K = 246 W/(K*m)). The thermal conductivities of the active and contact layers and of the
submount are close to the values in [11].
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Fig. 4. I-V characteristics of D1 diode at various temperatures (a). Temperature dependence of zero-
bias resistance of the monolithic sensor diodes in the 260—360 K range (b)
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In Fig. 6, a and Fig. 7, a solid lines show the temperature distribution of 7, . along the
chip surface. The horizontal segments show the average temperature of the active region
(item 2 in Fig. 1, b) of non-activated diodes (7,): diode D1 and D3 (Fig. 6, a) or diode D2 and
D3 (Fig. 7, a), obtained from the R (7) data. Curves shown in Fig. 6, a are asymmetric due to
the asymmetry of the on-chip sensor design: the active region of diode D2 is shifted to the right
relative to the center of the chip. This “asymmetry” also explains the fact that 7., > T ..
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Fig. 6. Temperature distribution on the sensor surface in the center along the X-axis obtained by IR
microscope at various electric power applied to diode D2 (solid lines). The temperature of the active
region diode DI and D3 (the segments), from the measurement of R. Inset shows an IR map at
P =269 mW (a). The modeled distribution temperature along the chip surface center at various currents
in diode D2 (solid lines). The segments are the calculated average temperature of the active regions of
diodes. Inset shows the modeled temperature distribution gradients of the sensor cross section (b)
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Fig. 7. Temperature distribution on the sensor surface in the center along the X axis obtained by

IR microscope at various electric power applied to diode D1 (solid lines). The temperature of the

active region diode D2 and D3 (the segments), from the measurement of R. Inset shows an IR map

at P = 26.2 mW (a). The modeled distribution temperature along the chip surface center at various

currents in diode D1 (solid lines). The segments are the calculated average temperature of active

regions of diodes. Inset shows the modeled temperature distribution gradients of the sensor cross
section (b)

Temperature spatial 3D distribution modeling were performed by the finite element method in
the Comsol Multiphysics software by solving the stationary heat equation. The geometry of the
3D model repeated the structure shown in Fig. 1, 5. The thermal conductivities of the active and
contact, metallization, and AIN submount were taken from the above measurements (Fig. 5). It
was assumed that the electrical power (P = [ U) applied to the LED is totally transferred to heat,
since LED internal quantum efficiency is less than 10% and most of EL radiation is reflected
back at InAs/air interface [9]. Modelling results are shown in Fig. 6, b and Fig. 7, b, curves and
horizontal segments were calculated for the same chip parts as in Fig. 6, ¢ and Fig. 7, a. The
relative mismatch of simulated and experimental values is less than 5%. The ratio between T
and 7, .and the dependence of 7, u T . on the LED power are nearly the same. The modeled
temperature of the cross section given in the inset in Fig. 6, b illustrating the temperature
distribution along the Z axis in diodes D1 and D3 shows that the temperature at a surface is
higher than in active layers, the same is shown in the inset in Fig. 7, b for the diodes D2 and D3.
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The calculated dependence of (T,“P- T P) on power appeared to be close to linear, which
agrees with the results in ref. [12] and thus it is possible to elaborate simple empiric relationship
between the temperature of the LED and PD in the monolithic sensor chip. This relationship will
be very useful for future on-chip sensor [4, 5] data corrections.

Conclusion

In on-chip chemical sensor consisting of p InAsSbP/n-InAsSb/n-InAs DH (mesa diameter
190 ym, A = 4.7 pum) 1x3 diode array (one LED and two PDs) with overall lateral size
400x1700 um flip-chip bonded on AIN submount thermal resistances/conductivities of the active
and contact layer resistances constitute R, = 33 K/W (thermal conductivity K = 24 W/(K*m)),
for layer consisting of solder, submount metallization and transition sublayer plating-submount,
R, =33 K/W (K = 31 W/(K*m)), for AIN submount, R, = 18 K/W (K = 246 W/(K*m)).

Finite element modeled temperature was 328.1 K when the middle (central) diode is activated
with electrical power of 26.2 mW and 328.5 K when the edge one is activated (electrical power is
26.9 mW) at submount temperature 323 K. It was shown that PD surface temperature is higher
by about 0.5 K than in PD active layer at LED power of 26.2 mW. Dependence of the LED
temperature and dependence of difference between LED and PD temperatures on the applied
power can be approximated by a linear function. The simulated values were close to those
obtained from optical measurements with IR microscope.

We believe that the obtained results will be valid for diode arrays of similar geometry and thus
will be useful in evanescent wave chemical on-chip sensor calibration algorithm significantly
improving the analysis accuracy.
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