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Abstract. The method of generative model design (GMD) has been applied to reconstruct 

the structure and coefficients of a partial differential equation describing the target’s heating 
and its evaporation by laser radiation. The initial synthetic data includes heating scenarios 
corresponding to surface energy absorption or to volume one.  It was shown that reconstructing 
the model correctly required the use of a preprocessing technique providing the exclusion of 
a part of the initial data if the volume absorption took place. A modification of the method 
that made it possible to take into account the temperature dependence of the coefficients of 
the reconstructed equation was put forward. The influence of various statistical criteria used 
in selecting the optimal subset of elements on the accuracy of reconstructing the equation 
structure was discussed. The efficiency of the GMD was demonstrated for a wide range of 
target heating parameters and different options for setting the energy input. The possibility of 
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Аннотация. Метод генеративного дизайна модели (ГДМ) применен для восстановления 
структуры и коэффициентов дифференциального уравнения в частных производных, 
описывающего процесс нагрева и испарения мишени лазерным излучением. Исходные 
синтетические данные включают сценарии нагрева, соответствующие поверхностному 
или объемному поглощению энергии. Показано, что в случае объемного поглощения для 
корректного восстановления модели требуется применение процедуры препроцессинга, 
предусматривающей исключение части исходных данных. Предложена модификация 
метода, позволяющая учитывать зависимость коэффициентов восстанавливаемого 
уравнения от температуры. Обсуждается влияние различных статистических критериев, 
применяемых при селекции оптимального подмножества элементов, на точность 
восстановления структуры уравнения. Эффективность применения метода ГДМ 
продемонстрирована для широкого диапазона параметров нагрева мишени и разных 
вариантов задания энергоподвода. Показана возможность генерации модели по 
зашумленным данным.
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Introduction
Data-driven models are widely used for predicting the parameters of social, political or physi-

cal processes and subsequently controlling them [1, 2]. The requirements imposed on such models 
generally include accuracy of the predictions and interpretability of the models themselves. If the 
object is characterized by quantitative predictors, then the model is typically a linear or nonlin-
ear regression function [3]. Alternative models are formulated as ordinary differential equations 
(ODE) or partial differential equations (PDE), reconstructed from the available data. The data-
driven models based on differential equations are expected to provide both good interpretability 
and accuracy of the predictions they yield [2].

Different methods for reconstructing the model of a process as a PDE based on the available 
data are widespread in studies of heat and mass transfer. The form of the ODE describing the 
majority of the thermal processes is well known: in the simplest case, it is a classical equation 
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of thermal conductivity. However, the equation may include a second derivative of temperature 
with respect to time in the general case [4, 5], and a corresponding convective term for a moving 
medium. If energy is released inside the object, one or more additional terms appear in the equa-
tion determining the power of internal heat sources [5]. A tool for selecting the significant terms of 
the equation from a large array of ‘building blocks’ should allow to detect the processes that occur 
within the internal volume of the object and cannot therefore be visualized during the experiment. 
Examples of such processes are phase transitions and chemical reactions. Reconstructing the 
convective term with the corresponding weight in the energy equation allows to assess the pres-
ence of convective processes in the object considered. What is more, data can be obtained for the 
qualitative changes in the thermal process (for example, transition from predominantly thermal 
conductivity to well-developed convection with the liquid heated non-uniformly [6]). 

Problems on reconstructing the structure of PDE and determining the coefficients of the equa-
tion with respect to thermal processes can be solved by the method of generative model design 
(GMD) proposed in [7]. The method comprises several stages. 

I. The most complete possible structure of the reconstructed equation is determined. 
II. PDE elements are discretized. 
III. Values are calculated for the vector elements of discretized templates based on available 

data on spatial-temporal temperature distributions. 
IV. Statistical methods are applied to determine the optimal structure and the PDE coefficients. 
Even though the core of the method has been formulated, some questions are yet to be addressed.
First of all, the effectiveness of the method clearly depends on the quality of the initial data. 

In addition to the above stages of the GMD algorithm, we should consider the stage when the 
available synthetic or experimental data are preprocessed. The quality of such data should be ana-
lyzed at this stage in order to make a decision as to whether they can be used fully or partially. 

Secondly, the algorithm for constructing discretized stencils for the case of temperature-de-
pendent parameters of the model is not discussed in detail in the literature. 

Thirdly, different statistical criteria can be adopted at the stage when the optimal structure 
of the equation is chosen (Mallow’s criterion, information criteria, etc.). The statistical criterion 
selected should be assessed for adequacy to determine the optimal structure of the model.

