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Аннотация. Статья содержит оценку возможностей трех известных RANS-

моделей турбулентности (k-ω SST, k-ε RNG и одной из дифференциальных RSM-
моделей) по предсказанию локальных и интегральных характеристик статистически 
трехмерной рэлей-бенаровской конвекции жидкого металла с определяющей ролью 
крупномасштабной циркуляции (КМЦ). Расчеты на основе Unsteady-RANS-подхода на 
различных по измельченности сетках проведены при числе Рэлея 106 и числе Прандтля 
0,025 для подогреваемой снизу цилиндрической емкости при равенстве ее диаметра 
высоте. Рассмотрен случай слабого наклона объекта, когда в нем КМЦ принимает 
«зафиксированное» азимутальное положение. Работоспособность использованных 
моделей турбулентности оценивается через сопоставление результатов с ранее 
полученными данными прямого численного моделирования для тех же условий.
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Introduction
A characteristic feature of free convective flow developing in cylindrical containers heated 

from below is the presence of large-scale vortex structures occupying the entire domain (see, 
for example, reviews [1, 2]). In particular, if the diameter of the cylinder is equal to its height, 
the predominant structure of convective flow is a single vortex, also called a convection cell, 
or large-scale circulation (LSC) [3–7]. LSC in a strictly vertically oriented container with axi-
ally symmetric boundary conditions does not have a dedicated azimuthal position and, accord-
ingly, nothing prevents it from occasionally making random movements in the azimuthal direc-
tion. This is confirmed by both experimental [8–11] and numerical [12–15] studies of turbulent 
Rayleigh–Bénard convection in cylindrical containers. The specific azimuthal behavior of LSC 
is determined in experimental studies by small deviations from axial symmetry that are difficult 
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to control, inevitably present in laboratory models. The azimuthal instability of a convection 
cell is also generally manifested in numerical studies, where the ‘external’ factor affecting the 
random oscillations of LSC is the asymmetry of the computational grid or the peculiarities of 
numerical algorithms.

The random azimuthal movements of the convection cell make it incredibly difficult to obtain 
statistical data on its three-dimensional structure, including the quantities characterizing the 
‘background’ turbulence: fields of Reynolds stresses and turbulent heat flux. However, these low-
frequency movements can be suppressed, thus ‘locking’ the LSC in a certain azimuthal position if 
a stabilizing external factor is artificially introduced; this can be achieved, for example, by slightly 
tilting the container. This method for ‘locking’ the LSC is used in experimental [8, 16–20] and 
numerical [20–24] studies.

The Direct Numerical Simulation (DNS) method is widely used to describe turbulent Rayleigh-
Bénard convection in regions with relatively simple geometry. This approach assumes that all 
scales of turbulent fluid flow are resolved, consequently proving to be the most informative (see, 
for example, [25–30] for the case of a vertically oriented cylinder and [23, 24] for the case of a 
slightly tilted container). However, large computational costs are required for resolving the entire 
spectrum, increasing very quickly with increasing Rayleigh numbers.

The Large Eddy Simulation (LES) method allows reducing the costs, in particular, in its 
‘simplified’ version, the Implicit LES (ILES), where subgrid-scale turbulent viscosity is not intro-
duced explicitly into the transport equations, and the dissipative properties of the numerical 
scheme play the role of physical viscosity on a small scale. The experience of adopting the ILES 
approach for modeling the turbulent Rayleigh–Bénard convection in cylindrical containers is 
described in [22, 31, 32]. A recent paper [33] applied the ILES method to studying anisotropy of 
turbulent transfer in mixed convective flow developing in the crucible of a Czochralski furnace 
for growing silicon crystals.

It is well known, however, that as the Rayleigh number increases, computations of convective 
flow by the LES method require progressively refining the grids in the near-wall layers, with the 
refinements introduced in all spatial directions. As a result, obtaining reliable numerical data for a 
wide range of practical problems characterized by high Rayleigh numbers also involves very high 
computational costs.

