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AnHoramusa. CraTbsd COAEPXUT OIIEHKY BO3MOXHOCTE Tpex u3BeCTHhIX RANS-
monmeneit TypoymeHTHocT (k- SST, k-¢ RNG u ompoit m3 mmddepeHnmanbaeix RSM-
MOJIeJieil) MO TIpelCcKa3aHUIO0 JIOKATbHBIX W WHTETPAIBHBIX XapaKTEPUCTUK CTATUCTUUYECKU
TPEXMEPHOM paJieii-06HAPOBCKO KOHBEKUMHU SKMIKOIO METaljla C OIPEAesIonieil poJibio
kpynHomaciuTadHoil nupkyasinuu (KMIIL). Pacuets Ha ocHoBe Unsteady-RANS-noaxona Ha
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Introduction

A characteristic feature of free convective flow developing in cylindrical containers heated
from below is the presence of large-scale vortex structures occupying the entire domain (see,
for example, reviews [1, 2]). In particular, if the diameter of the cylinder is equal to its height,
the predominant structure of convective flow is a single vortex, also called a convection cell,
or large-scale circulation (LSC) [3—7]. LSC in a strictly vertically oriented container with axi-
ally symmetric boundary conditions does not have a dedicated azimuthal position and, accord-
ingly, nothing prevents it from occasionally making random movements in the azimuthal direc-
tion. This is confirmed by both experimental [8—11] and numerical [12—15] studies of turbulent
Rayleigh—Bénard convection in cylindrical containers. The specific azimuthal behavior of LSC
is determined in experimental studies by small deviations from axial symmetry that are difficult

© CwmupnoB C. U., CmupnoB E. M., 2022. Usparenn: Cankr-IletepOyprckuii moautexHudeckuil yHuBepcuteT [leTpa
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to control, inevitably present in laboratory models. The azimuthal instability of a convection
cell is also generally manifested in numerical studies, where the ‘external’ factor affecting the
random oscillations of LSC is the asymmetry of the computational grid or the peculiarities of
numerical algorithms.

The random azimuthal movements of the convection cell make it incredibly difficult to obtain
statistical data on its three-dimensional structure, including the quantities characterizing the
‘background’ turbulence: fields of Reynolds stresses and turbulent heat flux. However, these low-
frequency movements can be suppressed, thus ‘locking’ the LSC in a certain azimuthal position if
a stabilizing external factor is artificially introduced; this can be achieved, for example, by slightly
tilting the container. This method for ‘locking’ the LSC is used in experimental [8, 16—20] and
numerical [20—24] studies.

The Direct Numerical Simulation (DNS) method is widely used to describe turbulent Rayleigh-
Bénard convection in regions with relatively simple geometry. This approach assumes that all
scales of turbulent fluid flow are resolved, consequently proving to be the most informative (see,
for example, [25—30] for the case of a vertically oriented cylinder and [23, 24] for the case of a
slightly tilted container). However, large computational costs are required for resolving the entire
spectrum, increasing very quickly with increasing Rayleigh numbers.

The Large Eddy Simulation (LES) method allows reducing the costs, in particular, in its
‘simplified’ version, the Implicit LES (ILES), where subgrid-scale turbulent viscosity is not intro-
duced explicitly into the transport equations, and the dissipative properties of the numerical
scheme play the role of physical viscosity on a small scale. The experience of adopting the ILES
approach for modeling the turbulent Rayleigh—Bénard convection in cylindrical containers is
described in [22, 31, 32]. A recent paper [33] applied the ILES method to studying anisotropy of
turbulent transfer in mixed convective flow developing in the crucible of a Czochralski furnace
for growing silicon crystals.

It is well known, however, that as the Rayleigh number increases, computations of convective
flow by the LES method require progressively refining the grids in the near-wall layers, with the
refinements introduced in all spatial directions. As a result, obtaining reliable numerical data for a
wide range of practical problems characterized by high Rayleigh numbers also involves very high
computational costs.