Fourthly, an important question yet to be answered definitively is whether the GMD algorithm 
is applicable to noisy data. 

In general, the potential offered by the GMD method should explored further to accumulate 
experience with its practical applications.

This study concentrated on developing the GMD method proposed in [7]. Our intention was 
to further expand the scope of the method, trying to answer the above questions.

Generation of initial synthetic data

To better illustrate the capabilities of the GMD method, the initial data for reconstructing the 
thermal process model include information about the spatio-temporal evolution of temperature 
in the material, accounting for both the presence/absence of physical processes accompanying 
heating, and the temperature dependence of the thermophysical parameters of the medium.

The process of heating a metal target with laser radiation is a convenient object to consider. 
Firstly, this process depends on the radiation parameters and can be accompanied by phase 
transitions (melting of the material and evaporation of its surface); secondly, the temperature 
range of the material is very wide and requires taking into account the temperature depen-
dence of the medium parameters. Thirdly, the data can be obtained synthetically by numerical 
modeling [8–10].

As an example, we consider a niobium target heated by moderate-intensity laser pulses. This 
unsteady process can be assumed to be one-dimensional for the case when the depth to which the 
target is heated is much smaller depth than the diameter of the laser spot.

Data on the spatio-temporal distribution of temperature T(x,t) in the target are generated to 
subsequently use the GMD method by numerically solving the thermal conductivity equation [5, 
9, 10] taking the form

,V
T T Tc q
t x x x

∂ ∂ ∂ ∂ ρ −ω = λ + ∂ ∂ ∂ ∂ 
(1)
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where x, m, is the spatial coordinate; t, s, is the time; ρ, kg/m3, c, J/(kg∙K), λ(T), W/(m∙K), are 
the density, heat capacity, and thermal conductivity of the material, respectively; qv, W/m3, is the 
volumetric heat source; ω, m/s, is the speed of the evaporating surface.

The velocity ω depends on the surface temperature TS (TS ≡ T (x = 0)) and is the function 
of time only: ω = ω(t). Eq. (1) is written in the moving coordinate system X, with the origin 
corresponding to the target surface. Surface evaporation does not occur for surface temperatures 
significantly lower than Tb (Tb = 5033 K is the boiling point of niobium at normal pressure pb 
[11]), and the surface velocity is ω = 0. Surface evaporation is observed at temperatures exceed-
ing or close to Tb. The velocity ω starts to differ from zero. The coefficient ω ≠ 0 can serve as an 
indicator pointing to the presence of an evaporation process. Melting of niobium is not taken into 
account in the given formulation (melting point of niobium TL = 2750 K [11]). 

The boundary condition on the surface is imposed as 

0

,S
x

T q L
x =

∂
−λ = − ρω

∂
(2)

where qs, W/m2, is the energy flux of laser radiation over the target surface; L, J/kg, is the latent 
heat of evaporation. 

The initial temperature at the remote boundary T(∞,t) = T0  corresponds to T(x,0) = T0 
(T0 = 300 K). 

Two scenarios of laser energy absorption are considered in this paper: 
(i) the energy flux of laser radiation through the target surface per unit time (surface flux) is 

given by the expression 

0(1 ) ,S fq R W= − (3)

where W0, W/m2, is the density of the radiation flux incident on the target surface; Rf is the 
reflectance of the material surface. Volume absorption is absent in this case (qV = 0).

(ii) it is assumed that the volumetric absorption qV ≠ 0, qs = 0. 
In the latter case, the heat input at a distance x from the surface is determined by the expression 

( , ) ( , ),V aq x t I x t= α (4)

0( , ) ( ) exp( ),aI x t I t x= −α (5)

where I(x,t), W/m2, is the radiation intensity in the material at a distance x from the surface; I0(t), 
W/m2, is the density of the radiant flux penetrating the material, I0(t) = (1 – Rf)W0; αa, m

–1, is 
the absorptance.

Eq. (5) expresses the Beer–Lambert–Bouguer absorption law.
It is assumed that the radiation power does not change, i.e., 

0 0 0 0,  ;  0,  .W const t t W t t= ≤ = > (6)

The required values of the optical parameters are taken from [12, 13]: αa = 5∙107 m–1 (for lasing 
wavelength of the order of 1 μm), Rf = 0.77. Laser pulse duration t0 = 0.1 μs.

