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Annoramua. B pabGore comnocraBisiiorcst pe3yabraThl RANS-pacueToB TYypOyJIEeHTHOI
KOHBEKIIMM B pacIljlaBe KPEMHMSI, MOJYYEHHbIE 110 HECKOJbKUM MOAEISIM TYpOYJEeHTHOCTHU C
M30TPOMHOMN BS3KOCTBIO, C paHee OIMyOJMKOBaHHBIMM JaHHBIMU Buxpepaspernatomux [LES-
BBIUMCJIEHUI [JIs1 aHAJOTMYHBIX YyCJIOBUM. BbiOupaeTcss Moaesb TypOYJeHTHOCTU JISI €€
MocIenyIolIeit mpoodJIeMHO-OPUEHTUPOBAHHON MOAM(PUKALIMU C aJreOpandyecKuM BBeICHHEM
(akTOpOB, KOTOPHIE MOTYT MPOAYLUHMPOBATh HYXKHYIO aHU3O0TPOITMIO TeH30pa PeilHOIbICOBBIX
HampsDKeHUH M BEKTOpa TYpOYJIEHTHOIO TEIJIOBOTO IIOTOKA, BXONSIIMX B OCPEIHCHHBIC
no PeiiHonbacy ypaBHeHMsI NBMXKEeHUSI M SHepruu. I[lokazaHo, 4YTO TPUMEHUTENbHO K
3aJayaM pacueTa KOHBEKIIMM B THUIJISIX YCTAaHOBOK, II€ KCIIOJB3YIOT MeToa YoxpaabCcKoro,
1ejaecoodpa3Ho B3SATb A MoaupuKauuu JubO OAaHOIapaMeTpUUecKylo k-Mojesb, Jubo
JIByXTIapaMeTpUUEcKyto k-¢ Mozesib B KauecTBe ucxonHoii RANS-monenm.

Kmouebie caoBa: wmeton Yoxpanbckoro, ILES, RANS, teH3op PeiiHonbACOBBIX
HaNpsDKEHUI, TypOYJeHTHBIN TeTUIONePeHOC, KOHBEKIIMS
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Introduction

The Czochralski method is one of the main techniques for producing semiconductor silicon
crystals, widely used in the electronics industry [1—3]. High-quality can be achieved in single
crystals by controlling the mass transfer of impurities in the melt that are assimilated into the
crystal during the growth process. As a rule, the flow of silicon melt is turbulent, which is due
to the growing conditions even for crystals with a relatively small diameter (10 cm) in laboratory
systems. The presence of turbulent structures with different sizes in crucibles for industrial growth
of crystals of 20—30 cm in diameter makes it difficult to control the concentration of impurities;
it can also trigger a transition from monocrystalline to polycrystalline growth [4]. Experimental
studies into turbulent flow of silicon melt are hindered by both high temperatures of the processes
and the requirements imposed on the precision of the equipment used to measure turbulent fluc-
tuations. In view of this, numerical modeling seems to be the most promising method for studying
turbulent flow and the processes of heat and mass transfer in silicon melt.

The most accurate method for computations of turbulent flows is direct numerical simulation
(DNS), aimed at resolving all spatio-temporal scales of turbulence without resorting to additional
hypotheses to close equations [2, 3]. However, this method requires significant computational
resources, making it impossible to use in practical engineering calculations. The most popular
and relatively economical approach is based on Reynolds-averaged Navier—Stokes equations
(RANS), allowing, in particular, to perform computations in an axisymmetric formulation.
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The k-¢ turbulence model was adopted in [5] to numerically study the effect of crucible rota-
tion on heat transfer in silicon melt based on the RANS approach. The computational results
showed a general qualitative agreement with the experimental data. The computations in [6] were
performed using a low-Reynolds-number k-¢ model, finding, in particular, enhanced heat and
mass transfer with an increase in the crucible rotation rate. Similar results could not be achieved
with previous computations assuming laminar convection, which did not involve any turbulence
model. The computed distributions for the melt temperature and the interface shape also yielded
good agreement with the experimental data. Three turbulence models were tested in [7] to cal-
culate turbulent convection in the melt: the ‘standard’ k-¢ model using near-wall functions; the
two-layer k-¢ model combined with the one-equation model near solid boundaries; the Launder—
Jones low-Reynolds-number k-¢ model [8]. An apparent advantage detected for the third model
was that it could to produce solutions close to laminar ones for weakened turbulence. Turbulent
characteristics of silicon melt in an idealized cylindrical crucible were considered in [9] using
the unsteady RANS (URANS) approach in a three-dimensional formulation. The computations
adopted the Launder—Sharma k-¢ model [10], as well as Menter’s k-o SST model [11, 12]. These
URANS computations confirm the advantage of the SST model, providing the best resolution of
the flow structure and near-wall temperature gradients, as well as generating more intense flow
on the free surface of the melt.