In view of this, strong interest persists in numerical modeling of turbulent free and 
mixed-convection flows based on Reynolds-averaged Navier–Stokes (RANS) equations, 
closed by some semi-empirical differential model of turbulence. It should be borne in mind, 
however, that the options for obtaining a steady RANS solution are very limited in the case 
of Rayleigh–Bénard convection, depending on the turbulence model applied. It is therefore 
worthwhile to explore a problem statement developed to incorporate computations based on 
unsteady Reynolds equations. This approach is interpreted as Unsteady RANS (URANS) or 
Transient RANS (TRANS).

Refs. [34–36] thoroughly analyze the applications of the URANS approach to reproducing 
unsteady coherent structures and the intensity of turbulent transfer in the ‘classical’ statistically 
one-dimensional case of free convection between two differently heated horizontal plates. The 
authors emphasize the presence of two different scales in the motion: large amplitudes associated 
with plumes, thermals and convection cells, as well as turbulence arising mainly in the near-wall 
boundary layers and carried by large-scale structures. This makes turbulent Rayleigh–Bénard 
convection very convenient for computations based on unsteady Reynolds equations. The compu-
tational results [34–36] obtained by the URANS method closed by a three-parameter turbulence 
model indicate that the averaged temperature profile, second-order moments and integral heat 
transfer are in good agreement with the data of most DNS calculations and experimental data on 
convection between horizontal plates.

Recent years saw growing interest towards RANS simulations of free convective flows, closed 
by some model from the RSM family (Reynolds Stress Model) based on either steady or unsteady 
statements [37–41]. In general, the RSM model solves differential equations for transport of all 
components of the Reynolds stress tensor and the turbulent heat flux vector. Efforts to somewhat 
simplify the model, lowering the computational costs, are concentrated on ‘reduced’ formulations 
where differential transport equations are solved only for Reynolds stresses, and the turbulent heat 
flux is computed based on the gradient hypothesis in terms of averaged flow parameters.
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The experience of using Reynolds stress models to computing turbulent free-convection flows 
in the gravitational field presented in the literature mainly covers model configurations with differ-
ently heated vertical walls or the case of a boundary layer near a vertical heated surface [37–41]. 

This paper adopts one of the well-known RSM models (implemented, in particular, in the 
ANSYS Fluent software package) for URANS simulations of mercury convection in a slightly 
tilted cylinder heated from below. Similar simulations are also carried out for two turbulence 
models with isotropic viscosity from the k-ω and k-ε families. The computed statistical charac-
teristics of the first and second orders are compared with the data in [23] obtained earlier for the 
given configuration based on the DNS approach.

Problem statement and mathematical model

We consider turbulent convection of fluid in a bottom-heated cylindrical container with a 
single aspect ratio (Г = D/H = 1). The container is tilted by a small angle (φ = 2°) with respect 
to the gravity vector g (Fig. 1,a).

No-flow and no-slip conditions are imposed on all boundaries of the container. Horizontal 
walls are assumed to be isothermal: the temperature Th of the top wall is higher than that of the 
bottom wall (Tc). The side wall is treated as adiabatic.

The dimensionless governing parameters of the problem were the Prandtl number Pr = μCp/λ 
and the Rayleigh number

Ra = Pr∙(ρ2gβΔTH3/μ2),
where μ is the dynamic viscosity; Cp is the specific heat at constant pressure; λ is the thermal con-
ductivity; ρ is the density; β is the volumetric expansion coefficient; g is the gravity acceleration; 
ΔT is the temperature difference between the hot and cold walls, ΔT =Th – Tc. 

The characteristic (large-scale) velocity of the flow (buoyant velocity) is the quantity 
Vb = (gβΔTH)0.5. The time scale is the characteristic convective time tb = H/Vb.

The computations presented were carried out for the values of hydrodynamic numbers 
Pr = 0.025 and Ra = 106.

