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Annoramusa. CtaTbsl TIOCBSIIIeHa pa3pabOTKe aHAJTUTUYECKOW MOJEIU OTKJIMKA BHEIIHETO
BOJIOKOHHOTO MHTepdepomeTpa Padbpu — [1epo ¢ MHOTOCTOIHBIM 3a30pOM TIPU CITEKTPATHLHOM
ompoce. bela moxydeHa crcTeMa BhIpaXKeHMI 71 pacyeTa CIIeKTpaJbHOM XapaKTepucTuKu S(1)
TaKoOTO MHTephepoOMeTpa ¢ y4eTOM OJHOKPATHBIX OTPaKEHUI OT TTIOBEPXHOCTEI CJI0EB, a TAKXKe
KJIIOUEBBIX MapaMeTPOB KOHCTPYKIIMU: MOKa3aTeaeil mpeJoMIeHus cloeB U Ko3(hGUIIMEeHTOB
OTpaXeHUsI TOKPBITUI, TOJIIWH CJIOEB M CBETOBBIX TMOTEPh B CJOAX. PacmpocrpaHeHue
MU3TYYSHMS B Cpelle MEeXIy 3a30paMu MHTepdepoMeTpa MpoaHaJIM3uPOBaHO HA OCHOBE MOJIEIN
rayccoBa Iydka. PaccMOTpeHBI TakKe OCOOCHHOCTM YaCTOTHOTO aHaiM3a ocummisaiuii S(A).
B kauecTBe npuMmepa IMOJTyUYEHHBIC BbIPAXKEHWSI MCIOJB30BAHbI JIJISI PACUCTOB KOHCTPYKIIUU
NIBYXCJIOMHOTO BHELIHEro0 BOJIOKOHHOro nHrepdepomerpa ®adpu — Ilepo.

KioueBbie ciioBa: BHEIIHUIT BOJIOKOHHBIN MHTephepomerp Pabpu - [lepo, criekrpaibHas
XapaKTepucTuka uHTtepgepomMepa, MHOTOCIONHBIN MHTEp(EepoMeTp

®@unancupoBanue: Pabota BbinosiHeHa B pamKax ['ocynapcTBEHHOTO 3aiaH1s Ha TPOBEAeHUE
dyHaaMeHTaIbHBIX UccaeaoBaHuil (ko Tembl FSEG-2020-0024).

Jlng muruposanug: Jluokymosud JI. b., Yirakos H. A., Mapksapt A. A., EBnokumenko E. 1O.
CriekTpajibHasl XapaKTepUCTMKa MHOIOCJIOMHOTO BHEIIHETO BOJOKOHHOTO MHTepdepoMeTpa
®aopu — Ilepo // Hayuno-texumueckue Bemomoctu CIIOITIY. dusmko-mMareMaTuyecKue
Hayku. 2022. T. 15. Ne 4. C. 129—146. DOI: https://doi.org/10.18721/JPM.15410

CtaThsl OTKPBITOrO nOCTyIa, pacrnpoctpaHseMas mo juueH3un CC BY-NC 4.0 (https://
creativecommons.org/licenses/by-nc/4.0/)

Introduction

Fiber-optic interferometric sensors have been the focus of great attention because they combine
the benefits of optical and fiber-optic devices, offering very high resolution [1, 2]. These include
sensors based on the extrinsic fiber Fabry—Perot interferometers (EFFPI), with efforts underway
to improve these devices for application in practical measuring systems [3, 4]. The devices include
a miniature sensing element based on the Fabry—Perot interferometer formed by the end-face of a
waveguide (through which radiation is emitted from the source) and a second movable reflecting
plane, for example, a membrane, at a distance L from the end face of the waveguide (Fig. 1,a).
Similar structures with gaps L ranging from several tens to several hundred micrometers are used
to construct sensors for measuring pressure and temperature [5], as well as other physical quanti-
ties. Two approaches are generally adopted for interrogating such setups: the so-called white-light
interferometry [6] and spectral interferometry [7]. We used spectral interferometry in this study:
in this case, the spectral characteristic (transfer function) of the interferometer S(1), namely, the
output intensity normalized to the input as a function of the wavelength 2, is recorded during the
interrogation. This technique is typically performed using interrogators with wavelength-tunable
lasers, or devices with a broadband source at the input of the interferometer and an optical spec-
trometer at its output.

© JlwoxymoBuu JI. b., YmakoB H. A., Mapksapt A. A., EBmokumenko E. 10., 2022. Uznarens: Cankr-IletepOyprckuii
noJIMTeXHUUecKuit yuusepcutet [letpa Benukoro.
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Fig. 1. Scheme of EFFPI-based sensor: regular (a), with a two-layer gap (b);
L is the thickness of the air gap between the membrane and the fiber endface; L, and L, are the thicknesses
of the hard layer and the air gap; the red arrows indicate the propagation of light beams

A framework for calculating the expected form of the function S() is valuable to be able to de-
velop EFFPI-based devices in practice, so that a reliable, validated procedure can be devised for se-
lecting the elements of the optical circuit, estimating the expected sensor parameters, and optimizing
the setup. Analyzing the dependence S().), we can improve the methods for processing it to increase
the measurement resolution. Unlike the well-known traditional Fabry—Perot interferometer, diver-
gent radiation propagates in the EFFPI gap, so special non-trivial analysis of this case is required.
Analytical consideration of an EFFPI with a single-mode fiber commonly adopts the Gaussian beam
model, providing a sufficient description of the function S(L), accounting for the main parameters
of the device, primarily the distance L, the refractive index of the medium and its dispersion, fiber
parameters, external mirror parameters, wavelength scanning range A [2, 8—12]. Even though rep-
resenting the output radiation by a Gaussian beam is an approximation that does not account for
reflecting surfaces that are rough/non-flat [13] or for other factors, the dependence S(1) obtained in
this case is a good foundation for analyzing and improving practical devices based on EFFPI.