In view of this, strong interest persists in numerical modeling of turbulent free and
mixed-convection flows based on Reynolds-averaged Navier—Stokes (RANS) equations,
closed by some semi-empirical differential model of turbulence. It should be borne in mind,
however, that the options for obtaining a steady RANS solution are very limited in the case
of Rayleigh—Bénard convection, depending on the turbulence model applied. It is therefore
worthwhile to explore a problem statement developed to incorporate computations based on
unsteady Reynolds equations. This approach is interpreted as Unsteady RANS (URANS) or
Transient RANS (TRANYS).

Refs. [34—36] thoroughly analyze the applications of the URANS approach to reproducing
unsteady coherent structures and the intensity of turbulent transfer in the ‘classical’ statistically
one-dimensional case of free convection between two differently heated horizontal plates. The
authors emphasize the presence of two different scales in the motion: large amplitudes associated
with plumes, thermals and convection cells, as well as turbulence arising mainly in the near-wall
boundary layers and carried by large-scale structures. This makes turbulent Rayleigh—Bénard
convection very convenient for computations based on unsteady Reynolds equations. The compu-
tational results [34—36] obtained by the URANS method closed by a three-parameter turbulence
model indicate that the averaged temperature profile, second-order moments and integral heat
transfer are in good agreement with the data of most DNS calculations and experimental data on
convection between horizontal plates.

Recent years saw growing interest towards RANS simulations of free convective flows, closed
by some model from the RSM family (Reynolds Stress Model) based on either steady or unsteady
statements [37—41]. In general, the RSM model solves differential equations for transport of all
components of the Reynolds stress tensor and the turbulent heat flux vector. Efforts to somewhat
simplify the model, lowering the computational costs, are concentrated on ‘reduced’ formulations
where differential transport equations are solved only for Reynolds stresses, and the turbulent heat
flux is computed based on the gradient hypothesis in terms of averaged flow parameters.
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The experience of using Reynolds stress models to computing turbulent free-convection flows
in the gravitational field presented in the literature mainly covers model configurations with differ-
ently heated vertical walls or the case of a boundary layer near a vertical heated surface [37—41].

This paper adopts one of the well-known RSM models (implemented, in particular, in the
ANSYS Fluent software package) for URANS simulations of mercury convection in a slightly
tilted cylinder heated from below. Similar simulations are also carried out for two turbulence
models with isotropic viscosity from the k-0 and k-¢ families. The computed statistical charac-
teristics of the first and second orders are compared with the data in [23] obtained earlier for the
given configuration based on the DNS approach.

Problem statement and mathematical model

We consider turbulent convection of fluid in a bottom-heated cylindrical container with a
single aspect ratio (I' = D/H = 1). The container is tilted by a small angle (¢ = 2°) with respect
to the gravity vector g (Fig. 1,a).

No-flow and no-slip conditions are imposed on all boundaries of the container. Horizontal
walls are assumed to be isothermal: the temperature 7, of the top wall is higher than that of the
bottom wall (7). The side wall is treated as adiabatic.

a) b)

Fig. 1. Images of cylindrical container for the problem statement: a corresponds to the geometry
of the computational domain; b, ¢ show characteristic views of the computational grids
in horizontal (b) and central vertical (c¢) planes

The dimensionless governing parameters of the problem were the Prandtl number Pr = nC p/x
and the Rayleigh number

Ra = Pr(p’gBATH?/1?),

where p is the dynamic viscosity; C is the specific heat at constant pressure; A is the thermal con-
ductivity; p is the density; B is the volumetric expansion coefficient; g is the gravity acceleration;
AT is the temperature difference between the hot and cold walls, AT T,—T.
The characteristic (large-scale) velocity of the flow (buoyant ve10c1ty) is the quantity
= (gBATH)">. The time scale is the characteristic convective time #, = H/V,.

The computations presented were carried out for the values of hydrodynamic numbers
Pr = 0.025 and Ra = 10¢.

