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Annoranug. Pabora nocsieHa onpeaeieHno 3(pGeKTUBHBIX KO3 duuneHToB 1uddy3un
MOJUKPUCTAIIMYECKOTO MaTepuaia, s OMNUCAHUSI KOTOPOTO HUCIOJIb3yeTCsl MOJENb
NBYX(a3HOTO KOMIO3UTa, COCTOSIIIETO0 M3 MATPULbl U CHEPOUAATBHBIX HEOTHOPOJHOCTE.
Hng ydyeta B3aMMOIEUCTBUS MEXIYy HEOAHOPOJHOCTSIMU MCHOJb3yeTCsS cxema Mopu —
Tanaku. B monmenu takxke yureH 3 dekT cerperammu. [IpenioxeHbl 1Be MOAEIU OMMCAHUS
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Introduction

Finding the effective diffusion coefficients of solids is a crucial problem in many areas of
industry and construction. Gas diffusion in a solid may produce pores, cracks, or other micro-
defects that may grow over time and lead to fracture of structural elements. For this reason, the
concentrations of the diffusing substance should be taken into account in evaluations of strength
properties of the material.

The main practical applications include measures for preventing hydrogen embrittlement in
metals and alloys or fracture in thin films. Hydrogen embrittlement produces a decrease in the
strength properties of the metal alloy due to hydrogen diffusion, subsequently leading to frac-
ture of the material [1]. It is essential to account for this effect in structures engineered for
hydrogen energy storage or fuel cells in hydrogen-powered vehicles. Thin films are understood
here as thin layers of another material applied to structural elements. One of the most typical
examples are anti-corrosion coatings. The presence of defects in such coatings can produce
increased concentrations of the diffusing substance, breaching the insulation of metals from the
aggressive environment.

© TIMawkosckuit . M., ®@pososa K. I1., Bunbuesckas E. H., 2022. WUznarens: Cankr-IleTepOyprckuii moJuTeXHUYECKUIA
yHuBepcuret I[lerpa Benaukoro.
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This paper considers the problem on quantifying the diffusion coefficients of polycrystalline
material, which is inhomogeneous and contains a large number of randomly oriented single crys-
tals, each of which can have different chemical and physical properties.

The single crystal is also called a grain in the literature, and the space between single crystals
is known as the grain boundary [2].

There are many different mathematical models for quantifying the diffusion coefficients of
polycrystalline materials. For example, Hart [3] obtained volumetric bulk coefficients for the
case when the material contains dislocations; an equation similar to the rule of mixtures was
used. Another study by Barrer [4] relied on the similarities between the processes of thermal con-
ductivity and diffusion to find the tensor of effective diffusion coefficients similar to the tensor
of conductivity in the thermal conductivity problem. Additionally, a ratio between the effective
characteristics and properties of the material components was obtained. Barrer’s approach is also
used in other studies [5, 6].

Zhang and Liu [7] found that the concentration in the diffusion problem is not a continuous
function at the interface, in contrast to the temperature in the thermal conductivity problem. The
reason for this is that the diffusing substance accumulates at the boundary or inside the inhomoge-
neities, so the concentration makes a jump. This phenomenon is known as the segregation effect.
Belova and March [8, 9] introduce the segregation parameter into the Hart and Maxwell—Garnett
equations to calculate the effective properties of a material consisting of grain boundaries and spher-
ical grains. Knyazeva et al. [2] represent the Mori—Tanaka method and the Maxwell homogeniza-
tion scheme in terms of tensors of contribution to diffusion, serving for calculating the effective dif-
fusion coefficients of isotropic material consisting of spheroidal grains, which are inhomogeneities,
and grain boundaries, which are a matrix. On the other hand, the effect of segregation was not taken
into account in [2] at the stage when the fields were averaged. The effect of segregation was taken
into account in [10] at all stages of solving the homogenization problem for a transversely isotropic
material with pores, whose anisotropy is due to the geometry of the microstructure.

The goal of our paper is to compare two approaches to simulation of polycrystalline materials.

Within the first approach, the grains are simulated by inhomogeneities and the grain boundary
by the matrix, and, vice versa, the grain boundary is simulated by inhomogeneities, and the grains
by the material matrix within the second approach. The models are compared by constructing a
tensor of effective diffusion coefficients D . using the results obtained in [10]. In this case, the ten-
sor D . takes the same form for both models of material. The difference in the models is reflected
in the quantitative values of the microstructural parameters used.

