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Abstract. In the paper, the problem of a semi-infinite antiplane interface crack located
between two functionally graded wedge-shaped regions has been considered. The shear modules
of the materials’ regions are quadratic functions of the polar angle. This kind of functional
inhomogeneity made it possible to express all the components of the elastic field through a
single harmonic function. Using the Mellin integral transform, the problem was reduced to the
Wiener — Hopf scalar equation, for which an exact solution was obtained. The influence of
gradients of elastic properties of materials on the stress intensity coefficient at the crack tip and
the singularity value at the angular point of the structure was studied.
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AnHotanusa. PaccmaTpuBaercs 3amada o Mojiy0eCKOHEUHOW aHTHUIUIOCKOUW MHTepdericHOon
TPELIVHE, HaxXOASIIeWcss MeXIy IBYMS (QYHKIMOHAIbHO-TPAAUEHTHBIMUA KIWHOBUIHBIMU
obsactamMu. Momynu caBura mMaTepuaaoB oOJacTell SBISIOTCS KBAAPATUUHBIMU (DYHKIUSIMU
nojisipHoro ymia. Takoil Bunl (GYyHKUMOHAIbHONW HEOAHOPOJHOCTU TIO3BOJISIET BbIPA3UTh
BCE KOMITOHEHTBI YIPYroro IMOJsl 4Yepe3 ONHY rapMoHuueckylo (yHkuuo. C TMOMOIIbIO
WHTErpaJbHOTO TIpeoOpa3zoBaHns MenHa mpobjeMa cBeleHa K CKaJISIPHOMY YPaBHEHMIO
Bunepa — Xomnda, 171 KOTOPOro MoJjiyueHo TOUHOE peuieHue. M3ydeHo BAMSHUE IPaaueHTOB
YIPYTUX CBOWCTB MaTepuajaoB Ha KOA(M(UIIMEHT WHTEHCUBHOCTUA HAMPSKEHWN B BepIINHE
TPELIMHBI U TTOKA3aTeJIb CUHTYJISIPHOCTU B YIJIOBOUM TOYKE CTPYKTYPHI.

KnioueBbie cioBa: (IJYHKLU/IOHEU'[BHO-FpaI[I/ICHTHbIﬁ KJIMH, aHTHUILJIOCKasA HHTCpq)CVICHaﬂ
TpCIIMHA, CUHTYJIAPHOCTDL Hal'[p?[)KCHI/Iﬁ
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Introduction
Functionally graded materials (FGM) are composites whose mechanical and physical prop-

erties reflect the characteristics of their spatially variable microstructure [1, 2]. The concept of
FGM was first introduced in the 1980s in Japan, finding wide application in the aerospace and
nuclear industries, electronics, optoelectronics, construction and other fields as materials for
energy conversion and as biomaterials [3]. Simulations consider FGM as heterogeneous materials,
assuming the variation in their properties to be continuous, while their microstructure is not taken
into account in this case.

Analysis of stress field singularities in such materials is one of the fundamental problems in lin-
ear fracture mechanics [4]. Due to the gradient of elastic properties, the classical nature of stress
singularity (square-root in the case of cracks and simple power-law in the case of sharp notches)
can be modified in the FGM [5, 6].

Numerous studies have considered fracture in FGM in the plane and antiplane formulations.
Confining ourselves to antiplane problems, we should note that one of the first studies in this
direction [7] established that the jump in the derivative of the shear modulus (preserving its con-
tinuity) does not affect the singularity exponent at the crack tip.

Singular fields in layered structures with functionally graded elements which have defects such
as cracks oriented along or perpendicular to the gradient of the shear modulus were considered
in [8—11]. The stress-strain state of wedge-shaped regions with gradient properties, including
multi-material wedges and sharp notches were described in [5, 6, 12—14].