Convective motion is calculated from a system of unsteady Reynolds-averaged equations of
dynamics and heat transfer (1)—(3), which includes the Navier—Stokes equations written in the
Bussinesq approximation to account for buoyancy effects in the gravitational field, the continuity
equation and the energy equation:

/-0,
o, (1)
ov, ov, op a(’cij+rtij)
—LtplV —Lt=-r " oB(T-T,)g, 2
P ot P, X, ox, ox; PB( O)g' )
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c, ZLipey Lo (g +q,)
Por e P e T, (4, +4.,) ©

The equations are solved in the coordinate system associated with the cylindrical con-
tainer x; = (x', ¥, 7 = z) shown in Fig. 1,a. The notations V, and T correspond to the
components of Reynolds-averaged velocity (z(/) 1, 2, 3) and temperature T, g; are the
components of the viscous stress tensor and the drffusrve heat flux calculated in terms of the
Reynolds-averaged values:

aV or, A
T.‘:
v ax 8xl. ’ )
oT
g, =L
9= )

The quantities T, . 4,;entering Egs. (2), (3) are the components of the turbulent (Reynolds)
stress tensor and the turbulent heat flux vector arising from Reynolds averaging and reflecting
the presence of relatively high-frequency fluctuations of velocity v, and the temperature 6 in the
instantaneous motion.

Respectively,

V= —PT‘G, (6)

q,,=—pC,v0. Y

where the overbar indicates Reynolds averaging.

The system of equations (1)—(3) is not closed. To close the system, we should determine the
method (model) for calculating the quantities <, and q,;

The calculated data presented in this paper “are obtained when the system (1)—(3) is closed
with respect to three models.

The k-¢ RNG and k-o SST models. These models belong to the class of two-parameter
differential turbulence models based on the concept of isotropic turbulent viscosity (the
Bussinesq hypothesis). According to this concept, the components of the turbulent stress ten-
sor and the turbulent heat flux vector are related to the Reynolds-averaged flow parameters

as follows:
ov. ov.| 2
L= —L+—L |—=kJ,,
T;,lj !"l’t (axj axl J 3 ij (8)
oT
qu=—%5;, 9)

where p is the turbulent viscosity determined from the calculated turbulence parameters (&, € or
®); A, is the turbulent thermal conductivity, A= C u/Pr (Pr,is the turbulent Prandtl number (taken
equal to 0.8 in this calculation)); k is the turbulént kinetic energy.

The complete formulation for the k-¢ RNG and k-o SST models is given in [42]
and [43, 44], respectively.

Reynolds stress model. The differential model of Reynolds stresses implemented in the ANSYS
Fluent 18.2 package was used in this study. Transport equations are only solved for turbulent
stresses within the model, while the components of turbulent heat flux are calculated in terms of
the averaged flow parameters based on the gradient hypothesis.

The transport equations for Reynolds stresses equations are generally formulated as follows:

47



4 St. Petersburg Polytechnic University Journal. Physics and Mathematics. 2022. Vol. 15. No. 3

=
I

o) Va(w) D' +D R +G (10)
p— PV, =Dj +D; + R, + G, + ¢, —¢,,
ot ox;
where D’j D’j are the terms reflecting molecular (m) and turbulent (#) diffusive transport; R,: G,-
are the terms characterizing the kinetic energy generated by averaged motion and by buoyancy
forces, respectively; 0, is the quantity responsible for the redistribution of energy between stress
and strain velocity tensors g; is the dissipative term.

A differential equation for transport of the quantity o (the specific dissipation rate of kinetic
energy used to close Eq. (10)) is solved together with the equations for the Reynolds stresses.
The Stress Omega option was selected during the computations from the options available in the
ANSYS Fluent package and defining the specific form of this equation.

The components of turbulent heat flux v are calculated by the formulas:

—_ u or Pk 1—
vO= , k=—
pPr, 8x = ) 2 (1)

where Pr,= 0.8 (the same as above).
The components of the Reynolds stress model are described in [45—47], as well as in the user
documentation for the ANSYS Fluent 18.2 software package.

Specifics of computations and data processing

Comparative computations based on the ANSYS Fluent finite volume method were carried out
on two grids consisting of hexagonal elements containing 0.47 million (C1 grid) and 3.7 million
cells (C2 grid). The structure of the grids in transverse and longitudinal (central) planes is illus-
trated in Fig. 1, b, c. The grids were clustered to the walls, while the size of the near-wall element
was 1.5-107* N. A characteristic feature of the grids was the presence of a central ‘unstructured’
(asymmetric) subdomain about 0.8D in diameter (see Fig. 1, b).