Problem statement

The goal we set is achieved in two stages. First, we select a model for describing the poly-
crystalline material (Fig. 1, I) that can best approximate the effective diffusion coefficients of the
real material. Second, an expression should be constructed for the tensor D . The homogeni-
zation problem is solved for this purpose (Fig. 1, II). Let us now consider each of the stages in
more detail.

Two models of a two-phase composite are considered to describe the polycrystalline material
(Fig. 1):

matrix—grain boundary, inhomogeneities—grains (M1);

matrix—grains, inhomogeneities—grain boundary (M2).

The composite consists of a matrix of material and isolated inhomogeneities placed in
it both models; however, the matrix of the material and the inhomogeneities have different
physical properties.

Models M1 and M2 differ only in the values of microstructural parameters: the segregation
parameter s and the ratio of semi-major axis of the spheroid y (see Table). The distribution of
heterogeneities is assumed to be isotropic.

The following boundary conditions are imposed at the interface between the matrix (+)/inho-
mogeneity (—) phases [8, 9]:

Oc(x)
on

- D, Oc(x)

D
0 on

’ ey

A

x—>oV+ x>0V —
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M1 D)
(1) (1)
M2
D7
= /=
PM 2PhC HAM

Fig. 1. Approximation scheme for polycrystalline material (PM) using Model 1 (M1)
and Model 2 (M2) in two stages: modelling (I), homogenization (II);
2-phase composite (2PhC) and homogeneous anisotropic material (HAM) are shown;
the corresponding tensors are given on the right

c(x)

x>V + - SC‘()C) x—on-" (2)
where D, D, are the diffusion coefficients of the material matrix and inhomogeneity, respec-
tively; c(x) is the concentration function with respect to the coordinate; oV, is the inhomoge-
neity boundary; n is the vector of the external normal to the inhomogeneity boundary, s is the
segregation parameter.

Condition (1) stipulates that the fluxes at the interface be equal, while (2) describes the
effect of segregation, i.e., the jump in concentration at the interface between the matrix and
the inhomogeneity.

The segregation parameter s takes a value greater than unity in the model M1, and less than
unity in the model M2. The reason for this is that the diffusing substance accumulates along the
grain boundaries.

M1 considers spherical inhomogeneities, so y = 1; the grain boundary in M2 is a highly oblate
spheroid, so the parameter vy is taken in the range from 0.05 to 0.10.

The matrix and heterogeneities consist of an isotropic material with diffusion tensors taking
the following form:

D,=D,E, D, =DE, 3)

where D, is the diffusion coefficient of an ith heterogeneity, E is a single second-order tensor.

Table
Parameters of the models used and their values
. Semi-major axes
Model Segregation parameter s ratio y for spheroid
1 s>1 1.00
2 s<1 0.05-0.10
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D.< D, for the model M1, since the diffusion coefficient of the grains is always less than that
of the grain boundary. The opposite is true for the model M2: D, > D,.

After we select a model for describing the polycrystalline material, we construct an expres-
sion for the tensor of effective diffusion coefficients Deﬁ This requires a homogenization proce-
dure, which consists in adopting a homogeneous continuous medium with anisotropic properties
instead of an inhomogeneous medium [11].

The interaction between inhomogeneities is taken into account during homogenization. The
Mori—Tanaka scheme is used for this purpose: its main principle is that each of the inhomogene-
ities is placed in a uniform field (either a concentration gradient or a diffusion flux acts as such a
field in the context of the diffusion problem), equal to the average field with respect to the matrix
of the material [12]. The Mori—Tanaka scheme is from the group of effective field methods, also
including the widely used Maxwell and Kanaun—Levin schemes. However, unlike the latter two
schemes, the Mori—Tanaka scheme does not have a singularity at a volume fraction of inho-
mogeneities equal to unity, so the model M1 can be used correctly, since the concentration of
inhomogeneities in it is about 95—99%.