Numerical modeling of silicon melt convection in industrial crucibles (by the Czochralski
method) based on axisymmetric RANS formulation met with moderate success. However, a
number of important characteristics of heat and mass transfer in the melt could not be repro-
duced within this approach. For example, to correctly model the thermal stresses and point
defects in the crystal volume, it is necessary to accurately predict the shape of the crystallization
front, which largely depends on the flow structure and heat transfer in the melt. For instance,
the experimental and calculated curvatures of the interfaces obtained in [13—16] in simulations
of heat transfer in the melt by the RANS approach differed by 2—3 times. The key reason for
this discrepancy for crystals with a diameter of 100 mm is that RANS computations predict
strong downward flow in the vicinity of the crucible’s symmetry axis, which is not observed
experimentally [17]. Modifications were introduced in [16] to the RANS turbulence model
to more accurately predict the shape of the crystallization front in simulations of the growth
processes for crystals 300 mm in diameter, produced by the Czochralski method. However, the
authors specify that these modifications were introduced to artificially overcome the particular
deficiency of the RANS turbulence model in the region below the crystal rather than improve
the model itself.

Another important characteristic of convection in the silicon melt that affects the properties
and quality of the crystal is the oxygen concentration in the melt. The results obtained in early
attempts to use the RANS turbulence model to predict the level of oxygen concentration in a wide
range of parameters controlling the operation of a Czochralski furnace were inconsistent with the
experimental data [6, 18].

Most RANS models are based on the Boussinesq hypothesis assuming isotropic turbulent
viscosity, and on the standard gradient diffusion hypothesis (SGDH) closing Reynolds-averaged
equations for transport of temperature.

We investigated the local applicability of the Boussinesq and SGDH hypotheses to simulations
of the Reynolds stress tensor and the turbulent heat flux vector in silicon melt in our previous
study [19]. For this purpose, we used a specialized technique to process and analyze the results
of computations based on the implicit eddy-resolving method (ILES). Furthermore, it was found
that the strong anisotropy of the Reynolds stress tensor in the vicinity of the crucible wall, the crys-
tallization interface and free surface of the melt is not reproduced by the Boussinesq hypothesis;
the latter was exclusively designed to describe shear stresses. In addition, pronounced anisotropy
of turbulent heat transfer near the free surface is also not described within the SGDH hypothesis.

The main objectives of this study are formulated as follows:

compare the results of RANS computations of turbulent convection in silicon melt, obtained
by several turbulence models with isotropic viscosity, with the data obtained based on the ILES
approach, published earlier in [19];

select RANS turbulence models for subsequent modification with adjustments introduced
based on the data from ILES computations.
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The results of RANS computations of conjugate heat transfer presented in this paper were
obtained with the Flow Module software package, which is part of the CGSim code developed
by the STR Group for simulation of heat and mass transfer during crystal growth by various
methods [20].

We used the following low-Reynolds-number turbulence models: Wolfshtein k-model [21];
Chien k-¢ model [22]; Menter k-o SST model [11, 12].

Using the Flow Module and ANSYS Fluent packages for the Menter model, we also conducted
cross-verification for a simplified problem, simulating turbulent convection in the melt only.

