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Аннотация. Работа посвящена определению эффективных коэффициентов диффузии 
поликристаллического материала, для описания которого используется модель 
двухфазного композита, состоящего из матрицы и сфероидальных неоднородностей. 
Для учета взаимодействия между неоднородностями используется схема Мори – 
Танаки. В модели также учтен эффект сегрегации. Предложены две модели описания 
поликристаллического материала. В первой зерна моделируются неоднородностями, 
а граница зерен матрицей; во второй модели, наоборот, граница зерен моделируется 
неоднородностями, а зерна – матрицей материала. Результаты моделирования 
сравниваются с экспериментальными данными. Показано, что важно учитывать параметр 
сегрегации при расчете эффективных коэффициентов диффузии поликристаллического 
материала.
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Introduction
Finding the effective diffusion coefficients of solids is a crucial problem in many areas of 

industry and construction. Gas diffusion in a solid may produce pores, cracks, or other micro-
defects that may grow over time and lead to fracture of structural elements. For this reason, the 
concentrations of the diffusing substance should be taken into account in evaluations of strength 
properties of the material.

The main practical applications include measures for preventing hydrogen embrittlement in 
metals and alloys or fracture in thin films. Hydrogen embrittlement produces a decrease in the 
strength properties of the metal alloy due to hydrogen diffusion, subsequently leading to frac-
ture of the material [1]. It is essential to account for this effect in structures engineered for 
hydrogen energy storage or fuel cells in hydrogen-powered vehicles. Thin films are understood 
here as thin layers of another material applied to structural elements. One of the most typical 
examples are anti-corrosion coatings. The presence of defects in such coatings can produce 
increased concentrations of the diffusing substance, breaching the insulation of metals from the 
aggressive environment.
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This paper considers the problem on quantifying the diffusion coefficients of polycrystalline 
material, which is inhomogeneous and contains a large number of randomly oriented single crys-
tals, each of which can have different chemical and physical properties. 

The single crystal is also called a grain in the literature, and the space between single crystals 
is known as the grain boundary [2].

There are many different mathematical models for quantifying the diffusion coefficients of 
polycrystalline materials. For example, Hart [3] obtained volumetric bulk coefficients for the 
case when the material contains dislocations; an equation similar to the rule of mixtures was 
used. Another study by Barrer [4] relied on the similarities between the processes of thermal con-
ductivity and diffusion to find the tensor of effective diffusion coefficients similar to the tensor 
of conductivity in the thermal conductivity problem. Additionally, a ratio between the effective 
characteristics and properties of the material components was obtained. Barrer’s approach is also 
used in other studies [5, 6].

Zhang and Liu [7] found that the concentration in the diffusion problem is not a continuous 
function at the interface, in contrast to the temperature in the thermal conductivity problem. The 
reason for this is that the diffusing substance accumulates at the boundary or inside the inhomoge-
neities, so the concentration makes a jump. This phenomenon is known as the segregation effect. 
Belova and March [8, 9] introduce the segregation parameter into the Hart and Maxwell–Garnett 
equations to calculate the effective properties of a material consisting of grain boundaries and spher-
ical grains. Knyazeva et al. [2] represent the Mori–Tanaka method and the Maxwell homogeniza-
tion scheme in terms of tensors of contribution to diffusion, serving for calculating the effective dif-
fusion coefficients of isotropic material consisting of spheroidal grains, which are inhomogeneities, 
and grain boundaries, which are a matrix. On the other hand, the effect of segregation was not taken 
into account in [2] at the stage when the fields were averaged. The effect of segregation was taken 
into account in [10] at all stages of solving the homogenization problem for a transversely isotropic 
material with pores, whose anisotropy is due to the geometry of the microstructure.