Contribution of isolated inhomogeneity

The contribution of isolated inhomogeneity to the effective properties of the material is deter-
mined following the steps similar to those described in our earlier paper [10]. The homogenization
problem is solved introducing the concentrations and fluxes averaged over the volume. The aver-
aging operation is denoted by the angle brackets and the subscript corresponding to the volume
to be averaged.

It is assumed that the concentration c(x)|,,= G- x is given at the boundary of the represen-
tative volume V considered. The concentration gradients (Vc), averaged over the representative
volume ¥ then amount to G°. At the same time, the flux (J), (J),, also averaged over the repre-
sentative volume V, depends on the microstructure of the material.

The concentration gradient (Vc), is composed of the mean concentration gradient (Vc) of
the substance, distributed in the matrix, the mean concentration gradient (Vc), of the sub-
stance, distributed within the inhomogeneity with a volume V|, and the substance accumu-
lated at the interface between the matrix and the inhomogeneity as a result of the segregation
effect evolving:

G"=(Vc), = (1—%)<Vc>m +%<w>w +% [n(e,—e)d(@7,). (4)

N

In view of condition (2), expression (4) is converted to the following form:

G =(Ve), =(1-2)(Ve) +52(Ve) | 5)
4 V m V in
The flux (J), is continuous upon crossing the interface and consists of two components:
v, v,
J) =1-L{J) +-LJ) . 6
Taking into account Fick’s first law, expression (6) takes the following form:
V v,
(I), ==(1--5D,(Ve) ——LD,-(Vc) . (7)
V 14
In view of (5), expression (7) is converted to the form
4
(§), =-D,-(Ve), - @, —sD,)-(Ve) . (8)

Next, (Vc),, is expressed in terms of (Vc)
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(Ve), =A,(Ve), =A,-G". ©)

The tensor A is the solution of the Eshelby problem for diffusion. The expression for this ten-
sor is obtained in [10] and has the form:

A, =[sE+P-(D,—sD,)] , (10)

where P is the Hill tensor.
In view of (9), Eq. (8) is converted to the following form:

|4 0
<J>V :_(DO_'-;I(DI_SDO).AC). Deﬁ’ G (1)

Thus, the inhomogeneous material consisting of the matrix and the inhomogeneity was replaced
by a homogeneous anisotropic material with an effective diffusion tensor D o

Mori—Tanaka method

This section covers a generic material consisting of the matrix and » inhomogeneities. The
interaction of inhomogeneities is described by the Mori—Tanaka scheme [12], outlined in Fig.
2. Each of the inhomogeneities is regarded as isolated and placed in an effective uniform field of
the concentration gradient G¢, different from the one applied (G°) and equal to the average field
over the material matrix (Vc) .

G’ G7=(vc)

SR

Fig. 2. Mori—Tanaka scheme:
interaction of isolated inhomogeneities (left) is taken into account by placing
each of them in an effective field equal to the average over the material matrix (right)

The concentration gradient (Vc), is written as follows:

G’ =(Ve), :%E";V,. (Ve) +(1-9)(Ve) +%Z [N.(cy—c)d(@r), (12)

i=1 i=1 oy,

where V, 0V, are the volume and boundary of an ith inhomogeneity; N, is the normal to its
boundary, o) is the volume fraction of inhomogeneities.
In view of boundary conditions (1) and (2), expression (12) is converted to the following form:

1 & i

G’ =(Vc), = S;ZVZ, (Ve) +(1-9)(Vc) . (13)
i=1

Expression (13) can be used to express (1 — ¢)(Vc), :

n

(1-9)(Ve) =G’ —S%ZV; (Ve) . (14)
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Taking into account the Mori-Tanaka interaction, (Vc)', is written as follows:
<VC>; = I\ic <Vc>m >

where A! is the concentration tensor for an ith heterogeneity.
The averaged flow is represented in the following form:

(1), = ZV<>lﬁ+<1 )J),,
Next, expression (16) is transformed taking into account Fick’s law:

(3), == VD, {Ve), ~(1-0)D, (Ve),

i=1

In view of Eq. (14), expression (17) is converted to the following form:

I & i
(), =-D,-G’ —;ZVI. (D, —sD,)-(Vc). .
i=1
Relations (14) and (15) are used to obtain the expression for (Vc)', :

(Ve), = A, [s % Zn:V,-A"C +(1-@)E]"-G".