However, parasitic background effects on the measurement results can be a major issue for
practical applications of EFFPI-based sensors. First of all, the device should be designed to elim-
inate the thermal effects, which is problematic. EFFPI with two layers have been adopted for this
reason [5, 14, 15] (Fig. 1,b). One of the layers with a thickness L, is made mechanically rigid and
predominantly thermally sensitive. The second layer with a thickness L,, limited by a movable
membrane, is sensitive to pressure, although it is inevitably exposed to parasitic thermal effects.
Processing the components of the function S(A) from the first layer, we can assess the temperature
changes, accounting for their effect to determine the pressure displacing the membrane.

This method can be further improved if several layers are stacked in the EFFPI gap to measure
several quantities at once. Moreover, additional layers in the gap after the fiber end face may be
technically necessary for attaching the waveguide in the sensing element.

The calculated dependence S(X) has not been analyzed in the literature for a two- or multi-
layer EFFPI, unlike the case with the single-layer configuration.

In this paper, we consider a multilayer EFFPI in reflection mode, constructing an analytical
model for the spectral characteristic S(A) of such a system.

General structure of interference oscillations for multi-layer EFFPI

It is assumed for the given sensor setup that direct radiation with a certain intensity /, , pro-
portional to the complex electric field strength £, , enters the interferometer via a single-mode
waveguide. For certainty, we can assume that this is the intensity and strength of the electro-
magnetic field on the waveguide axis, since we ultimately intend to analyze the intensity levels
normalized by /,. We assume E. to be real, considering its initial phase to be the reference one.
The radiation propagating along the waveguide from the interferometer, i.e., reflected from it, is
formed by waves of different origin, and the backscatter intensity [/ takes into account the inter-
ference of these reflected waves. The wave reflected directly from the end face of the fiber does
not enter the interferometer gap, its complex amplitude E| is set by reflection from the interface
between the fiber and the medium of the first layer in the interferometer gap. Other reflected
waves are formed as radiation enters the interferometer gap, propagates forwards to the boundary
with a certain layer in the gap, is reflected from it, passes back to the end face of the fiber and is
partially injected into the fiber. The wave formed by reflection from the boundary of the mth layer
is denoted as the mth backscattered wave, and its complex amplitude as E .
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Backscattered waves associated with two or more reflections from the boundaries of the layers
are not considered in this case. The first reason for this is that the amplitudes of such backscat-
tered waves in real devices are negligibly small compared with waves from single reflections.
Secondly, frequency filtering is typically used to process the spectral characteristics of the in-
terferometer (briefly analyzed below), selecting the fundamental vibrations not associated with
rescattering from the boundaries of layers in the interferometer.

The intensity of backscattered radiation is determined by superposition of reflected waves in
the waveguide, described by the standard expression:

=ZIE [+23" > |E,E,|cos(Ag,,), (1)

m,n m#n

where Ag, is the phase difference of the waves backscattered from the outer boundary of the
nth and mth layers (i.e., the difference between the phases ® and @ of complex amplitudes
E and E).

The dimensional constant in expression (1), relating the intensity and the mean-square electric
field strength is omitted for simplicity: this is justified because normalization by /, is introduced
below. The right-hand side of the expression clearly shows the components describing interfer-
ence oscillations with varying phase differences Ao,

Since we consider an EFFPI without collimating elements, it is assumed that divergent radi-
ation propagates in the gap, so it is rather difficult to determme the magnitudes of |E | and @ at
m > 0. The level of |E | is set by the amplitude of the initial wave E, and a combination of several
independent multlphcatwe factors, which can be written as

|Em|:Ef.Tm'Tam'nm' (2)

The factor 7 is associated with the reflection coefficient B, from the outer boundary of
the mth layer and with a decrease in the wave amplitude, corresponding to transmission of
layer boundaries in the path of the wave. The factor 7| is associated with optical power losses
during propagation in the media filling the interferometer gap in the path of the mth wave.
After the light passes through the interferometer gap backwards, only a fraction of its power
is 'captured’ by the fiber in the form of radiation of its fundamental mode. The coefficient n
is introduced to account for this. The parameters 7 and T are rather simply related to the
parameters of the materials and reflective coatings (if the latter are used). However, in the case
of an EFFPI with divergent radiation in the interferometer gap, n, has to be found through
analyzing the propagation of radiation and the nature of the wave incident on the end face of
the waveguide. In contrast to the phase of the wave £, , the phase delay of the mth backscat-
tered wave in the fiber has to be calculated not only by accounting for the optical path along
the gap axis but also by providing a fuller description for the backscattered wave at the fiber
end face.