The generated data correspond to two temperature ranges: 
I. Target temperature is substantially below the boiling point Tb (and the melting point TL);
II. Surface temperature is above Tb.
The experimental data [14] on the thermal conductivity of niobium in the range 300 < T < 2200 K 

are approximated by a third degree polynomial for temperature range I: 

3 6 2 9 3
0 6.687 10 6.652 10 2.256 10 ,T T T− − −λ = λ + ⋅ + ⋅ − ⋅ (7)

where λ0 = 51.49 W/(m∙K). 
The density and heat capacity of niobium are assumed to be constant in this formulation, 

amounting to ρ = 8570 kg/m3, c0 = 263 J/(kg∙K). 



87

Simulation of Physical Processes

The temperature dependences given in the literature for the parameters of liquid niobium 
differ considerably near its melting point for Range II [14]. In this case, we assume the thermal 
conductivity and the heat capacity to be constant over the entire temperature range. In this case, 
the thermophysical parameters correspond to the parameters of liquid niobium [11, 14]:

ρL = 7580 kg/m3, c0L = 449.9 J/(kg∙K), λ0L = 65 W/(m∙K).
The surface moves with a velocity corresponding to Hertz’s law and the assumption that 18% 

of the evaporated atoms are dispersed back to the surface due to collisions in the gas phase [15]. 
The density of saturated vapor follows the Clausius–Clapeiron law [15, 8]:

1/2
1 1( ) 0.82 exp ,

2
b

B S B b S

p m Lmt
k T k T T

    
ω = −    ρ π    

(8)

where kB, J/K, is the Boltzmann constant; m, kg, is the atomic mass.
The Crank-Nicolson scheme of the finite difference method is used to numerically solve Eq. 

(1), providing a second-order approximation with respect to both the spatial and the temporal 
coordinate [5]. Thermal conductivity at the point between grid nodes j and j+1 was determined 
by the mean temperature in the nodes:

( )1/2 1( ) / 2 .j j jT T+ +λ = λ +

The thermal conductivities were tailored during the iterative process for each subsequent time step 
(n + 1), accounting for the relationship between thermal conductivity and temperature. 

The computational scheme of the problem with volume absorption assumes that the volume 
where the absorption occurs is present around each grid node. The volume boundaries for node j 
with the coordinate xj are defined for this one-dimensional case as 

/ 2 / 2.j jx x x x x−∆ ≤ < + ∆

Taking into account the Booger–Lambert–Beer law (see Eq. (5)), the power density of the 
heat source in the volume is expressed as

{ }0 ( )( , ) exp[ ( / 2)] exp[ ( / 2)] .V j a j a j
I tq x t x x x x

x
= −α −∆ − −α + ∆

∆
(9)

Fig. 1. Distributions of temperature T over the target depth X at time t = 10 ns, with volume absorption 
of laser radiation (computational case 6). The inset shows the initial region X. 

Analytical solution [16] (curve 1) is compared with the results of different computational cases: 
taking into account Eq. (9), with steps of 2 nm (curve 2) and 40 nm (curve 3); 

taking into account Eqs. (4), (5) and with steps of 40 nm (curve 4) 
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Provided that Δx → 0, expression (9) corresponds to expressions (4), (5). Taking into account 
the final value of the step Δx, the main numerical algorithm incorporates expression (9). The 
first node inside the body has the coordinate x0 = Δx/2 for the problem statement with volume 
absorption (the target surface corresponds to the coordinate value x = 0). In addition to volume 
absorption, the boundary condition should be taken into account in form (2) at qs = 0. A ficti-
tious boundary node with the coordinate x–1 = –Δx/2 was included into the scheme to satisfy this 
boundary condition. There is no absorption of laser energy in this node,

1 0( , ) ( , ) ( ).ST x t T x t T t− = =

The heating process in the target was observed for a total time of 2 μs.
The numerical algorithm intended for extracting data by GMD was verified by comparison 

with the analytical solutions available in monograph [16], obtained in the absence of surface evap-
oration (ω = 0) both for the case of volume absorption (see expression (4)) and for the energy flux 
through the surface given by Eq. (3). 

The data obtained by numerically solving the thermal conductivity equation (1) are in good 
agreement with the analytical solutions (Figs. 1 and 2). Using Eq. (9) and the described algorithm 
for volume absorption of radiation energy significantly increases the computational accuracy 
compared with the results obtained using expressions (4) and (5) for a large spatial step (see 
Fig. 1). If the surface flux is given (Fig. 2), the solution is similar to the case of volume absorption. 
The solutions differ only in the region of the target located directly near the surface.