i=1

Next, form (18) is converted to the following form taking into account expression (19):

<J>V = _DO .GO _%Z”:V:(Dl _SDO) 'Aic [S%Zn:KAlc +(1_(P)E]7l ‘GO.

i=1 i=1
Taking into account Fick’s law, we obtain the formula
<J>V - _Deﬁ ‘G’
Equalities (20) and (21) imply that the expression for Deff takes the following form:

1 & i 1< i -
D, =D+ > V(D ~sDy)- A s S VA +(1-¢)E] .

i=1 i=1

>

(15)

(16)

(17)

(18)

(19)

(20)

21)

(22)

Next, we convert expression (22) taking into account the averaging and equality D,= D :

D, =D, +¢(D,—sD,)-(A) -[s¢(A) +(1-¢)E]".

Effective diffusion tensor
The Hill tensor for spheroidal heterogeneities takes the following form [11]:

P- Di(fo (P)(E —nm)+(1-2£,(y))nn),
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where the function f(y) is expressed as

_(-g)y’ _ 1 _
Jo(n)= 2 -1) . &) Y. y=1 (25)
1 Yy +1
log , y>1.
274/1-v (y—\/y2+1J

The inverse second-order tensor is calculated by the Sherman—Morrison formula [14]. In
general, it takes the following form:

1 _ _
— (A" nn,-A™), (26)

B'=(A+nn,) ' =A"—— ————
( ") I+n,-A" -n,

where n,, n, are arbitrary vectors, A, B are second-order tensors.
In the case when A = E, Eq. (26) is converted to the form

1
B'=(E+nn,)'=E———nn,.
( \n,) om0 (27)

We calculate the inverse tensor in expression (10) and obtain the following equation:
([SE+P-(D, —sD,)]") = 4E+ 4, (nn), (28)

where

A D0(3f0 _1)(D1 _DoS)
> (D, -2D, f, +2D, f,5)(D, f, + Dys— D, f,s)

In the case when there is some predominant distribution of heterogeneities by orientation, it
can be taken into account using the distribution function of the following form:

v, (v,8) = i(@z +1)exp(—Co) —%exp(—iﬁ)), vel[0,m], (29)

where & is the parameter for the spread in orientations, v is the zenith angle in the spherical
coordinate system.
Another distribution function is considered in [15], taking the following form:

v, (0,8) = zi((&z +1)exp(-£v) + Eexp(—E ), v €[0,~]. (30)
T 2 2

Fig. 3 shows the influence of the parameter & on the spread in inhomogeneity orientations.
If & = 0, all inhomogeneities are randomly oriented, so there is no preferential direction. As &
increases, the orientations of the inhomogeneities tend to the given preferential direction.
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Fig. 3. Influence of parameter & on the spread in orientations of inhomogeneities
relative to the predominant direction e,; & = 0 (a), 7(b) 100 (c)

The orientation vector is given as follows in the spherical coordinate system:
n = cos(0)sin(v)e, +sin(0)sin(v)e, +cos(v)e,, (31)
where e, e, e, is the orthonormal basis; 6 is the azimuthal angle in the spherical coordinate system.

The averaged tensor (mm) accounting for the distribution function v, is calculated by the
following formula:

21

(nn) = j j nny, (v,£)sin(¢)d0dv. (32)
00
As a result, we obtain the following expression for the dyad (nn) (the preferred direction e,):
(nn)=N,ee, +N,e,e, + N.e,e,. (33)

The components of (nn) take the following form:

1 67 27 2 B
1—§(§2+9—3(§2+9)§ exp( ﬂ&)), (34)
N, SE-L o &% exp(-nt)), (35)

T E2 49 3(E249)

1, 6n  2nE’ 4n
S I L Y
2n "E°+9 &£ +9 3(§°+9)

In the case of the distribution function v, the tensor (nn) is calculated from the formula

&% exp(—n&)). (36)

n/22n

(nn) = j j nny, (u,£)sin(v)dodv. (37)
The tensor (nn) takes the form (33) but with different components:

1 1

N, =%(§2 5 (6n+2n§exp(—§§))—giexp(—gi)), (38)
1 1

N, = E(g 5 (6m+2nt exp(—gg)) —giexp(—gi)), (39)