Mathematical model

Numerical modeling for growing silicon crystals by the Czochralski method includes turbu-
lent convection and heat transfer in the melt and in inert gas (argon) circulated above the melt.
Thermal conductivity is computed in quartz and graphite crucibles, as well as in silicon single
crystal. The mathematical model based on the RANS approach incorporates steady-state equa-
tions for mass, momentum and temperature balance:

V-(pll)=0, (1)
V-(paa):—V;+V-<t—pu'u’)+(p—p0)g, ()
t:u(Vﬁ+(Vﬁ)T)—§u(V-ﬁ)E, A3)
V-(pe,uT)=V-(AVT —pc,u'T’), )

p(T ) , for melt or solid region

| oMt 5
P=l Ao , for gas, (%)
RT

4

Here p, p,, kg/m?, are the local and steady-state densities, respectively; u, m/s, is the velocity
vector; p, p,, Pa, are the local pressure and the gas pressure in the furnace, respectively; g is the
gravitational acceleration; t is the viscous stress tensor, E is the unit tensor; p, Pa-s, is the dynamic
viscosity; ¢ , J/(kg-K), is the specific heat capacity at constant pressure; 7, K, is the temperature,
x, W/ (m~KD), is the thermal conductivity; M, amu, is the molecular weight; Rg, J/(kmol-K), is the
universal gas constant.

The overbar denotes Reynolds averaging of the quantity, the prime corresponds to a fluc-
tuating component; u'u’ and u'7” denote the Reynolds stress tensor and the turbulent heat flux
vector, respectively.

Turbulent transport of momentum and heat is simulated assuming turbulent eddy viscosity
and SGDH:

uu = %kE —v, (VE+(VE)T —%(V-E)Ej; (6)
u'’T = —;—;Vi 7)

t

where v, m?/s, is the kinematic turbulent viscosity, determined in accordance with the turbulence
model; Pr, is the turbulent Prandtl number.

System of equations (1)—(5) is complemented with one or two equations for transport: turbu-
lent kinetic energy k£, m?/s?2 (for all models used), dissipation rate &, m?/s* (for Chien’s model) and
specific dissipation rate o, 1/s (for Menter’s model).
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According to the Wolfshtein and Chien models, turbulent viscosity is determined as follows:

k2
v =l (®)

where Cp is the empirical constant, fu is the damping function.
According to Menter’s SST model, turbulent viscosity is determined as

v ©
' max(al(o, SF,) ’

where g, is the model constant; S, 1/s, is the magnitude of the strain rate tensor, F, is the model
function introduced in [11].

Computational tools

Computations of turbulent heat transfer in the melt were carried out in the two-dimensional/
axisymmetrical configuration of the Flow Module package. The finite volume method was used
to discretize system of equations (1)—(5). The discretized equations were solved by the SIMPLEC
algorithm. The convective terms of heat flux and velocity components were approximated by the
QUICK scheme, and the turbulent kinetic energy and specific dissipation were computed using a
first-order upwind scheme. Diffusion fluxes were computed with second-order accuracy.

A two-dimensional/axisymmetric version of the ANSYS Fluent software package was also used
in benchmark computations for the simplified model problem presented below. The SIMPLEC
algorithm was used to solve the discretized equations, the convective terms in the equations for
velocity components and temperature were treated by the QUICK scheme, the convective terms
in the equations for £ and o were computed by a first-order upwind scheme.

Model problem

The computational domain of the model problem only covered the region of the melt (Fig. 1).
The crucible radius R, = 170 mm, the crystal radius R = 50 mm, the melt height # = 97 mm.

The following boundary conditions were imposed: no slip on the crucible wall and the crys-
tallization front; zero shear stress on the free surface of the melt; temperature dependence on the
radius-to-depth ratio of the melt, obtained from the experimental values [17]. The crystallization
front was taken at a constant temperature equal to the melting point of silicon; the free surface
was considered adiabatic.

The properties of liquid silicon used in the computations are given in Table 1. The model prob-
lem was solved without accounting for the Marangoni effect. The rotational speeds of the crucible
wall o_and the crystal wall ® amounted to 5 and 20 rpm, respectively (see Fig. 1).

= w,

Fig. 1. Computational domain (right) and mesh (left) of the model problem:
AB is the melt/crystal interface; BC, CD are the melt/gas (free) and melt/crucible interfaces;
DA is the axis of symmetry; R, R are the melt and crystal radii, respectively; H is the melt height;
o,, o are the angular velocities of crucible and crystal rotation, respectively
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4 Simulation of Physical Processes

The computational mesh contained about 72,000 cells, the size of the first near-surface cell
was about 0.12 mm, the size of the cell in the volume was about 1.8 mm. The dimensionless
coordinate y* in the first near-wall cell did not exceed unity.