The dependence of the FGM shear modulus on the coordinates is selected in analytical models
from a class of functions for which the equilibrium equations have analytical solutions. Linear
or exponential dependences are typically used for the shear modulus. If the elastic module var-
ies arbitrarily, the piecewise linear and piecewise exponential models can be applied [15, 16]. A
quadratic dependence of the shear modulus on the polar angle was proposed in an earlier study
[13] for gradient material, allowing to express all the components of the elastic field in terms of a
single harmonic function under the conditions of an antiplane problem. This approach was used
for singularity analysis in the apex of a multi-material wedge [14].

Based on the results obtained in [13], we consider the stress state of a composite wedge with
gradient properties varying quadratically in the transverse direction, weakened by a semi-in-
finite antiplane crack. The effect from the increase and decrease in the stress intensity factor
(SIF) at the tip of the crack has been analyzed, as well as the variations in the singularity expo-
nent in the corner of the wedge due to gradient elastic properties of materials, compared to a
homogeneous structure.

Problem statement

Consider a semi-infinite mode III interface crack located between two wedge-shaped regions
Q, and Q, with the angles o, and a, (Fig. 1):

Q ={(r,0):0<r<mw,0<0<0a,}, Q, ={(r,0):0<r<o0,-a, <6 <0},

where r, 0 are the polar coordinates.

It is assumed that the materials in these regions are functionally graded, and their shear moduli
u, and p, are functions of the polar angle. In this case, the functional dependences p,(6) (k = 1,
2) are such that the elastic moduli are the same on the ray 6 = 0, equal to p,, taking the values
u, at the boundaries 6 = o, and 6 = —a,.
© Tuxomupos B. B., 2022. Uznarens: Cankr-IlerepOyprekuii monurexnudeckuii yuusepcurtet [letpa Benukoro.
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Fig. 1. Functionally graded wedge with semi-infinite interface crack under longitudinal shear:
H,, b, are the shear moduli at the boundaries of the regions Q  and Q, with graded materials; a,, o, 0,
r, ¢ are the geometric parameters; g(r) is a self-balanced load apphed to the edges of the crack

We assume that the tip of crack is located at a distance ¢ from the apex of a composite wedge.
A self-balanced load g(r) is applied to the edges of crack. The contact of materials outside the
crack is assumed to be perfect.

The equilibrium equations take the following form in the regions Q, with shear moduli varying
in the transverse direction

o’w, 1 o’w, 10w, 1 dy, ow,
2 + 2 +- + 2
or 200" r or u(0)’ do 00

=0, (1)

and the stresses are expressed in terms of displacements w, by the following formulas:

By awk oW,
k=12). 2
Tt =g T =W - (K=1.2) 2

Consider a quadratic functional dependence of the shear modulus in FGM on the polar angle,
proposed and tested in [12]:

u(0)= (ake+bk)2’ (3)

where the coefficients in this case take the form

e =G =) o, b =—b, = u,.

Therefore, the shear modulus of the composite is continuous at the interface 6 = 0, and its
derivative with respect to the angle 6 has a discontinuity.
Searching for displacements in the regions Q, in the form

1 -
Wk(Vae)Zka(he) (4)
k k

from Egs. (1), we obtain that the functions w,(r,0) are harmonic:
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2~ 2 ~ ~
L R AL (5)
or r- 00 r or
Using Egs. (2), we arrive at the following representations for the stresses:
a, . a,0+b, ow
Toy = —— W, (7, 0) + ——"—F, (6)
r r 00
T =(a,0+ bk)%'
or
Solutions of Egs. (1) at the interface 6 = 0 must satisfy mixed conditions
o1 (75, 40) = 1o, (,—0), W, (r,+0) = w, (r,—0) (0 < r <), 7
%921 (r9 +0) = %922 (r’ _0) = g(r) (1 <r< (13),
as well as boundary conditions at the edges of the wedge
Ty, (7 0,) =0, 7o, (r,—0,) =0 (0< 7 <0). 8)

Reducing the problem to the Wiener—Hopf equation and its solution
We search for the solution of problem (1)—(8) in the regions Q, in the form of Mellin integrals:

1
W, (70) = [ W (p,O)r dp (k=1,2), )

W,.(p,0)=[4, (p)sin p6+ B,(p)cos pb]/(a,0+b,).