() 53 n
N, = exp( 5 &) 3E+9) (c‘”;+ 3exp(2 &)) (40)
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The resulting expression for the tensor (A), takes the following form:
(A) = <[sE +P-(D, - sDO)]’1> = AE+ 4,(Ne,e,+ N,e.e, + N,e.e,). (41)
The expression for Deﬁ, (22) is converted to the following form taking into account Eq. (41):
D, =DE+ (D, —sD,)p(B,(ee, +e,e,)+B,e,e,), (42)

where the coefficients B, and B, follow the expressions:
B A + AN,
s@(4 + AN)+(1-0)’

A + AN,
sQ(4, +A2N3)+(1_(P)'

2:

The constructed expression for the tensor of effective diffusion coefficients (42) is used for both
models of polycrystalline material. The difference between the models is only in the numerical
values of the microstructural parameters.

Results

Consider the components of the tensor D . as functions of various generalized microstructural
parameters. The diffusion coefficient at the gram boundary is taken equal to D = 41072 m?/s,
and the diffusion coefficient of the grain is taken equal to D = 9-107°m?/s. The remammg micro-
structural parameters are given in the table above.

First, let us compare the influence of functions y, and v, (distributions of inhomogeneities
by orientation) on the effective diffusion properties. The material is isotropic in the model M1,
because the inhomogeneities are spherical, so the effective diffusion coefficients do not depend on
the chosen distribution function. Fig. 4 shows the dependence for the components of the tensor
D 70N the scatter parameter & for model M2.

D§IDgs

B

Fig. 4. Ratios DY | /D and D¢, 3/D (components of the tensor D, ) as functions of the parameter &
for the functions v, and v, (orlentatlon distributions of 1nh0mogeneltles) model M2; y = 0.05;
0, = = 0.5; s = 1 (all 4 curves coincide)

The distribution functions y, and v, are found by Egs. (29) and (30), respectively. Fig. 4
shows that the effective properties do not depend on the specific distribution function chosen to
account for the spread in the orientation of the inhomogeneities. Next, we consider D takmg
into account distribution function (29).
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Notably, the chosen distribution function has no effect on the effective diffusion coefficients
at & = 0, since this corresponds to the isotropic distribution of inhomogeneities. Suppose that
the heterogeneities in the material are distributed isotropically (¢ = 0), so all components of the
effective diffusion coefficient tensor D . are identical.

Fig. 5 shows the dependences of D‘%/D on the grain volume fraction P for models M1 and
M2. The dependences are plotted for Volumes ranging from 0 to 1 to check whether the two mod-
els coincide in limiting cases at s = 1. The grain concentration 0, in real polycrystalline materials
is close to unity.

DeIDgp,

10
0.8
0.6
0.4

0.2 AN /

0.0

0.0 0.2 0.4 0.6 0.8 1.0

Fig. 5. Dependences of the ratio D¥,,/D , (components of the tensor D ) on the volume fraction
of grains 0, for both models; y = 1.00 for tfle model M1 (curve /) and y = ="0.05 for the model M2 (2);
s=1.0,£=0.0

The two models coincide given the segregation parameter s = 1 at 0, = = 0 and 1 (see Fig. 5).
Furthermore, the behavior of the curves for models M1 and M2 is very different at any values of
the volume fractlon @, so the two models cannot be considered equivalent at the given values of
parameters (see Tableg).

Fig. 6 shows the effect of the segregation parameter s on the effective diffusion coefficient at
large volume fractions of the grains.

As evident from Fig. 6, variation in the segregation parameter has a more pronounced effect
on the dependences for the model M2 than on those for the model M1. Both models show that
the effective diffusion coefficient decreases with increasing segregation parameter. The segregation

a) b)

D*"/Dgp, DDgp,

0.0200

0.0175

0.0150

0.0125+

0.0100

0.0075

0.0050

Fig. 6. Ratios D%’ 3/Dg (components of the tensor D, ) as functions of the grain volume fraction ¢, .
for models M1 (a) and M2 (b) at different values of the segregation parameter s:
1, 10, 100 (a) and 1, 0.1 and 0.01 (b);

curve s = 1 for M2 separated from the curves, which coincided; all curves coincided for M1
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parameter has little influence on the effective diffusion coefficient in the model M1 at high con-
centrations of inhomogeneities.