Fig. 2 shows a comparison of the radial temperature distributions, velocity components and turbulent
viscosity for melt depths of 1 and 3 cm, obtained using Flow Module and ANSYS Fluent. Evidently,
the results obtained in both packages are in good agreement. Small differences can be observed in the
distributions of the axial and radial velocity components in the vicinity of the symmetry axis, which
can be due to different approximations of the terms inversely proportional to the radial coordinate; the
terms appear in the equation for balance of momentum written in cylindrical coordinates.

Table 1
Parameter values of liquid silicon used in the computations
Parameter Notation Unit Value
Density p kg/m’ 3,194-0.3701-T
Equilibrium density P, kg/m? 2,570
Thermal conductivity A W/(m-K) 66.5
Heat capacity c, J/(kg-K) 915
Dynamic viscosity v Pa-s 810+
Melting temperature T K 1,685
Marangoni coefficient 0c/0T N/(m-K) —1-10*
Emissivity factor €. — 0.3

Note. The data given in the last two rows will be used below.
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Fig. 2. Comparison of radial temperature distributions (a); axial (b), radial (c), circumferential (d)
velocity components, and turbulent viscosity (e¢) computed at different melt depths:
1 cm (Z, 3) and 3 cm (2, 4), using ANSYS Fluent (/, 2) and Flow Module (3, 4)
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Fig. 3 compares the heat flux density distributions along the crucible wall obtained with the
Flow Module and ANSYS Fluent packages. The difference between the distributions increases as
it approaches the symmetry axis, which may due to the differences in the flow structure. Despite
the slight discrepancy between the results obtained by both codes, we can conclude that the
Menter model is implemented correctly in the Flow Module package.

100

w
o

Surface heat flux, kW/m?
o

1

o 2
T S T (T T SR TR ST

0 30 60 90

Angle, degrees

Fig. 3. Heat flux density distributions along the crucible
obtained with ANSYS Fluent (/) and Flow Module (2)

Statement of the conjugate problem
The computational domain of the conjugate problem, formulated based on the data for the
EKZ-1300 system [23], includes the melt, the crystal, the quartz and graphite crucibles, as well as a
part of the gas region above the melt. The scheme of the computational domain is shown in Fig. 4.
The crucible radius R, = 170 mm, the crystal radius R = 50 mm, the melt height # = 97 mm.
The following boundary conditions are imposed: no slip at the melt/crucible and melt/crystal

i
7 W///mﬂ%%%%//l’/[/ﬂmml ‘!

g
A s

=

Fig. 4. Schemes of computational domain (right) and mesh (left) for the conjugate problem:
melt 7; crystal 2; quartz and graphite crucibles 3 and 4, respectively; argon flow J5;
symmetry axis 6; free surface 7 (the remaining notations are the same as in Fig. 1)

interfaces, zero outlet pressure at the outlet boundary.
The boundary condition on the free surface of the melt takes into account the thermocapillary

Marangoni effect:
) ) :
“on ) \"on ), T or (19)
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t corresponds to the direction tangential to the free surface, and » to the normal; the subscripts
melt and gas denote the melt and the gas, respectively.

The crystallization front is maintained at a constant temperature equal to the melting point of
silicon.

The following condition is imposed at the outer boundaries:

oT oT §
(ka) (7\‘6_) + GSBgradYLit Qraah (11)
gas

n

where o, is the Stefan—Boltzmann constant; _is the emissivity " _ is the incident radiant heat flux
obtained from the solution to the problem on global heat transfer for the EKZ-1300 system (Fig. 5);
the subscript ext corresponds to the outer boundary, the subscript gas to the adjacent gas region.