The goal of our paper is to compare two approaches to simulation of polycrystalline materials. 
Within the first approach, the grains are simulated by inhomogeneities and the grain boundary 

by the matrix, and, vice versa, the grain boundary is simulated by inhomogeneities, and the grains 
by the material matrix within the second approach. The models are compared by constructing a 
tensor of effective diffusion coefficients Deff using the results obtained in [10]. In this case, the ten-
sor Deff takes the same form for both models of material. The difference in the models is reflected 
in the quantitative values of the microstructural parameters used.

Problem statement

The goal we set is achieved in two stages. First, we select a model for describing the poly-
crystalline material (Fig. 1, I) that can best approximate the effective diffusion coefficients of the 
real material. Second, an expression should be constructed for the tensor Deff. The homogeni-
zation problem is solved for this purpose (Fig. 1, II). Let us now consider each of the stages in 
more detail.

Two models of a two-phase composite are considered to describe the polycrystalline material 
(Fig. 1):

matrix–grain boundary, inhomogeneities–grains (M1);
matrix–grains, inhomogeneities–grain boundary (M2).
The composite consists of a matrix of material and isolated inhomogeneities placed in 

it both models; however, the matrix of the material and the inhomogeneities have different 
physical properties.

Models M1 and M2 differ only in the values of microstructural parameters: the segregation 
parameter s and the ratio of semi-major axis of the spheroid γ (see Table). The distribution of 
heterogeneities is assumed to be isotropic.

The following boundary conditions are imposed at the interface between the matrix (+)/inho-
mogeneity (–) phases [8, 9]:

1 1

0 1 ,( ) ( )
x V x V

c x c xD D
n n→∂ + →∂ −

∂ ∂
=

∂ ∂ (1)
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PM	 2PhC	 HAM

Fig. 1. Approximation scheme for polycrystalline material (PM) using Model 1 (M1) 
and Model 2 (M2) in two stages: modelling (I), homogenization (II); 

2-phase composite (2PhC) and homogeneous anisotropic material (HAM) are shown; 
the corresponding tensors are given on the right

1 1
( ,( ) )

x V x V
c x sc x

→∂ + →∂ −
= (2)

where D0, D1 are the diffusion coefficients of the material matrix and inhomogeneity, respec-
tively; c(x) is the concentration function with respect to the coordinate; ∂V1 is the inhomoge-
neity boundary; n is the vector of the external normal to the inhomogeneity boundary, s is the 
segregation parameter.

Condition (1) stipulates that the fluxes at the interface be equal, while (2) describes the 
effect of segregation, i.e., the jump in concentration at the interface between the matrix and 
the inhomogeneity.

The segregation parameter s takes a value greater than unity in the model M1, and less than 
unity in the model M2. The reason for this is that the diffusing substance accumulates along the 
grain boundaries.

M1 considers spherical inhomogeneities, so γ = 1; the grain boundary in M2 is a highly oblate 
spheroid, so the parameter γ is taken in the range from 0.05 to 0.10.

The matrix and heterogeneities consist of an isotropic material with diffusion tensors taking 
the following form:

0 0 ,  ,i iD D= =D E D E (3)

where Di is the diffusion coefficient of an ith heterogeneity, E is a single second-order tensor. 

Tab l e

Parameters of the models used and their values 

Model Segregation parameter s Semi-major axes 
ratio γ for spheroid

1 s > 1 1.00
2 s < 1 0.05–0.10
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Di < D0 for the model M1, since the diffusion coefficient of the grains is always less than that 
of the grain boundary. The opposite is true for the model M2: Di > D0.

After we select a model for describing the polycrystalline material, we construct an expres-
sion for the tensor of effective diffusion coefficients Deff. This requires a homogenization proce-
dure, which consists in adopting a homogeneous continuous medium with anisotropic properties 
instead of an inhomogeneous medium [11].

The interaction between inhomogeneities is taken into account during homogenization. The 
Mori–Tanaka scheme is used for this purpose: its main principle is that each of the inhomogene-
ities is placed in a uniform field (either a concentration gradient or a diffusion flux acts as such a 
field in the context of the diffusion problem), equal to the average field with respect to the matrix 
of the material [12]. The Mori–Tanaka scheme is from the group of effective field methods, also 
including the widely used Maxwell and Kanaun–Levin schemes. However, unlike the latter two 
schemes, the Mori–Tanaka scheme does not have a singularity at a volume fraction of inho-
mogeneities equal to unity, so the model M1 can be used correctly, since the concentration of 
inhomogeneities in it is about 95–99%.