Convective motion is calculated from a system of unsteady Reynolds-averaged equations of 
dynamics and heat transfer (1)–(3), which includes the Navier–Stokes equations written in the 
Bussinesq approximation to account for buoyancy effects in the gravitational field, the continuity 
equation and the energy equation:

0,j
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∂
=

∂
(1)

( ) ( ),
0 ,ij t iji i

j i
j i j

V V pV T T g
t x x x
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a)	 b)	 c)

Fig. 1. Images of cylindrical container for the problem statement: a corresponds to the geometry 
of the computational domain; b, c show characteristic views of the computational grids 

in horizontal (b) and central vertical (c) planes
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The equations are solved in the coordinate system associated with the cylindrical con-
tainer xj = (x′, y′, z′ = z) shown in Fig. 1,а. The notations Vi and T correspond to the 
components of Reynolds-averaged velocity (i(j) = 1, 2, 3) and temperature; τij, qj are the 
components of the viscous stress tensor and the diffusive heat flux calculated in terms of the 
Reynolds-averaged values:

,ji
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.j
j

Tq
x
∂= −λ
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The quantities τt,ij, qt,j entering Eqs. (2), (3) are the components of the turbulent (Reynolds) 
stress tensor and the turbulent heat flux vector arising from Reynolds averaging and reflecting 
the presence of relatively high-frequency fluctuations of velocity vi and the temperature θ in the 
instantaneous motion. 

Respectively,

, ,t ij i jv vτ = −ρ (6)

, ,t j p jvq C θ= −ρ (7)

where the overbar indicates Reynolds averaging.
The system of equations (1)–(3) is not closed. To close the system, we should determine the 

method (model) for calculating the quantities τt,ij and qt,j.
The calculated data presented in this paper are obtained when the system (1)–(3) is closed 

with respect to three models.
The k-ε RNG and k-ω SST models. These models belong to the class of two-parameter 

differential turbulence models based on the concept of isotropic turbulent viscosity (the 
Bussinesq hypothesis). According to this concept, the components of the turbulent stress ten-
sor and the turbulent heat flux vector are related to the Reynolds-averaged flow parameters 
as follows:

, ,2
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j i
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 
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∂ ∂
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, ,t j t
j

Tq
x
∂= −λ
∂ (9)

where μt is the turbulent viscosity determined from the calculated turbulence parameters (k, ε or 
ω); λt is the turbulent thermal conductivity, λt = Cpμt/Prt (Prt is the turbulent Prandtl number (taken 
equal to 0.8 in this calculation)); k is the turbulent kinetic energy.

The complete formulation for the k-ε RNG and k-ω SST models is given in [42] 
and [43, 44], respectively.

Reynolds stress model. The differential model of Reynolds stresses implemented in the ANSYS 
Fluent 18.2 package was used in this study. Transport equations are only solved for turbulent 
stresses within the model, while the components of turbulent heat flux are calculated in terms of 
the averaged flow parameters based on the gradient hypothesis.

The transport equations for Reynolds stresses equations are generally formulated as follows:
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where Dm
ij, D

t
ij are the terms reflecting molecular (m) and turbulent (t) diffusive transport; Rij, Gij 

are the terms characterizing the kinetic energy generated by averaged motion and by buoyancy 
forces, respectively; φij is the quantity responsible for the redistribution of energy between stress 
and strain velocity tensors; εij is the dissipative term.

A differential equation for transport of the quantity ω (the specific dissipation rate of kinetic 
energy used to close Eq. (10)) is solved together with the equations for the Reynolds stresses. 
The Stress Omega option was selected during the computations from the options available in the 
ANSYS Fluent package and defining the specific form of this equation.

The components of turbulent heat flux viθ are calculated by the formulas:

1,  ,  ,
Pr 2

t
i t i i

t i

T kv k v v
x

µ ∂ ρ
θ = µ = =

ρ ∂ ω
(11)

where Prt = 0.8 (the same as above).
The components of the Reynolds stress model are described in [45–47], as well as in the user 

documentation for the ANSYS Fluent 18.2 software package.

Specifics of computations and data processing

Comparative computations based on the ANSYS Fluent finite volume method were carried out 
on two grids consisting of hexagonal elements containing 0.47 million (C1 grid) and 3.7 million 
cells (C2 grid). The structure of the grids in transverse and longitudinal (central) planes is illus-
trated in Fig. 1, b, c. The grids were clustered to the walls, while the size of the near-wall element 
was 1.5·10–4 N. A characteristic feature of the grids was the presence of a central ‘unstructured’ 
(asymmetric) subdomain about 0.8D in diameter (see Fig. 1, b).