Fig. 2. Distributions of temperature T over the target depth X at time t = 10 ns, 
with radiation flux through the surface (computational case 1). 

Analytical solution [16] (curve 1) is compared with the computational result (curve 2)

a)	 b)

Fig. 3. Spatio-temporal temperature distributions for Cases 4 (a) and 11 (b) (see Table 1)
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The cases corresponding to the generated data are given in Table 1, and example data for the 
temperature distributions are shown in Fig. 3.

The computational results for the second temperature range correspond to Case 11 (see Table 
1 and Fig. 3,b). For radiation intensity of 1.2 TW/m2 and a pulse duration of 100 ns, the surface 
temperature exceeds the boiling point by the time the laser pulse stops, and surface evaporation 
is observed. The velocity of the evaporation front is approximately 0.3 m/s by the end of the 
radiation time interval. 

Method of generative design
The first stage of the GMD algorithm consists of determining the total number of possible 

elements in the reconstructed equation (depending on the type of problem). The full stencil of the 
PDE for the problem considered includes a convective term and is written as follows:

1 0,vqT T T
t c x x x c

∂ ∂ ∂ ∂
− + λ +ω + =
∂ ρ ∂ ∂ ∂ ρ

(10)

where the coefficients λ and ω are assumed to be unknown, while the coefficients ρ, s and the 
heat source power qv are known. 

The temperature dependence of thermal conductivity λ is assumed to be known:

2 3
0 1 2 3 ,T T Tλ = β +β +β +β (11)

where βp are the unknown coefficients.
The second stage of the GMD algorithm involves discretization of the equation elements by 

finite difference (FD) [7] or finite element (FE) methods [17] and calculating the values of dis-
cretized stencils based on the available data. We applied an FD method in this study.

The difference template of the second derivative in space for the regular mesh takes the form

Tab l e  1

Computational cases for generating the input data

Case Energy
input

Time 
sample, μs λ Δx,

nm Nd

1

qV = 0

0.01 λ0

2.0

973
2 1.00 λ0 11333
3 0.01 (7) 998
4 1.00 (7) 11704
5 2.00 (7) 15962
6

qs = 0

0.01 λ0 775
7 1.00 λ0 11333
8 0.01 (7) 801
9 1.00 (7) 11704
10 1.00 (7) 100 228

Case 11: qV = 0, time sample is 0.0975 µs, 
I0(t) = 1.2 TW/m2, c = c0L, λ = λ0L, Δx = 2 nm, Nd = 3355

Note .  I0(t)= 0.3 TW/m2, c = с0 for cases 1–10.
No t a t i on s :  qV is the bulk absorption of laser radiation; qs is the energy flux 
through the target surface; I0(t) is the density of the radiant flux penetrating the 
material; с is the heat capacity, с0 = 263 J/(kg∙K), с0L = 449.9 J/(kg∙K); λ is the 
coefficient of thermal conductivity, λ0 = 51.49 W/(m∙K), λ0L = 65 W/(m∙K), (7) 
is the number of the polynomial formula; Nd is the number of degrees of freedom.
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1/2 1 1/2 1/2 1/22

1 ( ) .j j j j j j j
T T T T

x x x + + + − −

∂ ∂   λ ≈ λ − λ + λ + λ   ∂ ∂ ∆ 
 (12)

In view of dependence (11), expression (12) takes the form
3

,

0
,i l

s s
s

T K
x x =

∂ ∂ λ ≈ β ∂ ∂ 
∑ (13)

, , , 10.5 0.5 ,i l i n i n
s s sK K K += + (14)

1 1,
1 12

1 ( ) ( ) .
2 2

s sn n n n
j j j ji n n n n n

s j j j j

T T T T
K T T T T

x
+ −

+ −

    + +
 = − + −      ∆      

(15)

The superscript index i in Eqs. (13)–(15) and below corresponds to a spatial slice comprising three 
nodes: j–1, j and j+1; the superscript l corresponds to a time slice comprising two time layers: n and 
n+1. The coefficients , 1i n

sK + are determined by Eqs. (15) substituting the index n by the index n + 1.
The discretized equation (10) for the spatial slice i and the time slice l takes the form

1
0,

tP
il
p p

p
a

=

α =∑ (16)

where Pt = 7 for near-surface nodes during the pulse with volume absorption, and Pt = 6 in other 
cases; α1 = –1, αp = βp–2/(cρ) for 2 ≤ p ≤ 5; α6 = ω, α7 = qV/(cρ). Parameters α2–α6 are unknown and 
should be determined. 