The radiation in the fundamental mode is close to the radiation with a Gaussian intensity
distribution and a flat phase front, so the Gaussian beam model with a waist in the fiber end
face can be reasonably adopted for propagation of radiation behind the fiber. The width of the
Gaussian beam is characterized by the radius W, which varies along the axis of the beam, with
its minimum corresponding to the radius of the waist W,. In the case under consideration,
W, is given by half the diameter of the waveguide mode spot. While the Gaussian beam is
characterized by other parameters, i.e., the curvature of the wavefront R, the Gouy phase ¢,
the Rayleigh length » and the beam divergence 0, in the case of a homogeneous medium, all
of them can be recalculated by the value of the waist width W and the distance Z, from the
given point to the waist with the known refractive index of the medium » and the radiation
wavelength A.

The key expressions for describing a Gaussian beam are given in Appendix 1. Expressions have
also been formulated for recalculating all the parameters of the beam, if the values of W and R are
known at a given point. Moreover, the beam in the given section is fully defined by the so-called
complex parameter ¢ = Z, + jr.
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The approach based on the Gaussian beam model has become the most widespread for analytical
consideration of single-layer EFFPIs [2, 9]. It is assumed here that the beam passes twice the length
of the interferometer gap in the forward direction, and in the opposite direction after reflection,
remaining Gaussian. The beam has the width W and the curvature R at the interface with the fiber.
The fraction of the radiation power to be 'captured’ by the fiber as the radiation of the fundamental
mode is determined by the overlap integral of modal field and the radiation incident on the end.

This problem was in fact solved in [16] for a Gaussian beam model with known parameters,
considering loss analysis for single-mode fiber splices. This result is also used in exact or extended
formulation to describe EFFPI signals.

If the radiation in the EFFPI gap propagates along the waveguide axis, and the outer boundary
of the layer is parallel to the end face of the fiber, then the result is described by the expression [9]:

n :;2, Y= atan(ﬂj,
L 2r
1+ (‘j
2r
where 7 is the relative intensity of the radiation injected into the fiber; ¥ is an additional phase
shift of the radiation injected into the fiber, added to the phase progression of the wave incident
on the fiber end face due to non-uniform transverse phase distribution in the Gaussian beam (see
Eq. (Al—1) in Appendix 1); the parameter L, is the distance that the beam has traveled in the
interferometer gap; r is the Rayleigh beam length in the medium with the refractive index # filling
the interferometer gap, r = anW?/i.

In the case of a single-layer EFFPI with a gap thickness L, the radiation path during a
single pass through the interferometer is given directly by twice the gap width for L, = Z = 2L.
However, if the interferometer gap consists of several layers with different refractive indices, anal-
ysis should cover the propagation of radiation through the boundaries of the layers, complicating
the problem on the parameters of the beam incident on the end face of the fiber.

Below we analyze the propagation of radiation through the boundaries of the EFFPI layers and
determine all the parameters necessary for calculating the intensity of the reflected wave based
on expression (1). The analysis is performed based on the Gaussian beam model, assuming that
this model remains applicable for propagation of radiation across the layer boundaries. This, in
turn, assumes that the conditions for paraxial approximation are satisfied, i.e., beam divergence
0 is small. Since 6 = ) /(nnW), then, taking the real parameters L = 1.5 um and W, = 5.2 um as
an example (a standard single-mode waveguide), we obtain a divergence 6 = 0.092/n, indicating
that it is justified to use the paraxial approximation.

3)

Propagation path of the mth wave in a multilayer EFFPI

For simplicity, we assume all the boundaries of the layers to be flat and orthogonal to the beam
propagation axis, which is generally consistent with the configuration of real systems. It is necessary
to analyze the mth backscattered wave that passes through m dielectric layers, is reflected and travels
in the opposite direction. Each ith layer from the 1st to the mth is characterized by the thickness
(along the beam axis) L, and the refractive index n. In turn, the value of m can vary from 1 to M,
where M is the total number of layers in the EFFPI gap. The wave propagating from the end face
of the fiber to the boundary of the mth layer and back passes through 2m — 1 layers, as illustrated
in Fig. 2 with equivalent circuits for unidirectional propagation of waves for the case M = 3. In
general, the number / changes from 1 to 2(m — 1) in a unidirectional equivalent circuit for the mth
reflected wave. The reflecting surface in this circuit corresponds to the middle of the mth layer, so
the thickness of the layer with i = m is equal to 2L . The z coordinate of the beam cross section in
the equivalent circuit is counted from the end face of the fiber. According to the problem statement,
the waist of the Gaussian beam at the input to the first layer coincides with the boundary, i.e., with
the cross section z = 0. Since the second half of the equivalent circuit for unidirectional propagation
corresponds to propagation of light in the opposite direction, there is symmetry in the parameters of
the circuit’s layers. The layer with i > m actually coincides with the layer 2m — i. Therefore, if i >
m, we have L, = L, and n,=n, . However, the beam parameters in the layers, for example, the

1

beam width W at the output of the ith layer, do not have such symmetry and need to be calculated.
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Fig. 2. Backscattered waves in the gap of a three-layer EFFPI (M = 3) (a)
and equivalent single-pass circuits of the 1st (b), 2nd (¢) and 3rd (d) waves;
m = 2m — 1 =1, the circuit consists of one layer (b); m = 2, 2m — 1 = 3, the circuit
consists of three layers (¢); m = M = 3, 2m — 1 = 5, the circuit consists of five layers (d)

Propagation of Gaussian beam across the interface between dielectric media

The ABCD matrix model is used to analyze the propagation of light through various optical
elements adopting a paraxial approximation [17, 18]. Such a matrix determines the variation in
the complex parameter of the beam ¢ for a Gaussian beam. Other parameters of the beam are
easily found from the value of ¢ [19]. The radius W and the curvature R of the beam are found
from the expressions