A constant gas flow rate v = 0.66 m/s is given at the inlet boundary. The rotation rates of the
crucible, o, and the crystal, o, amounted to 5 and 20 rpm, respectively (see Fig. 1). The prop-
erties of the materials used in the computations are given in Table 2.
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Fig. 5. Distributions of incident radiant heat flux along the free
surface (a), along the quartz (b) and graphite (¢) crucibles
Vertical dashes highlight the behavior of the curves specific
to each type of crucible (see Fig. 4)

Table 2

Characteristics of substances used in the computations for the conjugate problem

Parameter value
Substance p A, C .
kg/m’ W/(m-K) J/(kg'K) rad
Solid silicon 2330 44-0.0138-T 687-0.236-T 0.9016-0.00026208-T
Quartz 2650 4 1,232 0.85
Graphite 2000 70.7-0.0191-T 2,019 0.80
2M 0.01-2.5-10°T 532 -
R,T
Argon
u=8.466-10°+5.365-10°7— 8.682:101°7* Pa-s;
p,= 0.01 kg/m’; p, = 3000 Pa;M = 40 AU

Note. The properties of liquid silicon are given above in Table 1.

Notations: p, is the gas pressure in the furnace; M is the molecular weight; the rest correspond to those
given in Table 1.
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The governing parameters of this problem were the Prandtl number Pr, the Grashof number
Gr, the Rayleigh number Ra, the rotational Reynolds numbers Re_ (crucible) and Re_ (crystal),
the Marangoni number Ma, and the number DN characterizing the influence of shear stress in
gas on the melt flow along the free surface. They are defined as follows:

Pr=-"2=1.1-10", (12)
»
3
Gr= Pl 54100, (13)
A%
Ra=Gr-Pr=3.7-10°, (14)
2
Re, = 2R _49.10%, (15)
A%
2
Re, = 2R _1 7,000 (16)
A%
H’AT
__ T 2 670, (17)
oT Lpa
T VH?
DN:<g>—2p:2.6-106. (18)
u

Here AT, , = 25.2 K is the temperature difference between the point where the crystalliza-
tion front intersects the symmetry axis and the point where melt/crucible interface intersects the
symmetry axis; v, m?/s, is the kinematic viscosity, v = p/p; AT, = 19.3 K is the temperature dif-
ference between the triple points corresponding to melt/gas/crystal and melt/gas/crucible; L, m,
is the characteristic length of the free surface, L = R — R; a, m?/s, is the thermal conductivity,
a = v/Pr; (t,), Pa, is the average value of the gas shear stress along the free surface.

Computations were carried out on three meshes (using the Wolfshtein model) to study mesh
sensitivity. The basic mesh contained about 20,000 cells, the size of the first near-surface cell was
about 0.3 mm, the size of the cell in the melt was about 3.6 mm (see Fig 4). The coarse and the
refined mesh were obtained by decreasing and increasing the number of cells by 2 times in each
direction in the melt and by 1—2 times in the remaining blocks.
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Fig. 6. Comparison of radial temperature profiles (a) and the magnitude of the meridional
velocity component (b) at a depth of 2 cm from the free surface of the melt with an angular
temperature distribution along the melt/crucible interface (¢). The results obtained with
coarse (), basic (2) and refined (3) meshes are also compared.

Angles of 0° and 90° correspond to the points where the crucible wall
intersects with the symmetry axis and the free surface of the melt, respectively
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Computational results for conjugate problem

Fig. 6 shows the radial temperature profiles, the magnitude of the meridional velocity compo-
nent at a depth of 2 cm from the free surface of the melt, as well as the temperature distribution
along the melt/crucible interface, obtained in computations on three meshes. As can be seen
from the distributions, the differences between the results obtained on the basic and the refined
mesh are smaller than when between the results obtained on the coarse and the basic mesh, so
we mesh convergence can be established for the computations performed. Due to the small dif-
ference between the solutions obtained on the basic and refined mesh, subsequent computations
were carried out on the basic mesh.

Fig. 7 compares the temperature fields, the magnitude of the meridional velocity component,
as well as the velocity vectors obtained by the ILES and RANS approaches. The temperature
difference closest to the ILES data is predicted by the Wolfshtein model, while the Chien model
predicts an underestimated difference, and the Menter model an overestimated one. The vortical
structure in the vicinity of the crucible’s vertical wall, clearly manifested in the ILES solution,
is also reproduced by the models of Wolfshtein and Menter, while the Chen model predicts a
different flow structure: with relatively low velocities at the edges of the melt.