The coefficients ap
il can be found from the available synthetic (or experimental) data:

1

1 ,
n n
j jil T T

a
t

+ −
=

∆
(17)

,
2 2 5,il i l

s sa K for s−= ≤ ≤ (18)

1 1
1 1 1 1

6 0.5 0.5 ,
2 2

n n n n
j j j jil T T T T

a
x x

+ +
+ − + −− −

= +
∆ ∆

(19)

7 1.ila = (20)

In vector form, expression (16) can be represented as

0
1

,
tP

p p
p=

α =∑V Z (21)

where Z0 is a zero vector; the vector Vp consists of elements ap
il, where the superscript i varies from 

2 to N – 1 (the spatial index j varies from 1 to N (N is the number of spatial nodes)); the super-
script l varies from 1 to L (L is the number of time slices) L < n (n is the number of time steps):

( 2)1 2 3

1 1 1 2 121 31 41 22 32 42 2 3 4

( ... )

( ... ... ... ... ).

p N LT p p p
p

N N N LL L L
p p p p p p p p p p p p

v v v v

a a a a a a a a a a a a

− ×

− − −

= =

=

V
(22)

Expression (21) can be represented as
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0
2

,
tP

p p
p=

= α + α∑Y V (23)

where 1 1 0,  1, 0.= −α α = − α =1Y V  
Estimates of coefficients αp can be obtained by the ordinary least squares (OLS) method. 
The presence of the initial data allows us to calculate the component values of the vectors Vp. 
The third stage of the GMD algorithm involves applying statistical learning methods to expres-

sion (23). These methods rely on algorithms for selecting the optimal subset of elements and 
statistical criteria for selecting a single ‘correct’ combination of elements [3, 18]. The Bayesian 
information criterior (BIC) or Cp (Mallow’s criterion) can be used for this purpose [3, 19, 20]. 
The respective criteria are calculated as

RSSBIC ln ln ,n k n
n

= + (24)

where n = (N – 2) L is the number of observations; RSS is the residual square sum; k = pe + 
2, pe – is the number of elements included in the sum in the right-hand side of expression (23) 
(the maximum possible number of elements: P = Pt – 1),

2

RSS 2( 1),p eÑ n p
S

= − + + (25)

where S2 is mean squared residual after regression over the entire set of predictors. 

Illustration of GMD method

In general, the reconstruction accuracy for a model in the form of a PDE with derivative coef-
ficients depending on the solution is determined by a quantitative parameter that is the number of 
degrees of freedom (DoF), as well as by the quality of the data. The number of DoF in the given 
problem is the number of nodes (points) with a known temperature value. This number depends 
on the grid spacing and the instant in time that the data correspond to. Heat penetrates deep into 
the material over time, with an increase in the heated area and, accordingly, the number of nodes 
for the case of a uniform grid. Data quality refers to several factors: the temperature range covered 
by the data; possible correlation of the data, as well as the presence and type of energy supply.

If the heat flux through the surface is given as condition (2) and expression (3), the thermal 
balance of a unit volume associated with the grid node j is determined only by the process of 
thermal conductivity. It is expected that data in all nodes of the area under consideration can be 
used to generate a model. 

In the case of volume absorption, this process occurs in the near-surface layer of the target 
with a characteristic scale of about δ ≈ 1/αa = 0.2∙10–7 m (20 nm). The contribution of the term 
qV to equation (1) for near-surface nodes is significant with respect to the thermal process. The 
quantity OsL, which is the ratio of the energy supplied to the unit volume corresponding to the 
node j with the boundaries

/ 2 / 2j jx x x x x−∆ ≤ < + ∆

for absorption of radiation to the energy supplied/discharged from the unit volume due to 
thermal conductivity, can be defined as

/2 /2

( , )
Os ,V j

L
x x

q x t x
q q−∆ ∆

∆
=

−
(26)

/2 /2 /2 /2, .
j jx x x x x x

T Tq q
x x−∆ −∆ ∆ +∆

∂ ∂
= −λ = −λ

∂ ∂
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The boundary of ‘influence’ of energy absorption on the heat balance depends on the distri-
bution of the modulus of the local Ostrogradsky number |OsL|. Fig. 4 shows an example for the 
variation in |OsL| for the case of volume absorption and the time t = 0.1 μs. |OsL| >> 1 for points 
in the near-surface layer around the coordinate x = 7∙10–8 and the thermal conductivity process 
also plays a secondary role. The latter circumstance affects the reconstruction accuracy for the 
thermophysical parameters and the quality of generation for the equation model.