W= [-Mrnlm(1/9)]"?, R = 1/Re(1/q), 4)

then, in view of (4), we can find the distance to the waist and its radius:

Z =R/M1+ (R/T)Y, W,= W1+ (r/R)*]">. 5)

If a Gaussian beam with the parameter ¢, is transformed in some optical element into an
output beam with the parameter ¢,, then, according to the linear paraxial ABCD formalism, the
relationship between the output and the input parameters is described by the relation [20]:

q,=(4-q, + B)/(Cq,+ D),

where A, B, C and D are the coefficients of the matrix characterizing the converting optical element.
This approach is often considered in the literature for beams passing through lenses, reflected
from mirrors (including spherical ones), and similar cases. However, an ABCD matrix for a plane
interface between two media (perpendicular to the beam propagation axis). Such a matrix con-
tains the elements 4 =1, B= C= 0, D = n,/n,[20].
As a result, we obtain the following expression:

q,=q, (n/n). (6)

Thus, the beam divergence and the Rayleigh length change as the beam passes through the
interface between dielectric media.

The distance from the interface to the waist Z , for an equivalent beam of the second layer
differs from Z, = L,. The equivalent beam of the ith layer here and below refers to a beam that
propagates in a homogeneous medium with a refractive index n = n, completely coinciding with

the Gaussian beam considered within the ith layer.

134



4 Physical Optics

If the parameters of the beam in the first medium are known (it is sufficient to set the waist
width W, n, and 1), we can find the complex beam parameter g,, in the cross section z; = L,
(the subscript 1 in g,, corresponds to the layer number, the subscript e indicates that the param-
eter corresponds to the exit (in the propagation direction) boundary of this layer). Next, we can
find g,, from expression (6) (the subscript b indicates that the parameter corresponds to the input
section of the layer). We can then use expressions (4) and (5) to find the distance from the cross
section z, to the waist of the equivalent beam of the second layer Z , as well as the remaining
parameters of the beam in the second medium.

There are several important circumstances.

Firstly, if we substitute Eq. (4) into Eq. (5) for W, it can be confirmed that the value of W
does not change as ¢ is transformed in accordance with (6),, i.e., for the waist radius is also equal
to W, for an equivalent beam of the second layer,. Since the Rayleigh beam length is equal to
r=nnW_?/k, and the divergence 6 = A/(nnW)), we obtain given the same values of W that as the
beam passes through the boundaries of layers in the interferometer gap, the Rayleigh length and
divergence vary only slightly from one medium to another, in accordance with the refractive index:

r,.=an W?/\, 0 =2\(nn W,).

Secondly, we should note that Egs. (6) and (4) give the same values for the beam width at the
interface if it is calculated from ¢,, or g,,. Calculating the value of W at the interface by Eq. (P1-
2) (see Appendix 1) with the parameters W, n, and the argument Z = L, gives the same result
as calculating it with the parameters W, n, and the argument Z ,. This is fully consistent with the
physical meaning, since there is no reason for jumps in the beam width at the interface, unlike
the jump in the curvature radius corresponding to beam refraction at the interface.

The given change in the parameters of the Gaussian beam as it passes across the interface
between two media is illustrated in Fig. 3, showing the variation in the beam in the case when n,
> n,. The width W, (blue line) is calculated by the expression (P1-2) (see Appendix 1) for W (z)
at n = n, and corresponds to the actual beam in the first medium (solid line) and the equivalent
beam in the second medium (dashed line). In turn, the width W, (red line) is given by the ex-
pression (P1-2) as

we=Wz+Z,6~L)

for n = n,, corresponding to the actual beam in the second medium (solid line) and its equivalent
beam in the first medium (dashed line).

The next step is to analyze the expression for the quantity Z , that is the distance from the
interface between the two media to the waist of the equivalent beam of the second layer. In ac-
cordance with expression (6), we find that the complex parameter at the interface from the second
layer is expressed as

q2b - (nZ/nl).qle - (n2/nl)-(Ll +jl"1).

Next, using Egs. (4) and (5), we obtain the curvature of the beam in the second layer:

R L _m Li+r
2b ’
Re( v j moo L (7
>
as well as the distance to the waist of the equivalent beam of the second layer:
Z — sz
w2 20

g, ®

W,

where the notation W12 = Wle = Wzb is introduced for the width of the Gaussian beam at the
interface between the media.
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The value of W, can be found either from expression (4) in terms of g,, or g, , or directly by
Eq. (P1-2) for z = L, in the form

2
L
s
h
where r, is the Rayleigh beam length in the first layer, r, = nn, W?/A.
Next, if we substitute expressions (7) and (9) into Eq. (8), we obtain the following simplified result:

n
Z  =—XL. 1
w = (10)

The relationship (10) sets the waist shift of the equivalent beam of the second layer from
z = 0 to the interface of the layers at n, < n, when beam divergence increases as the beam crosses
the interface (this case is shown in Fig. 3). Conversely, the waist of the equivalent beam shifts to
the region z < 0 at n, < n,, when beam divergence decreases as the beam crossses the interface.

m

2Wa=2Wo  2We=2,

Ly by

Fig. 3. Variation in the radius of the beam passing from the first to the second medium
(case n, > n)) for actual beam (solid lines) and for equivalent beams (dashed lines)