Contribution of isolated inhomogeneity

The contribution of isolated inhomogeneity to the effective properties of the material is deter-
mined following the steps similar to those described in our earlier paper [10]. The homogenization 
problem is solved introducing the concentrations and fluxes averaged over the volume. The aver-
aging operation is denoted by the angle brackets and the subscript corresponding to the volume 
to be averaged. 

It is assumed that the concentration c(x)|∂V = G0 ∙ x is given at the boundary of the represen-
tative volume V considered. The concentration gradients ⟨∇c⟩V averaged over the representative 
volume V then amount to G0. At the same time, the flux ⟨J⟩V ⟨J⟩V, also averaged over the repre-
sentative volume V, depends on the microstructure of the material.

The concentration gradient ⟨∇c⟩V is composed of the mean concentration gradient ⟨∇c⟩m of 
the substance, distributed in the matrix, the mean concentration gradient ⟨∇c⟩in of the sub-
stance, distributed within the inhomogeneity with a volume V1, and the substance accumu-
lated at the interface between the matrix and the inhomogeneity as a result of the segregation 
effect evolving:

1

0 1 1
0 1 1

1(1 ) ( ) ( ).
V m in

V

V Vc c c c c d V
V V V ∂

= ∇ = − ∇ + ∇ + − ∂∫G n (4)

In view of condition (2), expression (4) is converted to the following form:

0 1 1 .(1 )
V m in

V Vc c s c
V V

= ∇ = − ∇ + ∇G (5)

The flux ⟨J⟩V is continuous upon crossing the interface and consists of two components:

1 1) .(1
V m in

V V
V V

= − +J J J (6)

Taking into account Fick’s first law, expression (6) takes the following form:

1 1
0 1 .(1 )

V m in

V Vc c
V V

= − − ⋅ ∇ − ⋅ ∇J D D (7)

In view of (5), expression (7) is converted to the form 

1
0 1 0 .( )

V V in

Vc s c
V

= − ⋅ ∇ − − ⋅ ∇J D D D (8)

Next, ⟨∇c⟩in is expressed in terms of ⟨∇c⟩V:
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0.cin Vcc c∇ = ⋅ ∇ = ⋅GΛ Λ (9)

The tensor Λc is the solution of the Eshelby problem for diffusion. The expression for this ten-
sor is obtained in [10] and has the form: 

1

1 0( ,[ )]c s s
−

= + ⋅ −E P D DΛ (10)

where P is the Hill tensor. 
In view of (9), Eq. (8) is converted to the following form:

0 01
0 1 0( ) .c effV

V s
V

 = − + − ⋅ ⋅ = − ⋅ 
 

J D D D G D GΛ (11)

Thus, the inhomogeneous material consisting of the matrix and the inhomogeneity was replaced 
by a homogeneous anisotropic material with an effective diffusion tensor Deff.

Mori–Tanaka method

This section covers a generic material consisting of the matrix and n inhomogeneities. The 
interaction of inhomogeneities is described by the Mori–Tanaka scheme [12], outlined in Fig. 
2. Each of the inhomogeneities is regarded as isolated and placed in an effective uniform field of 
the concentration gradient Geff, different from the one applied (G0) and equal to the average field 
over the material matrix ⟨∇c⟩m.

The concentration gradient ⟨∇c⟩V is written as follows:

0
0

1 1

1 1(1 ) ( ) ( ),
i

n n
i

i i i iV in m
i i V

c V c c c c d V
V V= = ∂

= ∇ = ∇ + −ϕ ∇ + − ∂∑ ∑ ∫G N (12)

where Vi, ∂Vi are the volume and boundary of an ith inhomogeneity; Ni is the normal to its 
boundary; φ is the volume fraction of inhomogeneities.