A total of 200 near-surface nodes were excluded from the data intended for generative design 
for the irradiation stage and the case of volume absorption, while the sum in expression (23) 
included the total number of predictors P = Pt – 1 = 5 (Pt = 6). The reconstruction error of the 
coefficients exceeded 50% accounting for either the near-surface nodes in the initial data or only 
the near-surface nodes for which expression (23) also included the term associated with volume 
energy release (P = 6, Pt = 7), while the reconstructed model included an ‘extra’ convective 
term for the first range of temperatures below the melting point TL. One near-boundary node 
was excluded from the data for the heat diffusion stage after the pulse stopped to account for the 
specifics of how finite-difference stencils are set.

Cases with the energy flux through the surface were not sensitive to the presence of informa-
tion about near-surface nodes in the data under consideration. If the surface energy flux was set 
regardless of the process stage, one node immediately adjacent to the target surface was excluded 
from the data.

The target temperature varies in a wide range during heating: T0 = 300 ≤ T < 2200 K for 
the first temperature range and T0 = 300 ≤ T < 7000 K for the second one. Internal tests indi-
cate that it is ineffective to use data for points deep within the target with a temperature below 
1.003T0 = 301 K. These nodes were also excluded from consideration.

Data generated for different time slices correlate with each other [3]. The model of the equa-
tion is reconstructed from the data corresponding to a single time slice consisting of two time lay-
ers. We considered the data corresponding to the time slices at both the irradiation stage (t = 10 
and 100 ns) and after the laser pulse stopped (1 and 2 μs). 

The number of DoF used to generate the model ranged from 220,000 to 16,000 and depended 
on the case (see Table 1).

In the first stage of the study, the GMD method was applied to the data corresponding to 
Cases 1, 2, 6 and 7, assuming constant thermal conductivity λ0 and a temperature range not 
exceeding the melting point (see Table 1). The results of the algorithm for selecting the optimal 
subset of elements for Case 1 are summarized in Table 2. The number in the first column corre-
sponds to the number of elements pe included under the summation sign in Eq. (23). According 
to the results obtained, the minimum values of the BIC and Cp criteria correspond to an equation 
with one term with the coefficient α2 (aside from the term with the coefficient α1 = –1) for Case 1. 
The statistical procedure of the package R [18] for all cases determines the value of the coefficient 
α2 as equal to 2.2845 ·10–5 (Table 3), which corresponds to the value of thermal conductivity 

Fig. 4. Modulus distribution of the local Ostrogradsky number along the coordinate X 
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5
2 0 0

2/ ( ) 2.2 s845 10 m / c −α = λ ρ = ⋅

(see expression (7)), which is used to generate data. 
Notably, in addition to exact reconstruction of the coefficient, the structure of the equation, 

which should not include the convective term with the coefficient α6, is also reconstructed cor-
rectly. Thus, the results obtained for generating an equation with constant coefficients can be 
assumed to be satisfactory.

Similarly, the GMD method was applied to reconstructing the equation from the data imply-
ing a temperature dependence for the thermal conductivity of the parameters in the form (7). 
Table 2 presents an example of applying the procedure for selecting the optimal subset of ele-
ments for Case 3 (surface energy flux and the time t = 10 ns) corresponding to the irradiation 
mode. The procedure correctly reproduces the stencil for the equation without the convective 
term corresponding to the coefficient α6 for this case. Cases 4 and 5 (see Table 1) correspond to 
later times of the process: t = 1 and 2 µs, respectively. The temperature of the target decreases, 
and its variation range is 300–550 K by the time of 2 μs. The number of DoF increases to 
16,000. The reconstruction quality of the model structure remains virtually unchanged for later 
times, and the convective term is not reproduced. The structure of the required equation is also 
reconstructed correctly for the cases with volume absorption (Cases 8 and 9). Varying the com-
putational parameters, i.e., increasing the spatial step by 50 times and decreasing the number of 
DoF in Case 10 proportionally (relative to Case 9) does not affect the reconstruction quality of 
the structure. 