Propagation of Gaussian beam through several dielectric media
and description of the mth backscattered wave in the EFFPI

The expressions obtained above allow to find (within the paraxial approximation) the param-
eters of the Gaussian beam after it passes across the interface between two dielectric media, and,
consequently, to calculate the parameters of the beam at the exit from the second medium. Next,
we can similarly consider the beam transformation at the interface between the second and third
layers and then generalize the calculation to the case of a sequence of several dielectric layers.
Analysis of the general case, i.e., the EFFPI with M layers, should be cover the propagation of
a light beam to 2M — 1 layers. However, there is no need to calculate all the parameters of the
beam in different layers, and it is sufficient to apply only the result of Eq. (10). Indeed, we can
consider an equivalent beam instead of a real one at the interface with the third layer, propagating
in a medium with the refractive index n = n, with the waist W at a point at a distance Z , + L,
from the interface between the second layer and third layer. Performing the same calculations as
before for the boundaries of the second and third layers, we can confirm that the result for the
distance from the boundary to the waist of the equivalent beam of the third layer is absolutely
equivalent to that expressed by Eq. (10), specifically,

Zw3:Z_3(Zw2+L1)' (11)

2
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If we substitute expression (10) into Eq. (11), we obtain:

11
Z., :ﬁ(”—ZL, +L2]:n3 (—L, +—L2]. (12)
n\ n n,

Generally speaking, it is evident for a Gaussian beam propagating into the ith layer that the
distance from its boundary with the (i — 1)th layer to the waist of the equivalent beam of the ith
layer is given by the expression

1 1 1
ZW3:ns[n—Ll+n—L2+...+n—Li_lJ. (13)
1 2 i-1

The mth reverse beam in the given multilayer interferometer in reflection mode passes through
2m — 1 layers with the symmetry shown in Fig. 2. After returning to the input point, we obtain the
distance Z ) to the waist of the equivalent beam passing through the first layer in the opposite
direction. ”fhe total distance L, from the waist of the equivalent beam of this layer to the fiber
boundary on which the beam is incident is Z wom—1 T L,.

In view of expression (13), we obtain:

[ +Z ILJ (14)

The resulting expression (14) can be substituted into Eq. (3), yielding the key parameter h

where the term ¢ denotes an additional phase shift that may occur upon reflection from the
boundary of the mth layer and depending on the nature of this reflection.

The phase shift ¥(L, ) for the fiber mode excited by a Gaussian beam incident on the end face
is given by expression (3).

The last and relatively simple factor in Eq. (2) for the magnitude of |E | required to calculate
the intensity (1) reflected from the EFFPI is the multiplier 7. It accounts for the variation in
the amplitude of the wave passing through the interferometer gap. Considering the sequence in
which the Gaussian beam passes through the boundaries and the reflection for the mth wave, we
can easily obtain the following expression for the multiplier 7 :

m—1

T,=B,-[[(1-8)". (16)

m m
i=0

As mentioned above, B is the reflection coefficient from the outer boundary of the mth
layer i.e., the boundary of the mth and (m + D)th layers. The coefficient 7= B, for the wave
E, i 1t is equal to the reflection coefficient from the fiber end face. If the reﬂectlons are
related only to the difference in the refractive indices of the layers, then the reflection and
transmission coefficients are determined by Fresnel reflections and expression (16) for this case

has the form

" 4nn, |n —n |
1 +1
Tm — H it m B m , (17)
i=0 I’l + nl+1) nm + nm+1
where, as we recall, n, is the refractive index in the core of the fiber.
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Expression (2) accounts for considerable light absorption occurring in the layers by a multiplier
taking the form

—_

T a’ =[J107%4", (18)

o

3
L
3

1l
—

1l
—_

where a, are the amplitude transmission coefficients of the layers (the square power accounts for
forward and backward propagation through the layers.

The transmission coefficients in the right-hand side of Eq. (18) are expressed as linear losses
o, (in dB per unit length).

The expressions obtained above describe all the components necessary for calculation by
expression (1).

Spectral characteristic of the EFFPI

Expression (1) and detailed description of its components provides the general structure for
the model of interference oscillations occuring at the output of the EFFPI. As already noted,
interrogation of such structures in measuring devices is generally carried out by methods of spec-
tral interferometery. In this case, the so-called spectral characteristic (transfer function) of the
interferometer S()) is recorded and analyzed. It is defined as the dependence of the intensity of
light reflected from the EFFPI (relative input level) with the wavelength A varying in the operat-
ing range AM centered at the wavelength ). Evidently, the spectral characteristic of a multilayer
EFFPI can be found by expression (1) if £, = 1 and it is assumed that the quantity X is vari-
able. In this case, it is convenient to analyze S(A) as a sum of a quasi-constant component and

oscillating components
S(A)=8,(2)+ 2. 2.8, (%), (19)

where
2

5,(1)=3JE,

m=0

, S

m

L(A)= 2|EmEn

Ccos (A(pmn ) (20)

The component [ slowly changes with the wavelength A, mainly due to the variation
in the ratio L, /r, included in the coefficient n , which sets the amplitude of the mth
wave. The oscillating components / = describe the interference oscillations of the mth and
nth backscattered waves. The amplitude of such a component |E E | also varies depending
on A for the above reasons. Nevertheless, a larger contribution is made by the oscillations
determined by the variation in the argument Ag, depending on A, which can be represented
by different components:

