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Abstract. In the paper, the problem of a semi-infinite antiplane interface crack located 
between two functionally graded wedge-shaped regions has been considered. The shear modules 
of the materials’ regions are quadratic functions of the polar angle. This kind of functional 
inhomogeneity made it possible to express all the components of the elastic field through a 
single harmonic function. Using the Mellin integral transform, the problem was reduced to the 
Wiener – Hopf scalar equation, for which an exact solution was obtained. The influence of 
gradients of elastic properties of materials on the stress intensity coefficient at the crack tip and 
the singularity value at the angular point of the structure was studied.
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Аннотация. Рассматривается задача о полубесконечной антиплоской интерфейсной 

трещине, находящейся между двумя функционально-градиентными клиновидными 
областями. Модули сдвига материалов областей являются квадратичными функциями 
полярного угла. Такой вид функциональной неоднородности позволяет выразить 
все компоненты упругого поля через одну гармоническую функцию. С помощью 
интегрального преобразования Меллина проблема сведена к скалярному уравнению 
Винера – Хопфа, для которого получено точное решение. Изучено влияние градиентов 
упругих свойств материалов на коэффициент интенсивности напряжений в вершине 
трещины и показатель сингулярности в угловой точке структуры.

Ключевые слова: функционально-градиентный клин, антиплоская интерфейсная 
трещина, сингулярность напряжений 
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Introduction
Functionally graded materials (FGM) are composites whose mechanical and physical prop-

erties reflect the characteristics of their spatially variable microstructure [1, 2]. The concept of 
FGM was first introduced in the 1980s in Japan, finding wide application in the aerospace and 
nuclear industries, electronics, optoelectronics, construction and other fields as materials for 
energy conversion and as biomaterials [3]. Simulations consider FGM as heterogeneous materials, 
assuming the variation in their properties to be continuous, while their microstructure is not taken 
into account in this case.

Analysis of stress field singularities in such materials is one of the fundamental problems in lin-
ear fracture mechanics [4]. Due to the gradient of elastic properties, the classical nature of stress 
singularity (square-root in the case of cracks and simple power-law in the case of sharp notches) 
can be modified in the FGM [5, 6].

Numerous studies have considered fracture in FGM in the plane and antiplane formulations. 
Confining ourselves to antiplane problems, we should note that one of the first studies in this 
direction [7] established that the jump in the derivative of the shear modulus (preserving its con-
tinuity) does not affect the singularity exponent at the crack tip.

Singular fields in layered structures with functionally graded elements which have defects such 
as cracks oriented along or perpendicular to the gradient of the shear modulus were considered 
in [8–11]. The stress-strain state of wedge-shaped regions with gradient properties, including 
multi-material wedges and sharp notches were described in [5, 6, 12–14].

The dependence of the FGM shear modulus on the coordinates is selected in analytical models 
from a class of functions for which the equilibrium equations have analytical solutions. Linear 
or exponential dependences are typically used for the shear modulus. If the elastic module var-
ies arbitrarily, the piecewise linear and piecewise exponential models can be applied [15, 16]. A 
quadratic dependence of the shear modulus on the polar angle was proposed in an earlier study 
[13] for gradient material, allowing to express all the components of the elastic field in terms of a 
single harmonic function under the conditions of an antiplane problem. This approach was used 
for singularity analysis in the apex of a multi-material wedge [14].

Based on the results obtained in [13], we consider the stress state of a composite wedge with 
gradient properties varying quadratically in the transverse direction, weakened by a semi-in-
finite antiplane crack. The effect from the increase and decrease in the stress intensity factor 
(SIF) at the tip of the crack has been analyzed, as well as the variations in the singularity expo-
nent in the corner of the wedge due to gradient elastic properties of materials, compared to a 
homogeneous structure.

Problem statement

Consider a semi-infinite mode III interface crack located between two wedge-shaped regions 
Ω1 and Ω2 with the angles α1 and α2 (Fig. 1): 

1 1 2 2{( , ) : 0 ,0 },  {( , ) : 0 , 0},r r r rΩ = θ < < ∞ < θ < α Ω = θ < < ∞ −α < θ <

where r, θ are the polar coordinates. 
It is assumed that the materials in these regions are functionally graded, and their shear moduli 

μ1 and μ2 are functions of the polar angle. In this case, the functional dependences μk(θ) (k = 1, 
2) are such that the elastic moduli are the same on the ray θ = 0, equal to μ0, taking the values 
μ∗ at the boundaries θ = α1 and θ = –α2.
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We assume that the tip of crack is located at a distance ε from the apex of a composite wedge. 
A self-balanced load g(r) is applied to the edges of crack. The contact of materials outside the 
crack is assumed to be perfect.