In view of boundary conditions (1) and (2), expression (12) is converted to the following form:

0

1

.1 (1 )
n

i
iV in m

i

c s V c c
V =

= ∇ = ∇ + −ϕ ∇∑G (13)

Expression (13) can be used to express (1 – φ)⟨∇c⟩m:

0

1

.1(1 )
n

i
im in

i

c s V c
V =

−ϕ ∇ = − ∇∑G (14)

Fig. 2. Mori–Tanaka scheme: 
interaction of isolated inhomogeneities (left) is taken into account by placing 

each of them in an effective field equal to the average over the material matrix (right)
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Taking into account the Mori-Tanaka interaction, ⟨∇c⟩iin is written as follows:

,i i
cin m

c c∇ = ⋅ ∇Λ (15)

where Λi
c is the concentration tensor for an ith heterogeneity.

The averaged flow is represented in the following form:

1

( .1 1 )
n

i
iV in m

i

V
V =

= + −ϕ∑J J J (16)

Next, expression (16) is transformed taking into account Fick’s law:

0
1

.1 (1 )
n

i
i iV in m

i

V c c
V =

= − ⋅ ∇ − −ϕ ⋅ ∇∑J D D (17)

In view of Eq. (14), expression (17) is converted to the following form:

0
0 0

1

( .1 )
n

i
i iV in

i

V s c
V =

= − ⋅ − − ⋅ ∇∑J D G D D (18)

 Relations (14) and (15) are used to obtain the expression for ⟨∇c⟩iin:

1 0

1

.1[ (1 ) ]
n

i i i
c i cin

i

c s V
V

−

=

∇ = ⋅ + −ϕ ⋅∑ E GΛ Λ (19)

Next, form (18) is converted to the following form taking into account expression (19):

10 0
0 0

1 1

1 1( .) [ (1 ) ]
n n

i i
i i c i cV

i i

V s s V
V V

−

= =

= − ⋅ − − ⋅ ⋅ + −ϕ ⋅∑ ∑J D G D D E GΛ Λ (20)

Taking into account Fick’s law, we obtain the formula

0.effV
= − ⋅J D G (21)

Equalities (20) and (21) imply that the expression for Deff takes the following form:

1
0 0

1 1

1 1( ) .[ (1 ) ]
n n

i i
eff i i c i c

i i

V s s V
V V

−

= =

= + − ⋅ ⋅ + −ϕ∑ ∑D D D D EΛ Λ (22)

 Next, we convert expression (22) taking into account the averaging and equality Di = D1:

1
0 0 .( ) [ (1 ) ]eff i c c

s s −= + ϕ − ⋅ ⋅ ϕ + −ϕD D D D EΛ Λ (23)

Effective diffusion tensor
The Hill tensor for spheroidal heterogeneities takes the following form [11]:

0 0
0

1 ( ( )( ) (1 2 ( )) ),f f
D

= γ − + − γP E nn nn (24)
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where the function f0(γ) is expressed as

2

2

2

2

2

0

2 2

11 arctan , 1
1

1( ) , 13

11 log , 1.
2

)

1 1

(1 ( )( ) ,  
2( 1)

gf g

  − γ   γ <
 γ γ − γ  γ = γ =


  γ + γ +
  γ >  γ − γ γ

− γ

− γ

γ

+ 

γ
=

γ −
(25)

The inverse second-order tensor is calculated by the Sherman–Morrison formula [14]. In 
general, it takes the following form:

1 1 1 1 1
1 2 1 21

2 1

1( ) ( ),
1

− − − − −
−= + = − ⋅ ⋅

+ ⋅ ⋅
B A n n A A n n A

n A n (26)

where n1, n2 are arbitrary vectors, A, B are second-order tensors.
In the case when A = E, Eq. (26) is converted to the form

1 1
1 2 1 2

2 1

1( ) .
1

− −= + = −
+ ⋅

B E n n E n n
n n (27)

We calculate the inverse tensor in expression (10) and obtain the following equation:

1
1 0 1 2[ ( )] ,s s A A−+ ⋅ − = +E P D D E nn (28)

where

( )1
0 1 0

0

1 ,A
f D D s

s
D

=
−

+

( )( )
( )( )

0 0 1 0
2

1 1 0 0 0 1 0 0 0 0

3 1
.