4ml
Ap =0 —D = ’;m + g, +0, +V Q1)

where / is the optical difference of the progression of the mth and nth interfering waves.
In view of sum (15), the difference / follows the expression

lmn = Z nL, — Z nL,. (22)
i=1 i=1
The other components of Eq. (21) are determined by the differences
(PGmn = (PG (le ) - (PG (Lln )’
(prmn = (prm - (pm > (23)
Y &= ‘P(le) —‘P(Lln )
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It is assumed for the case m = 0 that the sum with the limit m in expression (22) is equal to
zero; the first equation in system (23) implies that

(PG(LIO) - (pGO - LII(LIO) - 0

If we consider the values of L, and AA relevant for real-life EFFPIs, we can observe that the
variation in the component 4n/, /A during wavelength scanning is more significant than that in the
components ¢, , ¢, and ¥ . Moreover, the component 1/A is expressed in the case AL <<  as

1A= 1/h, — M,

where 5L = L — ) is the wavelength shift relative to the center of the scanning range.
Therefore, the oscillation § (A) can be approximately written as

41/
( et 8%+<pmnj, (24)
}\'0

where the term ¢ includes the sum of the components ¢, , ¢, , ¥, and 4xnl /\.

It is preferable to calculate the dependence S(A) using a more rigorous representation of the ar-
gument in oscillations (21). On the other hand, approximation (24) clearly demonstrates that the
spectral characteristic for wavelength scanning in fact contains quasi-harmonic oscillations, when
each pair of backscattered waves with the numbers m and n corresponds to a quasi-harmonic
oscillation cos(Q, -3%), with the 'frequency’ Q = 4n/ /)3 (the frequency is in quotation marks
here because it characterizes oscillations depending on A and is measured in reciprocal meters).

In general, the properties of the dependence of .S on the wavelength X are set by explicitly includ-
ing the wavelength into expressions (21) or (24), as well as through its influence on such parameters
in the resulting expressions as r,, ¢, and ‘¥ (the parameter ¢, can also vary with the wavelength).
However, another possible factor affecting the spectral characteristic of the EFFPI is that other
parameters of the above expressions may also depend on the wavelength . First of all, consider the
dependence of n, magnitude on the wavelength due to dispersion in the material of the mth layer.
While the n (1) dependence does not affect the general nature of the variation in S(1), it makes a
pronounced contribution to the specific quantitative parameters of the oscillations. For example,
the parameter / , introduced in expression (22), depends on the refractive coefficients of the layers
passed by the mth and nth backscattered waves, so analysis of the actual frequency of ‘oscillations’
Q , obtained by approximation (24) taking into account the dependence of dispersion in the layers
should be, generally speaking, refined (the modifications are partially given below).

rmn

S..(M)~2|E,E,

mn

Example applications of resulting system of expressions

Let us calculate the dependence S(.) of a two-layer EFFPI with the specified parameters
(Fig. 4,a). We take the wavelength scanning interval from 1.51 to 1.59 um (i.e., AL = 80 nm) with
a step of 8L = 40 pm, typical for modern infrared interrogators. Standard single-mode fiber with
a fused-silica core and a mode spot diameter of 10.4 um was taken. Therefore, we assume that
W, = 5.2 um and n, = 1.44. Suppose a silicon layer with a thickness L, = 300 pum is positioned
behind the fiber, and a submembrane air gap with a thickness L, = 105 pm. The membrane ma-
terial adjacent to the the air gap should be specified to be definite; we assume that this also silicon
for simplicity. The power losses of light in silicon and in the air layer are be neglected, assuming
T, = 1. We take n, = 1 for air, and use the value calculated by the Sellmeyer equation for silicon
(see Appendix 2). Eq (A2-1) yields n,(1) = 3.478 in the center of the scanning range, which,
according to Eq. (17), gives the power reflection B, = 17.2% at the interface with the fiber and
B, = B, = 30.6% at the interface with air. The variation An, of n, within the scanning range is
An, = 0.0066. This variation has little effect on reflections, so we dopt a fixed value of n, for silica.
However, the variation in n, is important for analyzing the frequency shifts of the oscillations (the
analysis is presented below), while n, (1) is calculated taking into account Eq. (A2-1).

Calculation for the case M = 2 should take into account three backscattered waves with am-
plitudes E, E, and E; in this case, the phases ¢ were taken equal to zero. The dependence S(i)
calculated in accordance with the structure of Egs. (19), (20) and taking into account Egs. (17),
(7), (3) is shown in Fig. 4,b. According to (19) and (20), it is the sum of one quasi-static and
three quasi-harmonic components.
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Fig. 4. Setup of two-layer EFFPI (@) and the calculated spectral
characteristic S()) for this setup (b)

The calculated values obtained for for the center of the scanning range A, are
§,=0.240, 5, =0.204,S,=0.073 and S|, = 0.043.

The estimated values of oscillation frequencies in this case are
Q, =5457.0,Q,,=6006.2 and Q , = 549.2 (1/um).
[+ [ and [, so

They correspond to the interference of pairs with progression differences /, /,
we can formulate the relationship Q , = Q, + Q.. The oscillations in Fig. 4,b correspond to this
sum: while high-frequency beats are very pronounced(this is the sum of the frequencies Q, and
Q,,), the envelope is complex and asymmetric due to the influence of the third term with the fre-
quency Q .. There are no considerable quasi-static variations, since the above values of S, S, S,
and §, for A, vary within a few percent when the wavelength shifts to the edges of the scanning
range. The contribution of the phase components ¢, is negligible compared to 4n/ /), therefore
it is insignificant.