According to Egs. (6), stresses are defined by expressions

1 -
Tezjk(rae) =2_m.[7—'ezjk(p,6)7' P ldp, (10)
L

Tezjk (p,0) =-a,[4,(p)sin pO+B, (p)cos pO]+
+(a,0+b,)p[A,(p)cos pb— B, (p)sin pO].

According to the regularity conditions, the integration path L is located parallel to an imagi-
nary axis in the strip

~5,<Rep<3, (5,,8,>0).

The quantities 4,(p) and B,(p) are found from boundary conditions (7) and (8).
Following the scheme implemented in [17], we come to the inhomogeneous
Wiener—Hopf equation:

F(PIT.(p)+G_(p)l+p,e ' W.(p)=0 (pel), (11)

where

T.(p) = [ 7.1 (ep,+0)p"dp, G_(p) = [ g(ep)p”dp,

0
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W (p)= [ 2106, 50) = v ep,0)dp

Functions G (p) and W _(p) are regular and do not have zeros in in the half-plane Q_left from
the path L, while 7', (p) does not have zeros in the right half-plane Q, [18]. An imaginary axis can
be selected as the path L.

The coefficient of Eq. (11) takes the form

w(a, p) Ct(z)(zp)

F tg(a,
(p) = ctg(a, p) w(@,p) w(@p)

(12)

where
u(x)=1+m™"' (m—1)"x[1 - xctg(x)], (13)

v(x) =1+ (m—1)x"tg(x), m=Jp, /L.

The parameter m characterizes the relative shear stiffness of the material on the crack line
compared to the material on the sides of wedge. The crack is located in the region of locally soft
composite material at 0 < m < 1, and in the region of the locally rigid material at 1 < m < o. The
case m = 1 corresponds to homogeneous material in the regions Q,. The expression given in [17]
is obtained from Egs. (12) and (13) for the coefficient of problem (11).

To factorize function (12), let us represent it in the following form:

F(p) =%K(p>, (14)
K(p)=X(p)®(p), X(p)= pctg(a, p),

() =3 K(PIEP), F(p)= VE‘W ;
u(o, p)v(a,p)

F,(p) =1+tg(a,p)ctg(a,p) (0o p)

Notice that the function F,(p) = 2 at o, = o, while the function F(p) = 1 for a
homogeneous medium.
Factorization of the function X(p) is carried in an elementary way [18]:

X(p)=X.(p)X_'(p), (15)

/ n I'(+pa,/n / rq2-o,p/n
X+(p): e ( p l/ ) _( ) (/ lp/ )
o, ['(1/2+ pal/n) T(l-o,p/m)
The function ®(if) is continuous on the imaginary axis of the function at p = if, has no zeros

and poles, its index is zero and it exponentially tends to unity at ¢ — o. Therefore, in accordance
with the data from [18],

O(p) = ®.(7) . (p) =ex {—%mfh;c_pg)dt} (pel). (16)

®_(p)’

Because the function ®(p) is even, analytic functions (16) in the regions Q, and Q_can be
represented as
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CI)i(p):eXp{ I 1nq>(l§) }

Using Egs. (14)—(16), regrouping the terms in Egs. (11) and applying Liouville’s theorem [18§],
we obtain:

O (pX,(PT.(p)+0.(p)= —% W.(p)O_(p)X_(p)—-Q_(p)=J(p), (17)
where
_ 1L 190 _!
0.(p)=F j 4 QO =30 (DX (OFOG 1) (18)

Estimating the terms in equality (16) with p — o, we can conclude that the unified analytic
function is J(p) = const = C. Let us find this constant from Eq. (17) at p = 0. In view of Eq. (18),
we find that

C =C.G (0) —4Lm. [o X (HFOG (), (19)

3m* (o, +a,)
200,00, (m° +m+1)