2 2
D f D D s

A
D D f D f s D f D s D f s

− −
=

− + + −

In the case when there is some predominant distribution of heterogeneities by orientation, it 
can be taken into account using the distribution function of the following form:

2
1

1 1( , ) (( 1)exp( ) exp( )),  [0, ],
2 2

ψ υ ξ = ξ + −ξυ − −ξπ υ∈ π
π

(29)

where ξ is the parameter for the spread in orientations, υ is the zenith angle in the spherical 
coordinate system.

Another distribution function is considered in [15], taking the following form:

2
2

1( , ) (( 1)exp( ) exp( )),  [0, ].
2 2 2

π π
ψ υ ξ = ξ + −ξυ + ξ −ξ υ∈

π
(30)

Fig. 3 shows the influence of the parameter ξ on the spread in inhomogeneity orientations. 
If ξ = 0, all inhomogeneities are randomly oriented, so there is no preferential direction. As ξ 
increases, the orientations of the inhomogeneities tend to the given preferential direction.
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The orientation vector is given as follows in the spherical coordinate system:

1 2 3cos( )sin( ) sin( ,)sin( ) cos( )= θ υ + θ υ + υn e e e (31)

where e1, e2, e3 is the orthonormal basis; θ is the azimuthal angle in the spherical coordinate system.
The averaged tensor ⟨nn⟩ accounting for the distribution function ψ1 is calculated by the 

following formula:

2

1
0 0

( , ) sin( ) .d d
π π

〈 〉 = ψ υ ξ ϕ θ υ∫ ∫nn nn (32)

As a result, we obtain the following expression for the dyad ⟨nn⟩ (the preferred direction e3):

1 1 1 2 2 2 3 3 3.N N N〈 〉 = + +nn e e e e e e (33)

The components of ⟨nn⟩ take the following form:

2
1 2 2

1 6 2N exp( )
2 9 3( 9)

( ),π π
= − ξ −πξ

π ξ + ξ +
(34)

2
2 2 2

1 6 2N exp( )
2 9 3( 9)

( ),π π
= − ξ −πξ

π ξ + ξ +
(35)

2
2

3 2 2 2

1 6 2 4N exp( )
2 9 9 3( 9)

( ).π πξ π
= + + ξ −πξ

π ξ + ξ + ξ +
(36)

In the case of the distribution function ψ2, the tensor ⟨nn⟩ is calculated from the formula

/2 2

2
0 0

( , ) sin( ) .d d
π π

〈 〉 = ψ υ ξ υ θ υ∫ ∫nn nn (37)

 The tensor ⟨nn⟩ takes the form (33) but with different components:

1 2

1 1N 6 2 exp exp
2 9 2 3 2

( ( ( )) ( )),π π π
= π+ πξ − ξ − ξ − ξ

π ξ +
(38)

2 2

1 1N 6 2 exp exp
2 9 2 3 2

( ( ( )) ( )),π π π
= π+ πξ − ξ − ξ − ξ

π ξ +
(39)

2

3 2

3N exp 3exp
2 3( 9) 2

( ) ( ( )).π ξ + π
= − ξ ξ + ξ

ξ +
(40)

a)	 b)	 c)

Fig. 3. Influence of parameter ξ on the spread in orientations of inhomogeneities 
relative to the predominant direction e3; ξ = 0 (a), 7(b) 100 (c)
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 The resulting expression for the tensor ⟨Λ⟩c takes the following form:

1
1 0 1 2 1 1 1 2 2 3 3[ ( )] (N N N ).