Preliminary computations led us to conclude that none of the turbulence models applied is 
capable of providing a steady-state solution to the problem. All subsequent computations were 
performed in an unsteady formulation. The non-iterative fractional step method with second-
order accuracy was applied to advance in physical time. The time step was about one hundredth 
of the large-scale time tb of the problem, which was about 10 times higher than that used in [23] 
for computations by the DNS method.

The spatial approximation of convective terms in the transport equations was carried out by 
the QUICK scheme with nominally third-order accuracy. Diffusion terms were approximated by 
a central-difference scheme with second-order accuracy.

All computations started from a zero initial velocity field and uniform temperature field taken 
as (Tc + Th)/2. Samples for the time averaging performed after a transition region were equal to 
3000tb in all computations.

The computational data were processed to obtain the first-order and second-order statistical 
characteristics based on the following assumptions.

First, it was assumed that the instantaneous velocities and temperatures present in the real 
current (marked with an asterisk) can be decomposed into low- and high-frequency components:

* *,i i iV V v T T .= + = + θ (12)

Secondly, it was assumed that Reynolds-averaged motion contains only low-frequency ‘large-
scale’ components of velocity and temperature fields, i.e.,

* *, ,i iV V T T= = (13)

which, in turn, can be decomposed into mean values tavr obtained by averaging over a sufficiently 
large time sample and fluctuation components:
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,  i i iV V V' T T T'.= + = + (14)

The angle brackets ⟨…⟩ here indicate time averaging, and the prime indicates the fluctuations. 
In this case,

* *, .i iV V T T= = (15)

Let us introduce further notations for second-order statistical characteristics (second moments):

* * * * ,t
ij i j i jP V V V V= − (16)

* * * * ,t
i i iQ V T V T= − (17)

which are the components of the total turbulent stress tensor (taken with the reverse sign) and 
the total heat flux vector. 

Taking into account the decompositions (12), (14), we obtain:

,t
ij i j i j i j i jP V'V ' v v V'v vV '= + + + (18)

.t
i i i i iQ V'T' v V' v T'= + θ + θ + (19)

The first terms in the right-hand sides of expressions (18) and (19) reflect the contribution 
from numerically resolved components of the motion, the second ones reflect the contribution 
from simulated components, the third and fourth ones are the so-called cross terms which we are 
forced to discard (as it was done in [34–36]), due to the assumption of weak correlation between 
the low- and high-frequency components of motion. It is generally estimated a posteriori whether 
such an assumption is acceptable for a continuous fluctuation spectrum in instantaneous turbulent 
flow, that is, by comparison with ‘reference’ data of numerical and experimental studies.

Thus, for comparison with the data from [23], obtained earlier by the DNS method, the values 
of total turbulent stresses, the components of the total turbulent heat flux and the total kinetic 
energy of oscillatory motion were calculated as

,t
ij i j i jP V'V ' v v= + (20)

,t
i i iQ V'T' v= + θ (21)

1 .
2

t t
iiK P= (22)

The computations by the Reynolds stress model determined the contribution from the simu-
lated component of Pt

ij by averaging the Reynolds stresses obtained during the time tavr by solving 
transport equations (10). 

The contribution of the simulated component to the total turbulent heat flux was estimated 
as follows:

.
Pr Pr

tt
i

t i t i

TTv
x x

µ ∂µ ∂
θ = ≈

ρ ∂ ρ ∂
(23)

This expression is obtained based on the gradient hypothesis (11) assuming a weak cor-
relation between the fluctuations of turbulent viscosity and numerically resolved fluctuations 
of temperature.
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Computational results and discussion

The computational results are given below in dimensionless form. The coordinate values are 
taken relative to container height H. This implies the following correspondence: 

xi(j) = x′, y′, z′ for i(j) = 1, 2, 3.
The velocity components are taken relative to the buoyant velocity Vb, the turbulent stresses Pt

ij 
and kinetic energy Kt to the square of buoyant velocity; the components of turbulent heat flux Qt

i 
are normalized by the product VbΔT.

Time-averaged flow fields and local heat transfer. Fig. 2, a illustrates an averaged picture of 
mercury convection in a bottom-heated cylinder with pronounced LSC predicted from URANS 
computations for different turbulence models.