The given calculated example illustrates how the expected characteristic S(X) is obtained for
the specific parameters of the device. Apparently, the overall level of output power fluctuations is
approximately 60% relative to the input, allowing to coordinate the requirements for the photo-
detector and the source. Estimating the oscillation frequencies of S(A), we can select the correct
parameters for detecting the signal. Obtaining the relative levels of oscillating components, as well
as accounting for the noise level and the properties of processing algorithms allow to evaluate the
resolution to reliably measure the variation in the optical path lengths of the silicon and air lay-
ers. Furthermore, calculating the expected characteristic S(A) and its parameters by this method
allows to optimize the parameters of the device within the range available for real devices.

Frequency analysis of spectral characteristics for a multilayer EFFPI

As discussed in Introduction, high-precision measurement methods based on EFFPI can be
used to record and process the spectral characteristics of the interferometer S(1). This processing
can be rather complex, but it generally involves calculating and analyzing the spectrum F(Q) by
applying the Fourier transform to the initially recorded dependence S(i). This is necessary for
isolating the necessary oscillation component, reducing noise and distortion. In the case of a
multilayer interferometer, the primary means for separating the components of different pairs of
interfering waves and processing them individually is frequency filtering of S(A) components. Even
finding the spectral peak positions of F(Q) allows to approximately estimate the required lengths
of the layers, since, as follows from Eq. (24), /[ = 1’Q, /4« (such an estimate does not give high
measurement accuracy, which requires more complex processing).
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However, several important points should be raised before calculating the spectrumF(Q) and
performing its preliminary analysis. Previous analysis considered the dependence S(A), since de-
vices for spectral interrogation specifically record the output intensity level of the EFFPI as
function of the wavelength in most cases. As noted above, the components of S () are qua-
si-harmonic, i.e., different from a strictly harmonic dependence. These differences are also as-
sociated with potential variation in the amplitude and phase parameters depending on X in the
expressions obtained, but the strongest deviation is due to the chirp present in the oscillating
components. The initial progression of the cosine argument in expression (20) is given by the
ratio 4n/ /), which is only approximately substituted by a linear shift in a narrow range of AA.
Therefore, the components S (1) in the calculations of the spectrum F(Q) are represented, in-
stead of discrete components with frequencies Q , by some broadened lines, possibly of complex
shape. Moreover, the higher the value of Q , the stronger the broadening and more difficult it is
to process the component S (A).

Notably, it is relatively easy to eliminate this difficulty if instead of S(L.), we consider the spec-
tral characteristic S(v) in the optical frequency range v = ¢/A(c is the speed of light in vacuum).
Formally substituting the variable in the resulting expressions converts the oscillating components
of § (v) to the form

mn

S,.(v)=2|E,E, (%v + (pmnj, (25)
c

where ¢, includes the sum of the components ¢, , ¢, , ¥, , which, like the amplitudes |E |, are
determined by the same expressions as before, but with the substitution A = ¢/v.

Expression (25) corresponds to the harmonic dependence on v and there is no chirp effect for
Smn(v) oscillations. Therefore, if the Fourier transform is applied specifically to S(v), the resulting
spectrum of F'(Q') has clear peaks for the components S (v) with the ‘frequencies’ Q' =4n/ /c
(in this case, the parameter Q' is measured in Hz™!, i.e., corresponds to the scale of time units).

It is important to emphasize that in practice, this substitution of the wavelength A with the
frequency v is associated not only with the new variable in the ratio v = ¢/\. Spectral interrogators
typically generate a sample set S, = S()), where the values of A, are distributed within the scan-
ning range wa A\ with a uniform step. The sample set S, should be resampled by interpolation to
correctly apply the discrete Fourier transform to the spectral characteristic of the EFFPI with a
modified argument scale; the samples S’i of the transformed set should in this case correspond to
a uniform step in frequency v. The application of the Fourier transform to the sequence ' gives a
spectrum F(Q') with peaks Q' , which correspond to the optical path differences [ = Q' -c/4n.

The ratios [ =1’ Q /47[ and [ =Q -c/4n allow using the scale of optical path difference
for the arguments of the spectra F(Q) and F(Q) by replacing the initial arguments Q and Q' with
the argument / = A? Q /4n = Q'-¢/4n. Then the peak positions of the spectra (/) and F(/) corre-
spond to the optical path difference of interfering pairs of backscattered waves.

Another important finding follows from representing the spectral characteristic of the EFFPI
as a function of v in the form (25). This form allows to consider the effect of weak dispersion,
when the dependence of the refractive index # on the wavelength in the range A\ can be described
(the same as on the frequency) using a linear correction:

n(A) = n(h) —n," -oL

If we substitute this representation for #n to Egs. (22) and (25), taking into account that the
frequency varies within the range v, = Av (v, = ¢/A)) and discard the components with second-
order smallness, we obtain that

Q) - 4“[2% XN j 26)

where n, is the group refractive index at the point A = A ;
n,= n(k,) — A, n,’
(for example, this influence of dispersion was discussed for a single-layer EFFPI in [21, 22]).
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Fig. 5. Computational spectra ' and F with the scale of the argument /
(colored in black and red respectively)