c
s s A A−= + ⋅ − = + + +2 3E P D D E e e e e e eΛ (41)

 The expression for Deff (22) is converted to the following form taking into account Eq. (41):

0 1 0 1 1 1 2 2 2 3 3( ) ( ( ) ),eff D D sD B B= + − ϕ + +D E e e e e e e (42)

where the coefficients B1 and B2 follow the expressions:

1 2 1
1

1 2 1

N ,
( N ) (1 )

A AB
s A A

+
=

ϕ + + −ϕ

1 2 3
2

1 2 3

.
( ) (1 )

A AB
s A A

+
=

ϕ + + −ϕ




The constructed expression for the tensor of effective diffusion coefficients (42) is used for both 
models of polycrystalline material. The difference between the models is only in the numerical 
values of the microstructural parameters.

Results

Consider the components of the tensor Deff as functions of various generalized microstructural 
parameters. The diffusion coefficient at the grain boundary is taken equal to Dgb = 4·10–2 m2/s, 
and the diffusion coefficient of the grain is taken equal to Dgr = 9·10–5 m2/s. The remaining micro-
structural parameters are given in the table above. 

First, let us compare the influence of functions ψ1 and ψ2 (distributions of inhomogeneities 
by orientation) on the effective diffusion properties. The material is isotropic in the model M1, 
because the inhomogeneities are spherical, so the effective diffusion coefficients do not depend on 
the chosen distribution function. Fig. 4 shows the dependence for the components of the tensor 
Deff on the scatter parameter ξ for model M2.

The distribution functions ψ1 and ψ2 are found by Eqs. (29) and (30), respectively. Fig. 4 
shows that the effective properties do not depend on the specific distribution function chosen to 
account for the spread in the orientation of the inhomogeneities. Next, we consider Deff taking 
into account distribution function (29).

Fig. 4. Ratios Deff
11/Dgb and Deff

33/Dgb (components of the tensor Deff) as functions of the parameter ξ 
for the functions ψ1 and ψ2 (orientation distributions of inhomogeneities); model M2; γ = 0.05; 

φgr = 0.5; s = 1 (all 4 curves coincide)
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Notably, the chosen distribution function has no effect on the effective diffusion coefficients 
at ξ = 0, since this corresponds to the isotropic distribution of inhomogeneities. Suppose that 
the heterogeneities in the material are distributed isotropically (ξ = 0), so all components of the 
effective diffusion coefficient tensor Deff are identical. 

Fig. 5 shows the dependences of Deff/Dgb on the grain volume fraction φgr for models M1 and 
M2. The dependences are plotted for volumes ranging from 0 to 1 to check whether the two mod-
els coincide in limiting cases at s = 1. The grain concentration φgr in real polycrystalline materials 
is close to unity.

The two models coincide given the segregation parameter s = 1 at φgr = 0 and 1 (see Fig. 5). 
Furthermore, the behavior of the curves for models M1 and M2 is very different at any values of 
the volume fraction φgr, so the two models cannot be considered equivalent at the given values of 
parameters (see Table). 

Fig. 6 shows the effect of the segregation parameter s on the effective diffusion coefficient at 
large volume fractions of the grains.

As evident from Fig. 6, variation in the segregation parameter has a more pronounced effect 
on the dependences for the model M2 than on those for the model M1. Both models show that 
the effective diffusion coefficient decreases with increasing segregation parameter. The segregation 

Fig. 5. Dependences of the ratio Deff
33/Dgb (components of the tensor Deff) on the volume fraction 

of grains φgr for both models; γ = 1.00 for the model M1 (curve 1) and γ = 0.05 for the model M2 (2); 
s = 1.0, ξ = 0.0 

a)	 b)

Fig. 6. Ratios Deff
33/Dgb (components of the tensor Deff) as functions of the grain volume fraction φgr 

for models M1 (a) and M2 (b) at different values of the segregation parameter s: 
1, 10, 100 (a) and 1, 0.1 and 0.01 (b); 

curve s = 1 for M2 separated from the curves, which coincided; all curves coincided for M1
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parameter has little influence on the effective diffusion coefficient in the model M1 at high con-
centrations of inhomogeneities.