The results obtained by running the GMD algorithm for Cases 1 – 10 are given in Table 3. The 
normalized coefficients corresponding to expression (7) (in bold) and the coefficient α6 associated 
with the surface evaporation rate are given here. The rest of the rows show the values of the recon-
structed coefficients for the given cases, the values of the normalized coefficients in the dependence 
λ(T) are reproduced with good accuracy. The reconstruction error of the coefficients only weakly 
depends on the time slice corresponding to the data and on the type of energy input, provided that 
some of the data for the near-surface layer are excluded for the case of volume energy absorption.

The maximum reconstruction error for the coefficients of polynomial dependence of thermal 
conductivity is 0.01%. The error is determined as

/ 1 100%,m tε = α α − ⋅

where αm is the coefficient for which the maximum discrepancy with the theoretical value αt is 
observed. 

The error for the total thermal conductivity is even less and does not exceed 0.002%. The error 
is the same for Case 9 and 10, even though the number of DoF differs by 50 times. 

The initial data for Case 11 assumes an evaporation process on the target surface, since the 
surface temperature for the corresponding high radiation intensity (see Table 1) and the pulse 
time exceeds the boiling point of niobium. The GMD method allows to correctly reconstruct the 
structure of the model, which includes a convective term for this case (see Table 3). The recon-
structed coefficient value α6 for Case 11 is different from 0.

Table 2 shows the values of criteria Cp and BIC for two cases: 1 and 3. The minimum criteria 
correspond to the same set of elements for these cases. However, unlike BIC, the criterion Cp 
predicts an incorrect structure of the model for several cases. Moreover, using BIC produces a 
sparser model with fewer elements.

We can therefore conclude that the BIC criterion is preferable for the given class of problems.
It is extremely important for real-life applications that the GMD method can work with noisy 

data. Below, we consider an additional computational case to illustrate this capability, corre-
sponding to the time slice t = 0.0975 ms; its initial parameters are similar to Cases 1 and 2 from 
Table 1. The same as above (Cases 1 and 2), the synthetic data are generated on a grid with a 
step Δx = 2 nm. The effect of noise was achieved by simulating the temperature values by the law 

( )( , ) ( , ) 1 ,rT x t T x tδ = + θδ (27)

where T(x,t) is the temperature found from numerical solution (1); θ is a random variable with a 
uniform distribution from the interval [–1, 1], δr is the relative error. 
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Tab l e  2
 

Procedure for selecting the optimal element subset for Cases 1 and 3

Number of 
elements pe 

α2 α3 α4 α5 α6 BIC Cp

Case 1
1 * – – – – –29,196.57 2.59
2 * – – – * – 29,190.57 3.71
3 * * – – * – 29,183.85 5.54
4 * * * * – – 29,178.95 5.56
5 * * * * * – 29,173.63 6.00

Case 3
1 * – – – – – 3,628.85 2.44·1014

2 * – – – * – 1,098.50 1.60·1011

3 * * – – * – 12,940.78 2.26·1010

4 * * * * – – 29,934.64 4.53
5 * * * * * – 29,928.26 6.00

Nota t i on s : α2–α6 are the coefficients from Eq. (23); BIC, Cp are statistical criteria. No t e s . 
1. The number of elements pe included under the summation sign in Eq. (23) is given in the left 
column. 2. The selected results are highlighted in bold. 

T ab l e  3
Illustration of GMD method

Case α0 α2 (×105) α3 (×109) α4 (×1012) α5 (×1015) α6

Comparison of theoretical and reconstructed values
1, 2, 6, 7 0 2.2845 0 0

1 –7.1669·10–5

2.2845

0

0
2 1.0482·10–7 0
6 –3.6375·10–5 0
7 –8.8505·10–8 0

Comparison of theoretical and reconstructed values
3–5, 8–10 0 2.2845 2.9668 2.9513 –1.0009 0

3 2.2415·10–5

2.2845

2.9669
2.9513

–1.0009

0

4 1.2132·10–7

2.9668
5 –3.1960·10–8 2.9514
8 8.7904·10–6 2.9669 2.9511 –1.0008
9 4.1593·10–8

2.9668
2.9513

–1.0010
10 –3.8343·10–7 2.9515

Comparison of theoretical and reconstructed values
11 0 1.9060 0 –
11 1.4656·10–5 1.9060 0 0,3

Notes. 1. The values of normalized coefficients corresponding to expression (7) (theoretical) are high-
lighted in bold. 2. For all cases, α1 = –1. 
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Noisy data were generated with the value of δr varying from 10–5 to 10–2 (see Table 4).
The GMD method does not allow to correctly reconstruct both the structure of the PDE and 

the coefficients for the derivatives for the given noise level. For this reason, an additional regular-
ization procedure had to be applied for noisy data, accounting for the function assignment error 
generated when the grid step is selected [21]. 