Fig. 2,b shows the field of time-averaged axial velocity component ⟨V
y′
⟩ in the central vertical 

plane of the cylinder. Evidently, when LSC is ‘locked’ in this azimuthal position, the flow is 
symmetrical relative to the plane x′0y′. Distributions of the averaged axial velocity along the coor-
dinate x′ in the same plane (Fig. 2,c), computed for different RANS-models, are almost identical 
and very close to the distribution obtained in our previous study [23] by the DNS method.

The mean temperature distributions along the central container axis, computed for the three 
RANS models, are compared with each other and with the DNS data in Fig. 2,d. There is gen-
erally good agreement between the results obtained by different models/approaches: in particular, 
all of them predict an extended central zone with an inverse temperature gradient. On the other 
hand, more detailed analysis of the distributions in the area adjacent to the end wall (see the 
enlarged fragment in Fig. 2,d) allows us to conclude that in the case of the k-ε RNG model, the 
temperature gradient in this area, and therefore the local heat flux on the wall, is somewhat lower 
(by 2–3%) than in the case of the other two RANS models, which predict gradient values that 
virtually coincide with the result of the DNS computations.

d)

a)	 b)	 c)

Fig. 2. Comparison of the curves for the computed quantities of the problem, obtained using 
different models: URANS (a, b), URANS, DNS (c), DNS, RSM, k-ω SST, k-ε RNG (d). 

The figure shows isosurfaces of time-averaged axial velocity component of upward (red) and downward (blue) 
flow, |⟨V

y′
⟩| = 0.3 (a); the field of averaged axial velocity component in the central plane (b), as well as the 

distribution of this velocity along line 1 (the two curves coincide) (c); the distribution of averaged temperature 
along the container axis by the DNS (red curves), RSM (green), k-ω SST (blue), k-ε RNG (lilac) (d) models
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Fig. 3 shows the distributions of the time-averaged local Nusselt number on the lower wall, 
illustrating, in particular, strong spatial non-uniformity of this quantity due to the presence of 
LSC. The results of RANS computations show very satisfactory agreement with the DNS data, 
especially for the RSM model: in this case, not only a crescent-shaped zone of maximum heat 
transfer is reproduced, but also a well-defined region of the lowest values of the Nusselt number.

Averaging of the distributions shown in Fig. 3 over the wall surface yields the integral Nusselt 
numbers given in the table. Apparently, these values obtained by different RNS models differ 
from the DNS data by no more than 3.6%; a deviation towards lower values is observed for the 
k-ε RNG model, and towards higher values for the other two models. The Reynolds stress model 
gives the result closest to the one obtained by the DNS method.

Concluding this subsection, we should note that the URANS computations presented in 
it were obtained using the C1 grid. Similar computations were performed on a C2 grid which 
contained more cells (almost by an order of magnitude). Time-averaged distributions/profiles of 
velocity, temperature and local Nusselt number computed on two grids were found to be virtually 
the same (up to the thickness of the visualized curves). The integral Nusselt numbers differed only 
in the fourth digit. Thus, we can conclude for a related family of problems on three-dimensional 
Rayleigh-Bénard convection of liquid metal that the grid size of about half a million cells is suf-
ficient to predict first-order statistical data based on the URANS approach at Rayleigh numbers 
of the order of 106.

c)	 d)

a)	 b)

Fig. 3. Distributions of the time-averaged local Nusselt number 
on the lower cylinder wall, obtained using different models:

DNS [23] (а), RSM (b), k-ω SST (c) and k-ε RNG (d)

Tab l e

Comparison of integral Nusselt numbers, 
obtained from different RANS models, with DNS data 

Model k-ε RNG k-ω SST RSM DNS [23]
Nu 5.46 5.84 5.78 5.64
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Spectral characteristics. Fig. 4 shows the 
energy spectra for the fluctuations of the axial 
velocity component at a point located at x′ = 0.35 
at the intersection of the x′0y′ plane and the cen-
tral vertical plane. The spectra obtained in com-
putations on a refined grid (C2, 3.7 million cells) 
for the RSM and k-ε RNG models are compared 
with the spectrum from [23], computed by the 
DNS method on a grid containing about 15 mil-
lion cells. Notice that the spectrum calculated 
by the k-ω SST model practically coincides with 
the spectrum obtained using the Reynolds stress 
model (not shown in Fig. 4).