Preliminary computations led us to conclude that none of the turbulence models applied is
capable of providing a steady-state solution to the problem. All subsequent computations were
performed in an unsteady formulation. The non-iterative fractional step method with second-
order accuracy was applied to advance in physical time. The time step was about one hundredth
of the large-scale time f, of the problem, which was about 10 times higher than that used in [23]
for computations by the DNS method.

The spatial approximation of convective terms in the transport equations was carried out by
the QUICK scheme with nominally third-order accuracy. Diffusion terms were approximated by
a central-difference scheme with second-order accuracy.

All computations started from a zero initial velocity field and uniform temperature field taken
as (T, + T,)/2. Samples for the time averaging performed after a transition region were equal to
30007, in all computations.

The computational data were processed to obtain the first-order and second-order statistical
characteristics based on the following assumptions.

First, it was assumed that the instantaneous velocities and temperatures present in the real
current (marked with an asterisk) can be decomposed into low- and high-frequency components:

V=V +v, T =T+6. (12)

Secondly, it was assumed that Reynolds-averaged motion contains only low-frequency ‘large-
scale’ components of velocity and temperature fields, i.e.,

v =V,T =T, (13)

which, in turn, can be decomposed into mean values 7 obtained by averaging over a sufficiently
large time sample and fluctuation components:
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V.=(V,)+V/, T =(T)+T" (14)

The angle brackets (...) here indicate time averaging, and the prime indicates the fluctuations.
In this case,

(r7)=(r). (1) =(T). (15)
Let us introduce further notations for second-order statistical characteristics (second moments):

R =)~ {1 ) 6

O =(V'T" )= (V" (T"), (17)

which are the components of the total turbulent stress tensor (taken with the reverse sign) and
the total heat flux vector.
Taking into account the decompositions (12), (14), we obtain:

B =(rv )+ (o, )+ (7w, )+ (w7, (18)

O =(V/T")+(v0)+(110)+ (vT"). (19)

The first terms in the right-hand sides of expressions (18) and (19) reflect the contribution
from numerically resolved components of the motion, the second ones reflect the contribution
from simulated components, the third and fourth ones are the so-called cross terms which we are
forced to discard (as it was done in [34—36]), due to the assumption of weak correlation between
the low- and high-frequency components of motion. It is generally estimated a posteriori whether
such an assumption is acceptable for a continuous fluctuation spectrum in instantaneous turbulent
flow, that is, by comparison with ‘reference’ data of numerical and experimental studies.

Thus, for comparison with the data from [23], obtained earlier by the DNS method, the values
of total turbulent stresses, the components of the total turbulent heat flux and the total kinetic
energy of oscillatory motion were calculated as

P =(rv, >+<_]> (20)
0 =(VT)+(vP), (21)
K'= %3;. (22)

The computations by the Reynolds stress model determined the contribution from the simu-
lated component of P by averaging the Reynolds stresses obtained during the time 7, by solving
transport equations (10).

The contribution of the simulated component to the total turbulent heat flux was estimated

as follows:
— o(T
pPg ox,/ pPr ox

This expression is obtained based on the gradient hypothesis (11) assuming a weak cor-
relation between the fluctuations of turbulent viscosity and numerically resolved fluctuations
of temperature.
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Computational results and discussion

The computational results are given below in dimensionless form. The coordinate values are
taken relative to container height H. This implies the following correspondence:

X5 = x',y,z fori(j)=1, 2, 3.

The velocity components are taken relative to the buoyant velocity V), the turbulent stresses P’
and kinetic energy K’ to the square of buoyant velocity; the components of turbulent heat flux Q’
are normalized by the product VAT.

Time-averaged flow fields and local heat transfer. Fig. 2, a illustrates an averaged picture of
mercury convection in a bottom-heated cylinder with pronounced LSC predicted from URANS
computations for different turbulence models.