As noted above, synthetic data are generated with a small step with respect to the spatial coor-
dinate, allowing to tailor a larger step, a multiple of Δx. Using the procedure for determining the 
step (described in [21]) for the relative errors of the initial data given in Table 4, we obtained the 
value of Δxreg = 0.1 μm. With the given step value, the GMD correctly reproduces the structure of 
the equation without the convective term (α6 = 0) for all values of δr considered, and the recon-
struction error of the thermal conductivity coefficient

2 / 1 100%tε = α α − ⋅

(αt = 2.2845∙10–5 m2/s is the theoretical value of the coefficient) varies from 0.04% for the rel-
ative error of the initial data amounting to 10–5 to 47% for δr = 10–2 (see Table 4). The relative 
error δr = 10–2 corresponds to the absolute error of determining the temperature determination at 
about 25 K near the target surface and 3 K near the remote boundary. 

If the step with respect to the spatial coordinate cannot be varied for synthetic or experimental 
data, an alternative regularization procedure can be used, based on temperature interpolation with 
spline functions [21].

Conclusions

The GMD method holds much promise for reconstructing the PDE describing thermal pro-
cesses. GMD can be used both to directly construct a mathematical model of a complex phe-
nomenon from the available data and to visualize the accompanying processes, such as chemical 
reactions or phase transformations, as well as to refine the thermophysical parameters of materi-
als. However, little experience has been accumulated so far with applying the GMD in practice, 
so the method itself needs to be developed further. 

This paper continues the efforts on optimizing the algorithm for generative model design as 
applied to reconstructing a model of a thermal process, which may generally include a convective 
term, with the material parameters assumed to depend on temperature. 

We report on the reconstruction of a partial differential equation describing heating and evap-
oration of a metal target by a laser pulse.

The initial data for subsequent application of the GMD method were generated by numeri-
cally solving the thermal conductivity equation an unsteady process for different approaches to 
describing the laser energy. We propose a method for improving the computational accuracy for 
the case of volume absorption and limited computational resources, which require a large step 
with respect to the spatial coordinate. The computational algorithm is verified by comparison with 
existing analytical solutions.

Tab l e  4

Application of GMD method to noisy data

Case δr α2 ε, %
s1 10–5 2.2854·10–5 0.04
s2 10–4 2.2912·10–5 0.29
s3 10–3 2.5112·10–5 9.92
s4 10–2 3.3634·10–5 47.22

Note .  α6 = 0 for cases s1–s4.
No t a t i on s :  δr is the variable relative error; 
α2, α6 are the coefficients from Eq. (23); 
ε is the error, ε = |α2/αt – 1|∙100% (αt is the 
theoretical value).
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Our findings indicate that the GMD method is sensitive to the type of data used. The propor-
tion of data that can be used to generate the model has to be additionally estimated for the case 
where the initial data for reconstructing the model correspond to volume absorption of the mate-
rial and the stage when the target is irradiated. Excluding the data on temperature in near-surface 
nodes allows to reconstruct the model structure with better quality and minimum error in finding 
the temperature-dependent coefficients of the PDE generated. On the other hand, there is no 
problem with excluding near-surface nodes and pre-processing of the data if the data corresponds 
to the stage of heat diffusion after the laser pulse stops for volume absorption or any stage of the 
process with the heat flux through the target surface.

If the model is generated as a PDE with variable coefficients, a significantly larger number of 
predictors have to be taken into account to apply statistical learning methods in the search for the 
optimal structure and coefficients of the equation. Despite this circumstance, we have confirmed 
that applying generative model design to the available data yields good results in reconstructing 
the structure of the model. The structure of the equation does not include a convective term at 
temperatures substantially lower than the boiling point of the material. If the surface temperature 
of the target exceeds the boiling point, the convective term associated with the surface evapora-
tion process is reconstructed. The reconstruction error for the temperature-dependent coefficient 
of thermal conductivity is less than 0.002% for the given number of degrees of freedom (more 
than 200).

We have established that the GMD method can be used to reconstruct a model from noisy 
data. In this case, additional regularization procedures are to be introduced to obtain the correct 
structure of the equation and the coefficient values of the derivatives. 

As a direction for future research, we intend to validate the method of generative design with 
real experimental data.
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