The spectrum obtained for the RSM model 
(as well as for k-ω SST) indicates that turbu-
lent fluctuations are numerically resolved in a 
noticeable part of the quasi-inertial ramge, more 
pronounced in the case of DNS computations 
and suggesting a decrease in the spectral density 
proportionally to f–5/4; this decrease rate is close 
to the classical law Ev ~ f–5/3 (Ev is the spectral 
energy density, non-dimensionalized by its max-
imum value, f is the dimensionless frequency) for 
the inertial range in the case of developed iso-
tropic turbulence. Accordingly, the transition to 
a pronounced ‘dissipative’ region characterized 
by rapid decrease, approximately proportional to 
f–6, occurs earlier compared to DNS. Conversely, 

the k-ε RNG model predicts unsteady convection with quasi-periodic oscillations covering the 
region of intermediate frequencies. The difference in the results obtained by the k-ω SST and k-ε 
RNG models is primarily due to the fact that the latter generates a significantly higher level of 
turbulent viscosity compared to the k-ω SST model.

Fig. 4. Energy spectra for fluctuations of the 
axial velocity component V

y′
 at the point 

located at x′ = 0.35 at the intersection of 
the plane x′0y′ and the central vertical plane 
(see Fig. 1, а); the data were obtained from 
different models: DNS [23] (black curve), 
RSM (blue curve), k-ε RNG (red curve); 

approximations by the functions Ev ~ f–5/4 (dashed 
line) and f–6 (dot-dashed line)

d)	 e)	 f)

a)	 b)	 c)

Fig. 5. Distributions of turbulent kinetic energy in two central planes of the cylinder 
obtained by RSM (a, b, d, e) and DNS [23] (c, f) 

models, as well as using C1 (a, d) and C2 (b, e) grids
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Turbulent stresses and turbulent heat flux. Next, we consider the results obtained by the RANS 
models for second-order moments.

Fig. 5 illustrates the effect that the dimension of the computational grid has on the predictive 
capability of the RSM model for the characteristic features observed in the field of turbulent 
kinetic energy, compared with the DNS data. 

These features are as follows:
1) the most intense level of fluctuations (red and yellow zones in Fig. 5, а–с) is observed in 

the mixing layers formed upon interaction of upward and downward flows in LSC; 
2) extremely weak oscillatory motion is observed in the zones of strong upward and downward 

flows, while kinetic energy takes minimum values in these areas; 
3) small zones with elevated kinetic energies are observed in the corners (red and yellow ‘spots’ 

in Fig. 5, е, f), where the corner vortices formed are, on average, stationary (this was established 
in [23]) and, accordingly, the mixing layers with a global vortex in the form of LSC. The first 
two features are well reproduced in the computations by the RSM model on both grids, while the 
third one cannot be predicted using a coarse grid (see Fig. 5,d). The same applies to the turbulent 
stress fields in the corners, which are analyzed below.

Fig. 6 shows the computational distributions for the distributions of the total turbulent stress 
tensor and the turbulent heat flux vector along the diagonals of the central longitudinal section of 
the container (see Fig. 5,f). The analysis of factors determining the form of the curves presented 
is carried out in our earlier study [23]. The curves for URANS computations by the RSM model 
reflect the total contribution from two components of the values considered: numerically resolvable 
and simulated. It can be seen that the results of URANS computations on the C2 grid are in very 
good agreement with the DNS data. As noted above, the coarse C1 grid does not reproduce the 
features of second-order statistics in the mixing layers formed by the interaction of corner vortices 
and LSC: this drawback is clearly traced from the computational results in Fig. 6, a, b. In view 
of this, the results of URANS computations of the turbulent heat flux vector (see Fig. 6, е, f) are 
shown only for the refined grid. Generally good agreement with the DNS data is also observed here.

Fig. 7 compares the axial component profiles of turbulent heat flux, obtained from different 
turbulence models for the line coinciding with the cylinder axis, with the DNS data; contributions 
from numerically resolved and simulated components of the flux, as well as their total contribu-
tion are given in the figure. Pronounced differences can be observed between the computational 

d)	 e)	 f)

a)	 b)	 c)

Fig. 6. Component distributions for turbulent stress tensor (a–d) and turbulent heat 
flux vector (e, f) along the diagonals d1 (black curves) and d2 (red curves) (see Fig. 5, f). 