The equilibrium equations take the following form in the regions Ωk with shear moduli varying 
in the transverse direction

2 2

2 2 2 2

d1 1 1 0,
( ) d

k k k k k

k

w w w w
r r r r r

∂ ∂ ∂ µ ∂
+ + + =

∂ ∂θ ∂ µ θ θ ∂θ
(1)

and the stresses are expressed in terms of displacements kw  by the following formulas:

( ),   .1, 2k k k
kzk rzk

w w
r r

kθ
µ ∂ ∂

τ = µ
∂

== τ
∂θ

(2)

Consider a quadratic functional dependence of the shear modulus in FGM on the polar angle, 
proposed and tested in [12]:

2( ) ( ) ,k k ka bµ θ = θ+ (3)

where the coefficients in this case take the form

* 0 1 2 0( ) ,  .k ka b b= µ − µ α = − = µ

Therefore, the shear modulus of the composite is continuous at the interface θ = 0, and its 
derivative with respect to the angle θ has a discontinuity.

Searching for displacements in the regions Ωk in the form 

1( , ) ( , )k k
k k

w r w r
a b

θ = θ
θ+

 (4)

from Eqs. (1), we obtain that the functions ( , )kw r θ  are harmonic:

Fig. 1. Functionally graded wedge with semi-infinite interface crack under longitudinal shear:
μ1, μ2 are the shear moduli at the boundaries of the regions Ω1 and Ω2 with graded materials; α1, α2, θ, 

r, ε are the geometric parameters; g(r) is a self-balanced load applied to the edges of the crack
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2 2

2 2 2

1 1 0.k k kw w w
r r r r

∂ ∂ ∂
+ + =

∂ ∂θ ∂
  

(5)

Using Eqs. (2), we arrive at the following representations for the stresses:

( , ) ,
r

k k k k
zk k

a a b ww r
rθ

θ + ∂
τ = − θ +

∂θ


 (6)

( ) .k
rzk k k

wa b
r

∂
τ = θ+

∂


Solutions of Eqs. (1) at the interface θ = 0 must satisfy mixed conditions

1 2 1 2( , 0) ( , 0),  ( , 0) ( , 0) (0 1),z zr r w r w r rθ θτ + = τ − + = − ≤ ≤ (7)

1 2( , 0) ( , 0) ( ) (1 ),z zr r g r rθ θτ + = τ − = ≤ < ∞ 

as well as boundary conditions at the edges of the wedge

1 1 1 2( , ) 0,  ( , ) 0 (0 ).z zr r rθ θτ α = τ −α = ≤ < ∞ (8)

Reducing the problem to the Wiener–Hopf equation and its solution

We search for the solution of problem (1)–(8) in the regions Ωk in the form of Mellin integrals: 
1( , ) ( , )  ( 1, 2),

2
p

k k
L

w r W p r dp k
i

−θ = θ =
π ∫ (9)

( , ) [ ( )sin ( ) cos ] ( ).k k k k kW p A p p B p p a bθ = θ+ θ θ+

According to Eqs. (6), stresses are defined by expressions

11( , ) ( , ) ,
2

p
zjk zjk

L

r T p r dp
i

− −
θ θτ θ = θ

π ∫ (10)

( , ) [ (p)sin + (p)cos ]
( ) [ ( ) cos ( )sin ].

zjk k k k

k k k k

T p a A p B p
a b p A p p B p p

θ θ = − θ θ +

+ θ+ θ− θ

According to the regularity conditions, the integration path L is located parallel to an imagi-
nary axis in the strip

1 2 1 2Re  ( , 0).p−δ < < δ δ δ >

The quantities Ak(p) and Bk(p) are found from boundary conditions (7) and (8).
Following the scheme implemented in [17], we come to the inhomogeneous 

Wiener–Hopf equation:

1
0( )[ ( ) ( )] ( ) 0 ( ),F p T p G p W p p L−

+ − −+ +µ ε = ∈ (11)

where

1

1
0 1

( ) ( , 0) ,  ( ) ( ) ,p p
zT p d G p g d

∞

+ θ −= τ ερ + ρ ρ = ερ ρ ρ∫ ∫
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1 2
1

( ) [ ( , 0) ( , 0)] .pW p w w d
∞

−

∂
= ερ + − ερ − ρ ρ

∂ρ∫

Functions G–(p) and W–(p) are regular and do not have zeros in in the half-plane Ω–left from 
the path L, while T+(p) does not have zeros in the right half-plane Ω+ [18]. An imaginary axis can 
be selected as the path L.