Fig. 7 shows the dependence of D¥,,/D o 01 the segregation parameter s with large volume
fractions of grains (in the range from 95 to 99%). Evidently, the segregation parameter has lit-
tle influence on the variation in the effective diffusion coefficient for both models, but a slight
decrease in the diffusion coefficient is observed with increasing s.

a) b)

DDy, fr
0.045 D® /ng
0.

0.040

B e S N S S ol 0.0045 |

0.030
0.00401

0.025

0.020 0.0035 ) T e £

0015
0.0030

6
0.010 3 —

0.005 0.00251

0.000

Fig. 7. Ratios D. 3/D as functions of the segregation parameter s for models M1 (a) and M2 (b)
at different values of the parameters y and ¢ ; § = 0,0; y = 1.00, ¢ = 0.95 (1), 0.97 (2), 0.99 (3) (a);
vy = 0.05, (p—005 (4, 0.03 (5), 001 (6) (b)

Verification of both models

This section compares the constructed mathematical models with the experimental data.
Experimental data for the dependence of effective hydrogen diffusion coefficient in nickel on
grain size d are given in [16].

The model M1 assumes spherical inhomogeneities to be grains with a diffusion coefficient
D, = 910" m?/s, and the grain boundary with D, = 4-107'"° m?/s is taken as the matrix. The
situation is reversed in the model M2: D, = 9-10"'* m?/s, while D, = 4-10"'° m?/s. The remaining
microstructural parameters are given in the table.

The volume fraction of grain boundaries is calculated by the formula from [16]:

@y = Ad”, A=8.138-107, p =—-0.636. (43)
The volume fraction of grains is calculated by the following formula:
o=1-0@,=1-4d". (44)

First we construct the dependence of D¢ on the grain size d for both models at s = 1.

It can be seen from Fig. 8 that the model M1 describes the experimental data fairly well. The
approximation error of the experimental data is very large for the model M2, so only the model
M1 is considered below.

Fig. 9 illustrates the influence of the segregation parameter s. Evidently, it is important that the
segregation parameter is taken into account in the approximation of the effective diffusion coefficients.
The best approximation of the experimental data is achieved at s values in the range from 1 to 2.

Thus, in practice, it is recommended to use the model M1 (matrix—grain boundaries, inhomo-
geneities—grains) rather than the model M2 (matrix—grains, inhomogeneities—grain boundaries)
to approximate the diffusion coefficients of the polycrystalline material. We should note that a
decrease in the values of effective diffusion coefficients is observed in the experimental data for
grain sizes less than 0.1 um, which can be associated with additional internal effects. It is estab-
lished in [8] that the decrease in the value of the diffusion coefficient is due to an increase in the
amount of solutes with a decrease in the grain size. Since this effect is not taken into account in
the mathematical model of the material, both models also do not describe the effective diffusion
properties for grain sizes less than 0.1 pm. Moreover, the segregation parameter does not signifi-
cantly influence the effective diffusion coefficient in the case of spherical grains. The influence of
the segregation parameter for spherical grains has not been investigated in this study; we plan to
concentrate on this problem in our future research.
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Fig. 8. Calculated (lines) and experimental (symbols) dependences of D¢ tensor components
on d for models M1 (/) and M2 (2) at s = 1
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Fig. 9. Computational (lines) and experimental (symbols) dependences of the tensor component D¢
versus d for the model M1 at different s: 1.0 (7); 1.5 (2); 2.0 (3); 10 (4) and 100 (5)

Conclusion

The paper considers two approaches to describing polycrystalline material. The grains are
simulated by inhomogeneities and the grain boundary by the matrix in the first case, and vice
versa in the second case: the grain boundary is simulated by inhomogeneities, and the grains by
the material matrix. The models used to approximate the effective diffusion coefficients of the
polycrystalline material take into account the effect of segregation as well as the mutual effect of
grains; the Mori—Tanaka scheme is applied. We have constructed an analytical approximation
for the tensor of effective diffusion coefficients for the case of spheroidal inhomogeneities. We
have verified the models using experimental data, establishing the importance of the segregation
parameter for calculations of the effective diffusion coefficients.
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