Data were obtained from different models: DNS [23] (solid curves), URANS simulations 
by the RSM model (remaining curves), C1 (dash-dots) and C2 (dashes) grids
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results from different RANS models. The Reynolds stress model gives comparable values for both 
components of the total flux for the region |y´| < 0.2 with large mean temperature gradients (see 
Fig. 2, d); however, the resolved component is clearly predominant. 

Conversely, the simulated component is predominant for the case of the k-ω SST model (Fig. 
7, b), while the contribution of the resolved component is practically absent for the k-ε RNG 
model. The latter circumstance is obviously due to an elevated level of turbulent viscosity in the 
case of the k-ε RNG model and the relatively low intensity of the predicted quasi-periodic flow. 
Accordingly, the k-ε RNG model gives the worst predictions for the profile of the total turbulent 
heat flux.

As evident from Fig. 7, the results obtained from the Reynolds stress model are in excellent 
agreement with the DNS data, even though a simplified approach adopting the gradient hypoth-
esis was used to estimate the simulated component. Therefore, we can conclude that there is no 
need to solve differential equations for transport of turbulent heat flux components in the case of 
URANS simulations of Rayleigh–Bénard convection with three-dimensional LSC, carried out by 
the Reynolds stress model on sufficiently refined grids.

Conclusion
The paper assesses the predictive capabilities of three different turbulence RANS models (k-ω 

SST, k-ε RNG and one of the well-known differential RSM-models) for local and integral char-
acteristics of statistically three-dimensional Rayleigh–Bénard convection of liquid metal with the 
decisive role played by large-scale circulation (LSC). The conclusions are based on the computa-
tional results for unsteady convection (Unsteady RANS) in a slightly tilted cylindrical container 
with the Rayleigh number Ra = 106 and the Prandtl number Pr = 0.025, compared with the data 
for the same conditions obtained earlier by direct numerical simulation (DNS).

The test computations indicate it was found that the grid size of about half a million cells is 
sufficient to predict time-averaged fields of velocity, temperature, local and integral heat transfer 
if we use a software tool implementing second-order numerical schemes. This conclusion can 
be extended to the case of problems on three-dimensional Rayleigh-Bénard convection of liquid 
metal with similar geometry. Grids whose number of cells is higher by an order of magnitude are 
necessary to accurately predict second-order statistics (total turbulent stresses and components of 
the turbulent heat flux vector), 

All RANS models of turbulence used predict time-averaged velocity and temperature fields, as 
well as local heat transfer at the end walls, which are in good agreement with the DNS data. The 
integral values of the Nusselt number obtained for different RNS models differ from the DNS 
data by no more than 3.6%; a deviation towards lower values is observed for the k-ε RNG model, 
and towards higher values for the other two models. The Reynolds stress model gives the result 
closest to the one obtained by the DNS method.

a)	 b)	 c)

Fig. 7. Distributions for axial component of turbulent heat flux along the cylinder axis; comparison 
between the computational data from different RANS-models (black curves) and DNS data [23] 
(red curves), as well as between the contributions from components of turbulent heat flux: simulated 

(dashes), numerically resolved (dot-dashes) and the total of two components (solid lines). 
RANS models: RSM (a), k-ω SST (b), k-ε RNG (c)
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The numerical solution obtained via the k-ω SST and RSM models on a grid of 3.7 million 
cells has a turbulent character, with a continuous spectrum of resolved fluctuations making a 
large contribution to statistical second-order characteristics. In contrast, the k-ε RNG model 
predicts unsteady convection flow with quasi-periodic fluctuations of low intensity, where the 
simulated component comprises nearly the entire contribution to second-order moments. The 
best agreement with the DNS data for total second-order moments was obtained by the Reynolds 
stress model.

In view of the above, the experience outlined in our paper for applying this approach to solving 
the model problem can be useful in numerical studies on a wide range of industrial and geophysi-
cal problems associated with Rayleigh–Bénard convection where a statistically significant or even 
decisive role is played by three-dimensional large-scale circulation.
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