Temperature

Velocity magn.

RANS, k-w SST

ILES RANS, k Wolfshtein RANS, k-g Chien
Menter

Fig. 7. Distributions of temperature (top row), magnitude of the meridional velocity component
(bottom row) over the melt; vector velocity fields (marked by arrows), obtained by ILES and RANS
computations based on the Wolfshtein, Chien and Menter models (from left to right)

=
I -

RANS, k-w SST

ILES RANS, k Wolfshtein RANS, k-& Chien
Menter

Fig. 8. Distributions of shear component u'v' of Reynolds stress tensor (top row) and components
of turbulent heat flux vector (middle and bottom rows) obtained in ILES and RANS computations
based on the Wolfshtein, Chien and Menter models (from left to right)
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It should be noted that all turbulence models considered predict a pronounced downward flow
of the melt in the vicinity of the symmetry axis, which contradicts the results of ILES computa-
tions, where high melt velocities are not observed under the crystal. The strongest downward flow
is predicted by the Menter model, which also gives the lowest level of turbulent viscosity.

Fig. 8, a shows a comparison of the shear component #'v' of the Reynolds stress tensor obtained
by ILES and RANS computations. Here #' corresponds to radial fluctuations of velocity and v/
to the axial ones. Qualitative disagreement can be observed in the distributions of components
u'v predicted by ILES and RANS approaches. The highest absolute values in ILES computations
u'v' are observed in the vicinity of the meniscus, near the gas/crucible/melt triple point and near
the rounded part of the crucible wall. As established in [19], this feature is associated with the
anisotropy of velocity fluctuations, which consists in stronger damping of normal fluctuations,
compared with longitudinal fluctuations near the solid wall, as well as damping of only normal
fluctuations at a free surface. o

Thus, the reason for the qualitative difference in the distributions of the component «'v' in
ILES and RANS computations is that the eddy viscosity assumption does not include a factor
producing surface anisotropy.

Fig. 8,b compares the components of the turbulent heat flux vector. The ILES approach
predicts the drop in the component V' T’ near the horizontal part of the free surface, while high
negative values are observed for the the component «'7". The average level of turbulent heat flux
is consistent in ILES and RANS computations. If special modifications accounting for the effect
of the free surface on turbulence are not introduced, the level of turbulent viscosity obtained on
the free surface is of the same order of magnitude as in the volume of the melt. This, in turn, pro-
duces high values of both the horizontal and vertical components of the flow, which contradicts
the results of ILES computations predicting pronounced anisotropy of heat transfer and attribut-
ing the decrease in the values of the component v'T’ to damping of normal velocity fluctuations.

Conclusion

The results of RANS computations of turbulent convection in silicon melt obtained by several
turbulence models with isotropic viscosity were compared with the data for ILES computations
carried out for similar conditions.

In what concerns the temperature distributions the models of isotropic turbulent viscosity
reflect the heat transfer characteristics in the melt of Czochralski furnaces for growing crystals.
However, isotropic viscosity models cannot correctly account for the details of heat and mass
transfer in the melt that are important for studying the influence of growth parameters in order to
optimize the growing process. At the same time, we can conclude that models with two differen-
tial equations for predicting the flow structure and temperature field do not offer any advantages
compared to the model with only one equation. The strongest differences in the predictions of
the three RANS models for the convection structure compared to the ILES data are observed for
the k- SST-model.

The disadvantages of RANS models with isotropic viscosity can be overcome by using models
of Reynolds stress transfer, requiring to additionally solve several substantially nonlinear dif-
ferential equations. However, this can lead to numerical difficulties in obtaining a steady-state
solution [24]. Another approach is problem-oriented modification of the initial models of iso-
tropic viscosity, algebraically introducing factors that, as we established in [25], can produce the
required anisotropy of the Reynolds stress tensor and the turbulent heat flux vector included in the
Reynolds-averaged equations of motion and energy. Comparing the results of RANS and ILES
computations presented in this paper, we can conclude that either a one-parameter k-model or
a two-parameter k-¢ model is preferable as the initial RANS model for modification in problems
dedicated to simulation of convection in the crucibles of Czochralski furnaces.
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