The coefficient of Eq. (11) takes the form

1 2
1 2

1 2

( ) ( )( ) ctg( ) ctg( ) ,
( ) ( )

v p v pF p p p
u p u p
α α

= α + α
α α

(12)

where
1 2 2( ) 1 ( 1) [1 ctg( )],u x m m x x x− −= + − − (13)

1
0 *( ) 1 ( 1) tg( ),  .v x m x x m−= + − = µ µ

The parameter m characterizes the relative shear stiffness of the material on the crack line 
compared to the material on the sides of wedge. The crack is located in the region of locally soft 
composite material at 0 < m < 1, and in the region of the locally rigid material at 1 < m < ∞. The 
case m = 1 corresponds to homogeneous material in the regions Ωk. The expression given in [17] 
is obtained from Eqs. (12) and (13) for the coefficient of problem (11).

To factorize function (12), let us represent it in the following form:

2( ) ( ),F p K p
p

= (14)

1( ) ( ) ( ),  ( ) ctg( ),K p X p p X p p p= Φ = α

1
1 2 1

1

( )1( ) ( ) ( ),  ( ) ,
2 ( )

v pp F p F p F p
u p
α

Φ = =
α

1 2
2 1 2

2 1

( ) ( )( ) 1 tg( )ctg( ) .
( ) ( )

u p v pF p p p
u p v p
α α

= + α α
α α

Notice that the function F2(p) = 2 at α1 = α2, while the function F1(p) = 1 for a 
homogeneous medium.

Factorization of the function X(p) is carried in an elementary way [18]:
1( ) ( ) ( ),X p X p X p−

+ −= (15)

1 1 1

1 1 1

(1 ) (1 2 )( ) ,  ( ) .
(1 2 ) (1 )

p pX p X p
p p+ −

Γ + α π α Γ −α ππ
= =

α Γ + α π π Γ −α π

The function Φ(it) is continuous on the imaginary axis of the function at p = it, has no zeros 
and poles, its index is zero and it exponentially tends to unity at t → ∞. Therefore, in accordance 
with the data from [18], 

( ) 1 ln ( )( ) ,  ( ) exp  ( ).
( ) 2 L

p tp p dt p L
p i t p

+
±

−

 Φ Φ
Φ = Φ = − ∉ Φ π − 

∫ (16)

Because the function Φ(p) is even, analytic functions (16) in the regions Ω+ and Ω– can be 
represented as
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2 2
0

ln ( )( ) exp .p ip d
p

∞

±

 Φ ξ
Φ = ξ π ξ + 

∫

Using Eqs. (14)–(16), regrouping the terms in Eqs. (11) and applying Liouville’s theorem [18], 
we obtain:

1( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ),
2

pp X p T p Q p W p p X p Q p J p+ + + + − − − −

µ
Φ + = − Φ − =

ε
(17)

where

1 ( )( ) ,  ( ) ( ) ( ) ( ) ( ).
2 2L

Q t tQ p dt Q t t X t F t G t
i t p± − − −= = Φ
π −∫ (18)

Estimating the terms in equality (16) with p → ∞, we can conclude that the unified analytic 
function is J(p) = const = C. Let us find this constant from Eq. (17) at p = 0. In view of Eq. (18), 
we find that

*
1(0) (t) ( ) ( ) ( ) ,

4 L

C C G X p F t G t dt
i− − − −= − Φ
π ∫ (19)

2
1 2

* 2
1 2

3 ( )(0) (0) .
2 ( 1)

mC X
m m+ +

α +α
= Φ =

α α + +

To calculate the integral in Eq. (19), we use Cauchy’s residue theorem. The poles of the inte-
grand in the left half-plane are the poles of F(t). It follows from representation (12) that they are 
determined by the negative roots of the equation