As an illustration, we calculate the spectra F(/) and F(/) for an EFFPI with the setup de-
scribed above (see Fig. 4,a). The calculated characteristic S(A) for this setup is shown in Fig. 4,b.
According to the values adopted for AL and A, this characteristic was a set of 2,000 samples .
After using spline interpolation to recalculate these samples into a scale with a uniform frequency
step v and applying the Fourier transform, as well as substituting Q' = 4n//c, we obtain the spec-
trum F with the scale of the argument / (Fig. 5). Notably, if the spatial resolution given by the
range A\ is recalculated by the scale of the argument /, it amounts to 8/ = 7.5 um. The resulting
spectrum F'(/) contains one constant component and three components with positions that ex-
actly coincide with /,, = L, = 105 pm (it is taken into account here that n, = 1),

lo1 = nglL1 =1.082 mm, /_ = ng1L1+L2 =1.187 mm.

> 702

Evidently, the amplitudes coincide for all four components of the spectrum £ (/) and the above
values of S, §,,, S, and S, for &,. Minor discrepancies can be associated with insufficient res-
olution &/, which is why the calculated points / may not coincide with the exact position of the
spectral peak. Fig. 5 also shows the position

I'=n(k)L, =1.043 mm.

Evidently, the estimate /" is very different from the actual position /;,
should be taken into account, as discussed above.

In addition, the red lines and symbols in Fig. 5 show the results for F(/) calculated by Fourier
transform from the actual set of initial samples S, in the wavelength scale. Apparently, there is
good agreement between F(/) and F(/) for the low-frequency component with /= [, = 105 pm.
However, the chirp in S(X) oscillations considered above considerably broadens the spectral com-
ponents for the high-frequency region, making it rather difficult to determine the positions /;, and
l,, or even resolve them.

suggesting that dispersion

Conclusion

We obtained expressions for calculating the spectral characteristics of the interferometer (in
reflection mode) for an EFFPI with a multilayer gap within the framework of the Gaussian beam
model for radiation propagating in layers, only accounting for single reflections. The properties of
such a characteristic and its frequency analysis are considered.

The expressions obtained allow calculating the expected spectral responses of low-finesse mul-
tilayer EFFPIs, analyzing their properties and evaluating the key parameters, which is very im-
portant to make reasonable choice of the device's parameters and elements to further improve
EFFPI-based sensors or construct novel designs.
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Appendix 1

The Gaussian beam model has wide application as a solution to the approximate Helmholtz
wave equation. This solution corresponds to a paraxial wave propagating along the axis z whose
complex amplitude is described by the expression

A [ p 2_.2_.kp2_. B )
U(Z,p)—AoW(Z)eXp (—W(Z)J Jk JzR(Z) Jbe (2) |5 (A1-1)

where p is the transverse displacement from the axis; k is the wavenumber, k = 2an/L (n is the
refractive index of the medium, A is the radiation wavelength in vacuum); A4 is the amplitude of
the beam determined by the initial conditions; W is the radius (width) of the beam equal to the
displacement from the axis at which the amplitude the field drops to the level 1/e relative to the
maximum on the axis; W is the beam width in the waist, W, = W(0); R is the wavefront curvature
radius of the beam; ¢ is the Gouy phase charactering an additional phase progression along the
beam axis; z is the coordinate ounted from the beam waist.

The so-called Rayleigh beam length r (r = nnW?/)) can be used to express the dependences
of W, R and ¢, on the z coordinate as follows:

W (z)=, 1{5)2, R(z):{H(éjz:l, %(z):atan[ij. (A1-2)

r r

Appendix 2
The Sellmeier equation for n()) of silicon takes the following form in the infrared region [23]:

ar’ a\’ a\’
n(M)= 1+———+—2—+3" A2-1
) \/ ERr RS LR TR LY (A2l

where a, = 10.6684293, a, = 0.003043475, a, = 1.54133408; A, = 0.301516485 pm,
A, = 1.13475115 pym, X, = 1104.0 pm.
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CBEAEHUA Ob ABTOPAX

JIMOKYMOBW Y Jleonnn bopucosud — dokmop gusuxo-mamemamu4eckux Hayk, npogeccop Bovicuei
WKOAbl NPUKAQOHOU Qu3uku u Kocmuyeckux mexuosoeuii Canxkm-Ilemepbypeckoeo noaumexmu4eckozo
yuueepcumema Ilempa Beaukoeo.
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YITAKOB Hukonaii AneKcanapoBud — Kanoudam (pusuxo-mamemamuieckKux Hayk, doyeum Boicueli
WKOAbl NPUKAQOHOU Qu3uku u Kocmuyeckux mexuosoeuii Canxkm-Ilemepbypeckoeo noaumexmu4eckozo
yrueepcumema Ilempa Beaukoeo, Cankt-ITeTepOypr.
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MAPKBAPT Axnekcanmp AjeKcaHmpoBWd — accucmenm Boicuieil wkoabl NpukAaoHol @usuxu u
Kocmuueckux mexuonoeuit Cankm-Ilemep6ypeckoeo noaumexuuteckoeo ynueepcumema Ilempa Beaukoeo.
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EBIOKMMEHKO Ekatepuna IOpbeBHa — acnupanmka Boeicuiell wkoav npukaaoHol @usuxu u
Kocmuueckux mexuonoeuit Cankm-IlemepOypeckoeo noaumexuuueckozeo ynueepcumema Ilempa Beaukoeo.
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