Fig. 2,6 shows the field of time-averaged axial velocity component (V) in the central vertical
plane of the cylinder. Evidently, when LSC is ‘locked’ in this azimutHal position, the flow is
symmetrical relative to the plane x'0y’. Distributions of the averaged axial velocity along the coor-
dinate x' in the same plane (Fig. 2,¢), computed for different RANS-models, are almost identical
and very close to the distribution obtained in our previous study [23] by the DNS method.

The mean temperature distributions along the central container axis, computed for the three
RANS models, are compared with each other and with the DNS data in Fig. 2,d. There is gen-
erally good agreement between the results obtained by different models/approaches: in particular,
all of them predict an extended central zone with an inverse temperature gradient. On the other
hand, more detailed analysis of the distributions in the area adjacent to the end wall (see the
enlarged fragment in Fig. 2,d) allows us to conclude that in the case of the k-¢ RNG model, the
temperature gradient in this area, and therefore the local heat flux on the wall, is somewhat lower
(by 2—3%) than in the case of the other two RANS models, which predict gradient values that
virtually coincide with the result of the DNS computations.

C)<V):'>I'I'I'I'I

0.4

0

-0.4
-0.8
T T T
0.0 1 08F -
041 - 07k i
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P R R T B osb— 1 .
0 02 04 06 08 yl 1 0 002 0.04 006 0.0Ryr(l[

Fig. 2. Comparison of the curves for the computed quantities of the problem, obtained using
different models: URANS (a, ), URANS, DNS (¢), DNS, RSM, k-0 SST, k-¢ RNG (d).
The figure shows isosurfaces of time-averaged axial velocity component of upward (red) and downward (blue)
flow, |(V)| = 0.3 (a); the field of averaged axial velocity component in the central plane (b), as well as the
distribution of this velocity along line / (the two curves coincide) (c¢); the distribution of averaged temperature
along the container axis by the DNS (red curves), RSM (green), k-0 SST (blue), k-¢ RNG (lilac) (d) models
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Fig. 3. Distributions of the time-averaged local Nusselt number
on the lower cylinder wall, obtained using different models:
DNS [23] (a), RSM (b), k-o SST (c) and k-¢ RNG (d)

Fig. 3 shows the distributions of the time-averaged local Nusselt number on the lower wall,
illustrating, in particular, strong spatial non-uniformity of this quantity due to the presence of
LSC. The results of RANS computations show very satisfactory agreement with the DNS data,
especially for the RSM model: in this case, not only a crescent-shaped zone of maximum heat
transfer is reproduced, but also a well-defined region of the lowest values of the Nusselt number.

Averaging of the distributions shown in Fig. 3 over the wall surface yields the integral Nusselt
numbers given in the table. Apparently, these values obtained by different RNS models differ
from the DNS data by no more than 3.6%; a deviation towards lower values is observed for the
k-¢ RNG model, and towards higher values for the other two models. The Reynolds stress model
gives the result closest to the one obtained by the DNS method.

Concluding this subsection, we should note that the URANS computations presented in
it were obtained using the CI1 grid. Similar computations were performed on a C2 grid which
contained more cells (almost by an order of magnitude). Time-averaged distributions/profiles of
velocity, temperature and local Nusselt number computed on two grids were found to be virtually
the same (up to the thickness of the visualized curves). The integral Nusselt numbers differed only
in the fourth digit. Thus, we can conclude for a related family of problems on three-dimensional
Rayleigh-Bénard convection of liquid metal that the grid size of about half a million cells is suf-
ficient to predict first-order statistical data based on the URANS approach at Rayleigh numbers
of the order of 10°.