2 2sin ( 1) (sin cos ) 0,mx x m x x x+ − − =

lying in the intervals

( 0.5)   ( 1, 2,...).nn x n n− + π < − < − π =

There are two groups of poles: tnj = –xn/αj (j = 1, 2).
We assume that concentrated forces with the magnitude T0 are applied to the edges of the 

crack at a distance r0 from the apex of the wedge. In this case,

0 0( ) ( ),g r T r r= − δ −

where δ(r – r0) is the Dirac delta function, while 

0 0( ) ( ) .pG p T r− = − ε ε

As a result, we obtain from Eq. (19) that

2
0 1

*
1 1 0

1 ,
2

n jx

nj
j n

TC C a
r

α
∞

= =

  α ε = +  ε π   
∑∑ (20)

where 
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1

1

(1 2 )1 ( ) ( ),
(1 )

nj
nj nj n

j nj

t
a t b x

t −

Γ −α π
= Φ
α Γ −α π

1

cos ( 1)sin( ) .
cos ( )sin
n n n

n
n n n

x x m xb x
x x m m x−

+ −
=

+ +

Using the procedure based on Abel-type theorem [18] (used in [17]), we conclude that the 
asymptotic expansion of the stresses on the crack line with r → ε – 0 takes the form

1
1( ) ~ .z r C

rθ

ε
τ

π ε −
(21)

We define the stress intensity factor (SIF) at the crack tip by the formula

III 10
lim 2 ( ) ( ).zr

K r rθ→ε−
= π ε − τ

Then, using asymptote (21), we obtain:

III 1 2 0( , , , ) 2 .K m r Cα α ε = ε (22)

To examine the effect from the gradient of the material, we introduce a normalized SIF of 
the form

0 ,III IIIN K K=

where K0
III is the SIF at the tip of the crack located in a homogeneous wedge. 

According to [17], in the case of geometric symmetry, i.e., at α1 = α2 = α, such a SIF takes 
the form

(2 )
0 0
III 0

0

2 .rK T
r

π α

π α π α
=

αε − ε
(23)

It follows from Eqs. (20)–(23) that the crack behaves unsteadily at small distances between 
the crack tip and the angular point of the wedge in both a homogeneous and a gradient material, 
since KIII → ∞ at ε → 0.

The dependence of the normalized SIF at the tip of the crack located in the composite func-
tionally graded half-plane at α1 = α2 = π/2 on the relative distance ε/r0 for different values of 
relative shear stiffness is shown in Fig. 2. If m < 1, the gradient of elastic properties produces a 
significant decrease in the magnitude of SIF compared to homogeneous material. At the same 
time, a decrease in the parameter m produces increasing differences in SIF values for the inho-
mogeneous and homogeneous cases. Conversely, the stiffening of the material along the ray θ = 0 
(m > 1) produces an increase in the SIF at the tip of the crack. These trends in the behavior of 
the normalized SIF occur at all other wedge opening angles (Fig. 3).

Stress singularity in the tip of the wedge

We examine the stress fields at the tip of the wedge for r → 0. The tangential stresses along 
the ray θ = 0 take the form

11( ,0) [ ( ) ( )] .
2

p

zj
L

rr T p G p dp
i

− −

θ + −
 τ = +  π ε ∫ (24)
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Fig. 2. Dependences of normalized SIF in the tip of the crack located in the gradient half-plane 
α1 = α2 = 90°, on the parameter ε/r0

 for different values of the relative shear stiffness m:
0.25 (1), 0.50 (2), 1.0 (3), 2.0 (4), 4.0 (5)

Using Eq. (11) and Eqs. (14), (17) for the integrand, we obtain the following representation:

[ ]2 ( )
( ) ( ) .

