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Abstract. The necessity of upgrading the quantum frequency standard based on rubidium-87
atoms is substantiated. So in the design of quantum frequency standards, individual blocks
are mainly upgraded. A solution is proposed to improve the design of the rubidium frequency
standard. A block diagram of the part of the standard that is being upgraded is presented. The
results of mathematical modeling of the output characteristics of the frequency converter are
presented. A forecast of improvement of the metrological characteristics of the quantum fre-
quency standard is obtained.
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Annoranusg. O00cHOBaHA HEOOXOIMMOCTh MOACPHMU3ALIMK KBAHTOBOTO CTaHIApTa YacCTOTHI
Ha atoMax pyouaus-87. OTMe4YeHO, YTO B KOHCTPYKUMU KBAHTOBBIX CTaHIAPTOB YaCTOThI
B OCHOBHOM MOJEPHM3AIIMKU TOABEPraloTcs OTAcAbHbIle Oyoku. I[Ipemnaraercst pelieHue
MO0 YCOBEPILICHCTBOBAHMIO KOHCTPYKLUMU PYOMAMEBOro cTaHAapTa vyacToThl. IlpeactaBieHa
CTPYKTYpHasI cxeMa 4acTH CTaHIapTa, KOTopasl IMoIBepraeTcs MoaepHu3aunu. [1peacraBieHbI
pe3yabTaThl MAaTEMAaTUUICCKOTO MOMICITMPOBAHMS BHIXOTHBIX XapaKTEePUCTUK IIpeoOpa3oBaTeIs
yacTOoThl. [loJlydeH IIPOrHO3 YIy4YlleHUs] METPOJOTMYECKMX XapaKTepUCTUK KBaHTOBOIO
CTaHIApTa YacTOThI.
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Introduction

In a world without reference sources of timestamps and frequencies, it is now impossible
to transmit large amounts of information, conduct long-term physical experiments, and others
[1-10]. Increased attention is paid to determining the exact time in coordinate determination
systems [11-15], especially in satellite navigation systems, where the mismatch of satellite time
scales leads to large measurement errors [16-21]. These systems are the main ones in determining
the coordinates of objects when solving various tasks of navigation, environmental monitoring and
others [16-19, 21-27].

The operating satellite navigation constellations (Russian GLONASS, European GALILLEO,
American (USA) GPS and Chinese BSD) actively use quantum frequency standards (QFS) to
determine the exact time [1, 17, 18, 27-30]. Among quantum standards in satellite communication
systems, rubidium QFSs are most widely used due to their small size and low cost in comparison
with other types of standards.

At present, with the development of electronic equipment, the requirements for the accuracy of
satellite navigation systems are constantly increasing, which makes the task of them modernization
especially urgent [30-32]. This paper discusses one of the possible solutions for modernizing the
design of a quantum frequency standard based on rubidium-87 atoms.

Modernization a part to design of the rubidium frequency standard

The principle of the QFS operation is based on automatic tuning of the crystal oscillator (CO)
frequency to the value of the quantum transition frequency in optically oriented Rb-87 atoms. To
implement the tuning of the CO frequency, the working cell of the atomic discriminator (DA) is
irradiated with a microwave signal, the frequency of which corresponds to the frequency of the
quantum transition of excited rubidium-87 atoms. In the case of a deviation of the frequency of
the microwave signal from the value of the frequency of the resonant transition, an error signal
(ES) is generated, according to which the CO is adjusted. Therefore, one of the important points
in the functioning of the QFC is the formation of a microwave signal.

In this paper, a microwave signal with a frequency of 6834.7 MHz is proposed to be synthesized
using a two-ring phase locked loop (PLL) system.

The PLL system uses the principle of comparing the phase of the output signal of a
voltage-controlled oscillator (VCO) with the signal of a reference oscillator. When they deviate, the
phase detector generates an error signal proportional to the phase difference. The signal from the
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Fig. 1. Frequency converter circuit for quantum frequency standard based on rubidium-87 atoms
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PD goes to the low-pass filter and then to the VCO, adjusting it so that the phase difference is zero.

The phase detector operates at the comparison frequency fcp, for this the frequencies of the
reference and output signals are preliminarily divided by the required coefficients. By selecting the
division coefficients, the required frequency is obtained at the input of the phase detector (PD).
The output frequency is determined by the formula:

_EyxK (1)

out >
Kref

where F is the output frequency, F, 1s reference signal frequency, K is the division factor of the
input frequency, D __is the division factor of reference frequency.

The block dlagram of the formation of a microwave signal (Fig. 1) consists of several parts
(blocks). The first part is a 100 MHz controlled oscillator with phase locked loop. The output
signal of this generator is then used as a reference. The second part is a miniature VCO module
with a PLL with a frequency of 6.8 GHz. To create the exact value of the quantum transition
frequency at the final stage, it is necessary to add a fractional component equal to 34.7 MHz to
the output signal. The fractional component of 34.7 MHz is created using a special synthesizer
(the third part of the circuit) and mixed with a mixer to the 6.8 GHz output signal.

New shaping circuitry includes a 6.8 GHz voltage-controlled oscillator. To reduce the weight
and size characteristics, the use of a VCO with a PLL in the form of a compact microwave
module was chosen. An electrical circuit was developed for its operation and control.

Loop Filter
Reference Microwave module Microwave
oscillator (VCO, PLL) output

Module control
interface
(SPI)

Fig. 2. Frequency converter circuit for quantum frequency standard based on rubidium-87 atoms

This scheme is shown in Fig. 2.

The scheme in Fig. 2 includes:

- 100 MHz reference oscillator (previously developed),
- loop filter

+ Microwave module (VCO with PLL) at 6.8 GHz.
The microwave module is controlled by SPI.

Frequency converter simulation

The frequency converter circuit shown in Fig. 2 was modeled in the ADIsim PLL program. For
this, the optimal VCO (VCO) was selected from the catalog of this program, and the characteristics
of the reference signal were also set (the layout of the reference frequency generator was developed
earlier). As a result of the simulation, the elements of the loop filter were selected.

The ADIsim PLL program allows you to evaluate the phase noise of individual functional
units of the circuit, as well as the overall level of phase noise of the entire system. The simulation
results are shown in Table 1 and in Fig. 3. The Total column estimates the total phase noise level
of the system.
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Table 1
Phase Noise Table

Arequence Total VCO Ref Chip Filter
100 -89.76 -143.8 -93.39 -92.23 -159.0
1.00k -101.2 -123.8 -113.3 -101.5 -139.0
10.0k -102.1 -103.9 -130.1 -107.3 -119.0
100k -89.94 -90.15 -131.5 -107.2 -105.6
1.00M -111.8 -111.8 -165.0 -140.9 -134.5
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Fig. 3. The simulation results

Conclusion

The developed design of the QFS has several significant advantages. First, the use of an
indirect synthesis method, namely a phase-locked loop system, allows a cleaner spectrum of the
output signal to be obtained. Secondly, the formation of the microwave signal at all stages of the
new circuit is controlled; it is possible to precisely adjust the signal frequency to the frequency
of the quantum transition of rubidium-87 atoms. This makes it possible to reduce the error in
establishing the actual value of the frequency of the output signal of the rubidium RFS, which
improves the stability of the device.
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