Table

Comparison of integral Nusselt numbers,
obtained from different RANS models, with DNS data

Model | k-e RNG | k-0 SST | RSM | DNS [23]
Nu 5.46 5.84 5.78 5.64
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axial velocity component V at the point
located at x' = 0.35 at the 'intersection of
the plane x'0y’ and the central vertical plane
(see Fig. 1, a); the data were obtained from
different models: DNS [23] (black curve),
RSM (blue curve), k-¢ RNG (red curve);
approximations by the functions Ev ~ f~%4(dashed
line) and /¢ (dot-dashed line)
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Spectral characteristics. Fig. 4 shows the
energy spectra for the fluctuations of the axial
velocity component at a point located at x’ = 0.35
at the intersection of the x'0y’ plane and the cen-
tral vertical plane. The spectra obtained in com-
putations on a refined grid (C2, 3.7 million cells)
for the RSM and k-¢ RNG models are compared
with the spectrum from [23], computed by the
DNS method on a grid containing about 15 mil-
lion cells. Notice that the spectrum calculated
by the k-0 SST model practically coincides with
the spectrum obtained using the Reynolds stress
model (not shown in Fig. 4).

The spectrum obtained for the RSM model
(as well as for k-o SST) indicates that turbu-
lent fluctuations are numerically resolved in a
noticeable part of the quasi-inertial ramge, more
pronounced in the case of DNS computations
and suggesting a decrease in the spectral density
proportionally to f54; this decrease rate is close
to the classical law Ev ~ f/3 (Ev is the spectral
energy density, non-dimensionalized by its max-
imum value, fis the dimensionless frequency) for
the inertial range in the case of developed iso-
tropic turbulence. Accordingly, the transition to
a pronounced ‘dissipative’ region characterized
by rapid decrease, approximately proportional to
[, occurs earlier compared to DNS. Conversely,

the k-¢ RNG model predicts unsteady convection with quasi-periodic oscillations covering the
region of intermediate frequencies. The difference in the results obtained by the k- SST and k-¢
RNG models is primarily due to the fact that the latter generates a significantly higher level of
turbulent viscosity compared to the k-0 SST model.

a) E b) E )
| . | . |
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Fig. 5. Distributions of turbulent kinetic energy in two central planes of the cylinder
obtained by RSM (a, b, d, ¢) and DNS [23] (c, /)
models, as well as using C1 (a, d) and C2 (b, e) grids
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Turbulent stresses and turbulent heat flux. Next, we consider the results obtained by the RANS
models for second-order moments.

Fig. 5 illustrates the effect that the dimension of the computational grid has on the predictive
capability of the RSM model for the characteristic features observed in the field of turbulent
kinetic energy, compared with the DNS data.

These features are as follows:

1) the most intense level of fluctuations (red and yellow zones in Fig. 5, a—c) is observed in
the mixing layers formed upon interaction of upward and downward flows in LSC;

2) extremely weak oscillatory motion is observed in the zones of strong upward and downward
flows, while kinetic energy takes minimum values in these areas;

3) small zones with elevated kinetic energies are observed in the corners (red and yellow ‘spots’
in Fig. 5, e, f), where the corner vortices formed are, on average, stationary (this was established
in [23]) and, accordingly, the mixing layers with a global vortex in the form of LSC. The first
two features are well reproduced in the computations by the RSM model on both grids, while the
third one cannot be predicted using a coarse grid (see Fig. 5,d). The same applies to the turbulent
stress fields in the corners, which are analyzed below.
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Fig. 6. Component distributions for turbulent stress tensor (a—d) and turbulent heat
flux vector (e, f) along the diagonals d, (black curves) and d, (red curves) (see Fig. 5, /).
Data were obtained from different models: DNS [23] (solid curves), URANS simulations
by the RSM model (remaining curves), C1 (dash-dots) and C2 (dashes) grids

Fig. 6 shows the computational distributions for the distributions of the total turbulent stress
tensor and the turbulent heat flux vector along the diagonals of the central longitudinal section of
the container (see Fig. 5,/). The analysis of factors determining the form of the curves presented
is carried out in our earlier study [23]. The curves for URANS computations by the RSM model
reflect the total contribution from two components of the values considered: numerically resolvable
and simulated. It can be seen that the results of URANS computations on the C2 grid are in very
good agreement with the DNS data. As noted above, the coarse C1 grid does not reproduce the
features of second-order statistics in the mixing layers formed by the interaction of corner vortices
and LSC: this drawback is clearly traced from the computational results in Fig. 6, a, b. In view
of this, the results of URANS computations of the turbulent heat flux vector (see Fig. 6, e, f) are
shown only for the refined grid. Generally good agreement with the DNS data is also observed here.