( ) ( )
C Q p

T p G p
pK p F p

−
+ −

−

+
+ =

Based on this representation and using Eqs. (12), (13) and (24), we obtain the following 
expression for the stresses in the segment 0 < r < ε at θ = 0  

1
* 1 * 2( ) ( )1( ,0) ( ) ,

( )

p

zj
L

u p u p rr Y p dp
m i p

− −

θ

α α  τ =  π ∆ ε ∫ (25)

where

2

( )( ) ,
( ) ( )

C Q pY p
p X p p

−

− −

+
=

Φ
2 2

*( ) sin ( 1) (sin cos ),u x mx x m x x x= + − −

*( ) cos ( 1)sin .v x x x m x= + −

Fig. 3. Dependences of normalized SIF at the crack tip on the relative shear stiffness m 
at ε/r0 = 0.5 for different values of the angle α = α1= α2: 30° (1), 90° (2), 180° (3)
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The poles of the integrand in Eq. (25), lying in the half-plane to the left of the path L, are 
determined by the roots of the equation

1 * 2 * 1 2 * 1 * 2( ) ( ) ( ) ( ) ( ) 0.p u p v p u p v p∆ = α α α +α α α = (26)

The function Δ(p) is an integer function that has a fourth-order zero at p = 0. However, this 
point is a removable singularity at m > 0, and the imaginary axis can be taken as the path L in 
equality (25). Because the function Δ(p) is even, each positive root pk of Eq. (26) corresponds to 
the negative root p–k = –p–k. Since this function does not change its form if α1 is replaced with α2 
and α2 with α1, it is sufficient to consider the case when α1 ≥ α2 next.

Applying the residue theorem for the negative poles of the integrand to integral (25), we obtain 
the representation of stresses at r → 0 in the form

1 2

1 1 1 2 2 2 1 2( ,0) ( , , , ) ( , , , ) ...,zj
r rr D p m D p m

γ γ

θ
   τ = α α + α α +   ε ε   

(27)

where γk = –1 + pk (k = 1, 2, …).
It is evident that the stresses at the tip of the wedge are singular if the roots 0 < pk < 1 exist 

for the given values of the parameters α1, α2 and m.
In the case of a geometrically symmetric structure, where α1 = α2 = α, it follows from Eqs. (25) 

and (26) that the numbers pk are the roots of the equation 

*( ) cos ( 1)sin 0 ( ,  ).v x x x m x x p= + − = = α α ≤ π (28)

This equation has no complex roots, and there is a single root in the interval (0, π) for any 
0 < m < ∞, so that 0 < x1 ≤ π/2 for m ≤ 1 and π/2 < x1 < π for m > 1. As the relative shear 
stiffness parameter m decreases from unity to zero, the first root of p1 = x1/α also decreases from 
π/(2α) to zero. With the magnitude of m changing from unity to infinity (i.e., when the middle 
section of the wedge is stiffened), this root increases from π/(2α) to π/α. The dependence of the 
singularity exponent γ = γ1 on the angle α is given in Fig. 4. Evidently, the singularity in the apex 
of the wedge can only be weak at m ≥ 1 (0 < |γ| < 1/2) and occurs only for angles α greater than 
90°, the same as in homogeneous material. With an increase in the parameter m, this exponent 
becomes smaller compared with the homogeneous case, and the range of angles at which the 
singularity occurs is narrowed down. In contrast to the homogeneous case, the half angles of the 
wedge opening at which the singularity appears become sharp, and the singularity itself can be 
both weak and strong (1/2 < |γ| < 1).

Fig. 4. Dependences of the singularity exponent γ at the tip of the functionally graded wedge 
on the angle α = α1 = α2 for different values of the relative stiffness parameter m: 

0.10 (1), 0.25 (2), 0.50 (3), 1.0 (4), 2.0 (5), 4.0 (6)
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Analyzing the general situation when α1 > α2 and α1 + α2 ≤ 2π, let us consider a number of 
limiting cases. 

In the case of a homogeneous wedge (m = 1), it follows from Eqs. (25) and (26) that the char-
acteristic equation takes the form sin(α1 + α2)p = 0, where the first root determines the classical 
singularity 

1 1 21 ( ) ,γ = − + π α +α

appearing provided that α1 + α2 > π.
Given high values of the parameter m, Eq. (26) can be written as

1 2 1 1 1 2( )sin ( )sin 0,f p p f p pα α α +α α α = (29)

( ) sin cos .f x x x x= − (30)

The first positive zero x∗ of function (30) lies in the interval (π, 3π/2), while f(x) > 0 for 
0 < x < x∗ and f(x) < 0 for x∗ < x < 2π. It follows then that Eq. (29) has no roots in the interval 
(0, 1) at m >> 1 and angles 0 < α2 < α1 ≤ π, so there is no singularity at the corner point. Eq. (29) 
has a single root 1/2 < p1 < 1 for angles x∗ ≤ α1 < 2π and 0 < α2 < 2π – x∗ (x∗ = 1.4302967π) and 
large values of m, generating a weak singularity at the corner point. The presence of the root p1 < 1 
at π < α1 < x∗ is checked numerically.