C* = ®+(O)X+(0) :\/

To calculate the integral in Eq. (19), we use Cauchy’s residue theorem. The poles of the inte-
grand in the left half-plane are the poles of (7). It follows from representation (12) that they are
determined by the negative roots of the equation

mx” sin x + (m—1)*(sinx — xcos x) = 0,
lying in the intervals
—(n+0.5)n <-x, <-nm (n=1,2,...).
There are two groups of poles: L, = "X /a Gg=1,2).
We assume that concentrated forces with the magmtude T, are applied to the edges of the
crack at a distance 7, from the apex of the wedge. In this case,
g(r) ==T3(r 1),
where (r — r)) is the Dirac delta function, while
G (p)=-T,[e(r,[e)".

As a result, we obtain from Eq. (19) that

el L |mys, (& " 20)
el 2 | o " r ’

where
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_LF(1/2—ocltnj/ﬂ:)
anj_aj (-, /) ®_(¢,)b(x,),

x,cosx, +(m—1)sinx,

b(x,) = RSP
X, cosx, +(m+m  )sinx,

Using the procedure based on Abel-type theorem [18] (used in [17]), we conclude that the
asymptotic expansion of the stresses on the crack line with » — ¢ — 0 takes the form

rezl(r)~c\ﬁ L 1)
T AE—T

We define the stress intensity factor (SIF) at the crack tip by the formula

Ky = lin}o\/2n(8 —7) T, (7).

Then, using asymptote (21), we obtain:

Ky (a,,0,m,e/1r,) =~ 2€C. (22)

To examine the effect from the gradient of the material, we introduce a normalized SIF of
the form
N=K, / K,

1 »

where K is the SIF at the tip of the crack located in a homogeneous wedge.
According to [17], in the case of geometric symmetry, i.e., at a, = o, = a, such a SIF takes

the form

> rrr/(Z(x)
K =T, |— . 23
I 0 e }/-Oﬂ:/a _ gn/a ( )

It follows from Egs. (20)—(23) that the crack behaves unsteadily at small distances between
the crack tip and the angular point of the wedge in both a homogeneous and a gradient material,
since K, — o« at e — 0.

The dependence of the normalized SIF at the tip of the crack located in the composite func-
tionally graded half-plane at a, = o, = n/2 on the relative distance ¢/r, for different values of
relative shear stiffness is shown in Fig. 2. If m < 1, the gradient of elastic properties produces a
significant decrease in the magnitude of SIF compared to homogeneous material. At the same
time, a decrease in the parameter m produces increasing differences in SIF values for the inho-
mogeneous and homogeneous cases. Conversely, the stiffening of the material along the ray 6 = 0
(m > 1) produces an increase in the SIF at the tip of the crack. These trends in the behavior of
the normalized SIF occur at all other wedge opening angles (Fig. 3).

Stress singularity in the tip of the wedge

We examine the stress fields at the tip of the wedge for » — 0. The tangential stresses along
the ray 6 = 0 take the form

T, (,0) :%m. [ [T+(p>+G_(p)](§j dp. (24)

L
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Fig. 2. Dependences of normalized SIF in the tip of the crack located in the gradient half-plane
o, = o,= 90°, on the parameter &/r, for different values of the relative shear stiffness m:
0.25 (1), 0.50 (2), 1.0 (3), 2.0 (4), 4.0 (5)

0 1 2 3 4 ’”

Fig. 3. Dependences of normalized SIF at the crack tip on the relative shear stiffness m
at ¢/r,= 0.5 for different values of the angle a = o,= o,: 30° (1), 90° (2), 180° (3)

Using Eq. (11) and Egs. (14), (17) for the integrand, we obtain the following representation:

2[C+0.(p)]

T G = .
A ) = P

Based on this representation and using Egs. (12), (13) and (24), we obtain the following
expression for the stresses in the segment 0 < r<egat® =10

_ 1 u(oyplu(a,p)(r _p_l
Toy (7,0) = p—" {Y (p) Ap) (gj dp, (25)
where
C+0 (p)