Fig. 7 compares the axial component profiles of turbulent heat flux, obtained from different
turbulence models for the line coinciding with the cylinder axis, with the DNS data; contributions
from numerically resolved and simulated components of the flux, as well as their total contribu-
tion are given in the figure. Pronounced differences can be observed between the computational
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results from different RANS models. The Reynolds stress model gives comparable values for both
components of the total flux for the region [yr] < 0.2 with large mean temperature gradients (see
Fig. 2, d); however, the resolved component is clearly predominant.

Conversely, the simulated component is predominant for the case of the k-o SST model (Fig.
7, b), while the contribution of the resolved component is practically absent for the k-¢ RNG
model. The latter circumstance is obviously due to an elevated level of turbulent viscosity in the
case of the k-¢ RNG model and the relatively low intensity of the predicted quasi-periodic flow.
Accordingly, the k-¢ RNG model gives the worst predictions for the profile of the total turbulent
heat flux.

As evident from Fig. 7, the results obtained from the Reynolds stress model are in excellent
agreement with the DNS data, even though a simplified approach adopting the gradient hypoth-
esis was used to estimate the simulated component. Therefore, we can conclude that there is no
need to solve differential equations for transport of turbulent heat flux components in the case of
URANS simulations of Rayleigh—Bénard convection with three-dimensional LSC, carried out by
the Reynolds stress model on sufficiently refined grids.

Fig. 7. Distributions for axial component of turbulent heat flux along the cylinder axis; comparison
between the computational data from different RANS-models (black curves) and DNS data [23]
(red curves), as well as between the contributions from components of turbulent heat flux: simulated
(dashes), numerically resolved (dot-dashes) and the total of two components (solid lines).
RANS models: RSM (a), k-o SST (b), k-¢ RNG (c¢)

Conclusion

The paper assesses the predictive capabilities of three different turbulence RANS models (k-
SST, k-¢ RNG and one of the well-known differential RSM-models) for local and integral char-
acteristics of statistically three-dimensional Rayleigh—Bénard convection of liquid metal with the
decisive role played by large-scale circulation (LSC). The conclusions are based on the computa-
tional results for unsteady convection (Unsteady RANS) in a slightly tilted cylindrical container
with the Rayleigh number Ra = 10° and the Prandtl number Pr = 0.025, compared with the data
for the same conditions obtained earlier by direct numerical simulation (DNS).

The test computations indicate it was found that the grid size of about half a million cells is
sufficient to predict time-averaged fields of velocity, temperature, local and integral heat transfer
if we use a software tool implementing second-order numerical schemes. This conclusion can
be extended to the case of problems on three-dimensional Rayleigh-Bénard convection of liquid
metal with similar geometry. Grids whose number of cells is higher by an order of magnitude are
necessary to accurately predict second-order statistics (total turbulent stresses and components of
the turbulent heat flux vector),

All RANS models of turbulence used predict time-averaged velocity and temperature fields, as
well as local heat transfer at the end walls, which are in good agreement with the DNS data. The
integral values of the Nusselt number obtained for different RNS models differ from the DNS
data by no more than 3.6%; a deviation towards lower values is observed for the k-¢ RNG model,
and towards higher values for the other two models. The Reynolds stress model gives the result
closest to the one obtained by the DNS method.
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The numerical solution obtained via the k-o SST and RSM models on a grid of 3.7 million
cells has a turbulent character, with a continuous spectrum of resolved fluctuations making a
large contribution to statistical second-order characteristics. In contrast, the k-¢ RNG model
predicts unsteady convection flow with quasi-periodic fluctuations of low intensity, where the
simulated component comprises nearly the entire contribution to second-order moments. The
best agreement with the DNS data for total second-order moments was obtained by the Reynolds
stress model.

In view of the above, the experience outlined in our paper for applying this approach to solving
the model problem can be useful in numerical studies on a wide range of industrial and geophysi-
cal problems associated with Rayleigh—Bénard convection where a statistically significant or even
decisive role is played by three-dimensional large-scale circulation.
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