In the case where the relative stiffness m → 0, Eq. (26) takes the form

1 2( ) ( ) 0,f p f pα α = (31)

and the function u∗(α1p)u∗(α2p)/Δ(p) included in integral (25) tends to unity. However, in reality, 
the low values of the parameter m = √μ0/μ∗ must exceed a certain value m∗ > 0. At the same time, 
the limit equation (31) indicates that the first root is located near zero at sufficiently small m. 
Additionally, another second root of Eq. (26), which is less than unity, exists in the case of sharp 
notches where the angles satisfy the conditions x∗ ≤ α1 < 2π, 0 < α2 < 2π – x∗. For example, there 
are two roots at α1 = 3π/2, α2 = π/6 and m = 0.10: p1 = 0.3379652 and p2 = 0.9599646. Asymptote 
(27) contains two singular terms. Notably, the singularity generated by the second root is very 
weak. Numerical analysis indicates that this property is also preserved for other values of the 
structure parameters.

Fig. 5. Dependences of singularity exponent γ at the point r = 0 of the functionally 
graded half-plane on the relative shear stiffness m for different angles: 

α1 = α2= 90° (1); α1 = 120°, α2 = 60° (2); α1 = 150°, α2 = 30° (3)
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Next, let us consider two particular cases in more detail. The first one is the case of a function-
ally graded half-plane with a semi-infinite notch when α1 + α2 = π (α1 ≥ α2). The analysis indicates 
that no stress singularity can be detected at m ≥ 1, while the asymptotic expansion of stresses at 
the point r = 0 has one singular term at m < 1. Fig. 5 shows the dependence of the quantity γ1 = γ 
on the relative shear stiffness for different angles α1 and α2. Evidently, the inhomogeneity of the 
material at m < 1 produces singular stresses at the smooth half-plane boundary at the point r = 0. 
At the same time, the singularity can be both weak and strong (for fairly low m). The asymmetric 
position of the crack weakens the singularity to some extent.

In the case of a functionally graded plane with two notched cracks (α1 + α2 = 2π, α1 ≥ α2), 
Eq. (26) can have one or two roots in the interval (0, 1). For example, if the cracks are collinear 
(α1 + α2 = π), there is only one root in this interval generating a strong stress singularity at the 
tip of the unloaded fracture at m < 1 and a weak singularity at m > 1. In the case of orthogonal 
cracks, when α1 = 3π/2, α2 = π/2, the characteristic equation has only one root 1/2 < p1 < 1 at 
m > 1, and two roots at m < 1: 0 < p1 < 1/2 < p2 < 1. Here the second root is very close to unity 
and determines a weak singularity.

Conclusion

We used the Wiener–Hopf method to obtain an accurate solution to the problem on the equi-
librium of a functionally graded composite wedge weakened by a semi-infinite longitudinal-shear 
interface crack whose edges are loaded with self-balanced forces. It was assumed that the gradient 
properties of materials quadratically depend on the angular coordinate. We have considered the 
effect of the structural parameter on the SIF in the tip of the crack. It is established that the crack 
becomes unstable as the distance from the crack tip to the wedge corner point tends to zero. 
The gradient properties of materials can considerably affect the magnitude of SIF. If the middle 
section of the wedge where the crack is located is relatively softer than the regions near its edges, 
the SIF decreases substantially compared to its value in the homogeneous material. Conversely, 
the stiffening of this region tends to increase the SIF compared to the homogeneous case.

The problem of stress singularity at the tip of the functionally graded wedge has a number of 
peculiarities compared to the case of a homogeneous structure. Unlike homogeneous material, 
no stress singularity appears at the tip with sufficiently high values of relative shear stiffness, even 
in the cases of sharp notches. On the other hand, the stresses at the tip can grow indefinitely in 
functionally graded wedges with sharp opening angles and a soft middle section. Moreover, the 
relative stiffnesses less than unity correspond to such opening angles of the wedge-shaped region 
at which the asymptotic expansion of stresses near its tip has two singular terms.
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