Y = 9
D)= X (mo ()

u, (x) = mx* sin x + (m —1)* (sin x — x cos x),

v.(x) = xcos x+(m—1)sin x.
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The poles of the integrand in Eq. (25), lying in the half-plane to the left of the path L, are
determined by the roots of the equation

A(p) = U (azp)v* (a’lp) + A, U (a‘lp)v* (azp) =0. (26)

The function A(p) is an integer function that has a fourth-order zero at p = 0. However, this
point is a removable singularity at m > 0, and the imaginary axis can be taken as the path L in
equality (25). Because the function A(p) is even, each positive root p, of Eq. (26) corresponds to
the negative root p_, = —p_,. Since this function does not change its form if a, is replaced with o,
and o, with a, it is sufficient to consider the case when a > a, next.

Applying the residue theorem for the negative poles of the integrand to integral (25), we obtain
the representation of stresses at » — 0 in the form

"1 Y2
r r
Tez_i(r’o):Dl(plaa‘l,(x‘Z’m)(gj +D2(p2,OL],OLz,m)(EJ e (27)

wherey, = —1+p (k=1,2,..).

It is evident that the stresses at the tip of the wedge are singular if the roots 0 < p, < 1 exist
for the given values of the parameters o, a, and m.

In the case of a geometrically symmetric structure, where o, = a, = a, it follows from Eqgs. (25)
and (26) that the numbers p, are the roots of the equation

Vi(x)=xcosx+(m—1)sinx=0 (x=0p, aa < 7). (28)

This equation has no complex roots, and there is a single root in the interval (0, =) for any
0 <m < o,sothat 0 <x <n/2form<1andn/2 <x <nzform> 1. As the relative shear
stiffness parameter m decreases from unity to zero, the first root of p, = x,/a also decreases from
n/(2a) to zero. With the magnitude of m changing from unity to infinity (i.e., when the middle
section of the wedge is stiffened), this root increases from n/(2a) to n/a. The dependence of the
singularity exponent y = y, on the angle o is given in Fig. 4. Evidently, the singularity in the apex
of the wedge can only be weak at m > 1 (0 < |y| < 1/2) and occurs only for angles o greater than
90°, the same as in homogeneous material. With an increase in the parameter m, this exponent
becomes smaller compared with the homogeneous case, and the range of angles at which the
singularity occurs is narrowed down. In contrast to the homogeneous case, the half angles of the
wedge opening at which the singularity appears become sharp, and the singularity itself can be
both weak and strong (1/2 < vl < 1).

y
1.00

0.75+ &
0504 4

0.254

A 1 elo : £y 20 I 1%0 l 1s|xo o (deg)
-0.254 o
-0.50 —
e \
Fig. 4. Dependences of the singularity exponent y at the tip of the functionally graded wedge

on the angle a = a, = «, for different values of the relative stiffness parameter m:
0.10 (1), 0.25 (2), 0.50 (3), 1.0 (4), 2.0 (5), 4.0 (6)
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Analyzing the general situation when o, > o, and o, + o, < 2, let us consider a number of
limiting cases.

In the case of a homogeneous wedge (m = 1), it follows from Egs. (25) and (26) that the char-
acteristic equation takes the form sin(a, + a,)p = 0, where the first root determines the classical
singularity

y, =—1+1/(a, +a,),

appearing provided that o, + o, > m.
Given high values of the parameter m, Eq. (26) can be written as

(le((xzp) sin o,p +(llf(Otlp) sin a,p= 0, (29)

f(x)=sinx—xcosx. (30)

The first positive zero x, of function (30) lies in the interval (n, 3n/2), while fix) > 0 for
0 <x <x and fix) <0 for x, <x < 2. It follows then that Eq. (29) has no roots in the interval
(0, 1) at m >> 1 and angles 0 < a, < a, < m, so there is no singularity at the corner point. Eq. (29)
has a single root 1/2 < p, <1 for angles x, < a, < 2r and 0 < o, < 21 — x_ (x, = 1.4302967x) and
large values of m, generating a weak singularity at the corner point. The presence of the root p, < 1
at m < a, < x, is checked numerically.