Fig. 7 shows the dependence of Deff
33/Dgb on the segregation parameter s with large volume 

fractions of grains (in the range from 95 to 99%). Evidently, the segregation parameter has lit-
tle influence on the variation in the effective diffusion coefficient for both models, but a slight 
decrease in the diffusion coefficient is observed with increasing s. 

Verification of both models 

This section compares the constructed mathematical models with the experimental data. 
Experimental data for the dependence of effective hydrogen diffusion coefficient in nickel on 
grain size d are given in [16]. 

The model M1 assumes spherical inhomogeneities to be grains with a diffusion coefficient 
D1 = 9∙10−14 m2/s, and the grain boundary with D0 = 4∙10−10 m2/s is taken as the matrix. The 
situation is reversed in the model M2: D0 = 9∙10−14 m2/s, while D1 = 4∙10−10 m2/s. The remaining 
microstructural parameters are given in the table. 

The volume fraction of grain boundaries is calculated by the formula from [16]:
3,  8.138 10 ,  0.636.p

GB Ad A p−ϕ = = ⋅ = − (43)

The volume fraction of grains is calculated by the following formula:

1 .1 p
GB Adϕ = −ϕ = − (44)

First we construct the dependence of Deff on the grain size d for both models at s = 1.
It can be seen from Fig. 8 that the model M1 describes the experimental data fairly well. The 

approximation error of the experimental data is very large for the model M2, so only the model 
M1 is considered below. 

Fig. 9 illustrates the influence of the segregation parameter s. Evidently, it is important that the 
segregation parameter is taken into account in the approximation of the effective diffusion coefficients. 
The best approximation of the experimental data is achieved at s values in the range from 1 to 2. 

Thus, in practice, it is recommended to use the model M1 (matrix–grain boundaries, inhomo-
geneities–grains) rather than the model M2 (matrix–grains, inhomogeneities–grain boundaries) 
to approximate the diffusion coefficients of the polycrystalline material. We should note that a 
decrease in the values of effective diffusion coefficients is observed in the experimental data for 
grain sizes less than 0.1 μm, which can be associated with additional internal effects. It is estab-
lished in [8] that the decrease in the value of the diffusion coefficient is due to an increase in the 
amount of solutes with a decrease in the grain size. Since this effect is not taken into account in 
the mathematical model of the material, both models also do not describe the effective diffusion 
properties for grain sizes less than 0.1 μm. Moreover, the segregation parameter does not signifi-
cantly influence the effective diffusion coefficient in the case of spherical grains. The influence of 
the segregation parameter for spherical grains has not been investigated in this study; we plan to 
concentrate on this problem in our future research.

a)	 b)

Fig. 7. Ratios Deff
33/Dgb as functions of the segregation parameter s for models M1 (a) and M2 (b) 

at different values of the parameters γ and φgr; ξ = 0,0; γ = 1.00, φ = 0.95 (1), 0.97 (2), 0.99 (3) (a); 
γ = 0.05, φ = 0.05 (4), 0.03 (5), 0.01 (6) (b)
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Conclusion

The paper considers two approaches to describing polycrystalline material. The grains are 
simulated by inhomogeneities and the grain boundary by the matrix in the first case, and vice 
versa in the second case: the grain boundary is simulated by inhomogeneities, and the grains by 
the material matrix. The models used to approximate the effective diffusion coefficients of the 
polycrystalline material take into account the effect of segregation as well as the mutual effect of 
grains; the Mori–Tanaka scheme is applied. We have constructed an analytical approximation 
for the tensor of effective diffusion coefficients for the case of spheroidal inhomogeneities. We 
have verified the models using experimental data, establishing the importance of the segregation 
parameter for calculations of the effective diffusion coefficients.
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