In the case where the relative stiffness m — 0, Eq. (26) takes the form

fa,p)f(a,p)=0, (1)

and the function u (a p)u (o,p)/A(p) included in integral (25) tends to unity. However, in reality,
the low values of the parameter m = Vi /u_must exceed a certain value m_> 0. At the same time,
the limit equation (31) indicates that the first root is located near zero at sufficiently small m.
Additionally, another second root of Eq. (26), which is less than unity, exists in the case of sharp
notches where the angles satisfy the conditions x, < a, < 2z, 0 < a, < 2n — x_. For example, there
are two roots at o, = 3n/2, a, = n/6 and m = 0. 10: p,=0. 3379652 and p,= 0.9599646. Asymptote
(27) contains two singular terms Notably, the singularity generated by the second root is very
weak. Numerical analysis indicates that this property is also preserved for other values of the
structure parameters.

0.6 1
0.4-]

0.2 7

0.0 ' Y T

02—

-0.4

-0.6 7

Fig. 5. Dependences of singularity exponent y at the point » = 0 of the functionally
graded half-plane on the relative shear stiffness m for different angles:
o, = a,= 90° (1); a,= 120°, a,= 60° (2); a, = 150°, a, = 30° (3)
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Next, let us consider two particular cases in more detail. The first one is the case of a function-
ally graded half-plane with a semi-infinite notch when a, + a, = n (a, > a,). The analysis indicates
that no stress singularity can be detected at m > 1, while the asymptotic expansion of stresses at
the point = 0 has one singular term at m < 1. Fig. 5 shows the dependence of the quantity y =y
on the relative shear stiffness for different angles o, and a,. Evidently, the inhomogeneity of the
material at m < 1 produces singular stresses at the smooth half-plane boundary at the point » = 0.
At the same time, the singularity can be both weak and strong (for fairly low m). The asymmetric
position of the crack weakens the singularity to some extent.

In the case of a functionally graded plane with two notched cracks (o, + a, = 2x, o, > a,),
Eq. (26) can have one or two roots in the interval (0, 1). For example, if the cracks are collinear
(a, T a, = m), there is only one root in this interval generating a strong stress singularity at the
tip of the unloaded fracture at m < 1 and a weak singularity at m > 1. In the case of orthogonal
cracks, when o, = 3n/2, o, = n/2, the characteristic equation has only one root 1/2 < p <1 at
m > 1, and two roots at m < 1: 0 < p, < 1/2 < p, < 1. Here the second root is very close to unity
and determines a weak singularity.

Conclusion

We used the Wiener—Hopf method to obtain an accurate solution to the problem on the equi-
librium of a functionally graded composite wedge weakened by a semi-infinite longitudinal-shear
interface crack whose edges are loaded with self-balanced forces. It was assumed that the gradient
properties of materials quadratically depend on the angular coordinate. We have considered the
effect of the structural parameter on the SIF in the tip of the crack. It is established that the crack
becomes unstable as the distance from the crack tip to the wedge corner point tends to zero.
The gradient properties of materials can considerably affect the magnitude of SIF. If the middle
section of the wedge where the crack is located is relatively softer than the regions near its edges,
the SIF decreases substantially compared to its value in the homogeneous material. Conversely,
the stiffening of this region tends to increase the SIF compared to the homogeneous case.

The problem of stress singularity at the tip of the functionally graded wedge has a number of
peculiarities compared to the case of a homogeneous structure. Unlike homogeneous material,
no stress singularity appears at the tip with sufficiently high values of relative shear stiffness, even
in the cases of sharp notches. On the other hand, the stresses at the tip can grow indefinitely in
functionally graded wedges with sharp opening angles and a soft middle section. Moreover, the
relative stiffnesses less than unity correspond to such opening angles of the wedge-shaped region
at which the asymptotic expansion of stresses near its tip has two singular terms.
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