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Abstract. In this work, we investigated the luminescent properties of two-dimensional pho-
tonic crystals (PhCs) with ordered Ge(Si) nanoislands obtained using one- and two-stage 
approaches to ordering. The features of the luminescent response of such structures and their 
relationship with the ordering processes of nanoislands are considered. It is shown that the 
incorporation of Ge(Si) nanoislands into a two-dimensional PhC makes it possible to increase 
the intensity of their luminescent response by more than an order of magnitude, which makes 
the structures under consideration promising for practical applications.
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Аннотация. В работе изучены люминесцентные свойства двумерных фотонных 
кристаллов (ФК) с упорядоченными наноостровками Ge(Si), полученных с 
использованием одно- и двухстадийного подходов к их упорядочению. Рассмотрены 
особенности люминесцентного отклика таких структур и их взаимосвязь с процессами 
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упорядочения наноостровков. Показано, что встраивание наноостровков в двумерный 
ФК позволяет более чем на порядок величины увеличить интенсивность сигнала ФЛ.
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Introduction

Today, the problem of creating efficient radiation sources for optical connections in the 
processor architecture remains unsolved [1]. Such connections will reduce the power consumption 
of processors and increase the speed of information processing. One of the main requirements for 
sources is their technological compatibility with silicon, which, as is known, is the main material 
of microelectronics, however, due to its indirect band gap, it has poor emitting properties.

Ge(Si) nanoislands are one of the options for such radiation sources, having a number of 
significant advantages: they are compatible with CMOS technology [2]; emit in the wavelength 
range of 1.2–1.6 µm, which is the main one for telecommunication systems [3]; they are relatively 
easy to produce and compact [2]; and, what is important in this work, there is the possibility of 
their spatial ordering on a silicon substrate [4]. The main disadvantage of Ge(Si) nanoislands is 
their relatively low emissivity. In order to increase the radiative efficiency of nanoislands, various 
options for their incorporation into low-dimensional cavities are currently being considered [5].

A large number of works [6] are devoted to photonic crystal cavities, in which an increase in 
the photoluminescence (PL) intensity of nanoislands is observed, reaching more than an order 
of magnitude, and the quality factor of the observed resonances exceeds 104. It was shown that 
due to the precise embedding of the nanoislands in the maximum of the cavity mode field, it is 
possible to achieve an even higher signal amplification [6]. However, such structures have a small 
emitting volume and require high manufacturing precision, therefore it is much more profitable 
to use photonic crystals (PhCs) themselves, without a cavity, where all nanoislands are involved 
in the radiation processes, and not just those located in the small cavity.

For PhCs, it is also natural to think about the possibility to increase the amplification of 
nanoislands luminescence response due to their precise incorporation into field maxima of PhC 
modes. However, to date there is only one work where this idea was discussed [7], i.e., this task 
remains relevant.

Materials and Methods

The samples grown on SOI substrates with a Si layer thickness over the oxide of 80–90 nm 
were studied. For the ordered growth of nanoislands, the preliminary formation of seed pits in 
the substrate was used [4]. It’s known that, depending on the parameters of the pits and the 
parameters of the formed lattice, the nucleation of nanoislands can occur both inside the pits and 
around them [8]. Therefore, two approaches to the nanoislands ordering in a PhC are possible: 
two-stage and one-stage.

To analyze the features of both approaches, 2 samples were grown. The first one was obtained 
using the classical two-stage ordering approach. With this approach, the fabrication of a sample 
occurs in two stages: I) – formation of an array of spatially ordered Ge(Si) nanoislands, and 
II) – formation of a PhC. At the first stage, square arrays of shallow, small in size, seed pits with 
a period of 1–4 µm were created on the substrate. Next, 4.5 Ge monolayers were deposited by 
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molecular beam epitaxy (MBE), forming Ge(Si) nanoislands inside the seed pits. Then, a silicon 
layer 15 nm thick was deposited by the MBE method, and a layer of nanoislands was again grown. 
The silicon thickness of 15 nm ensured the vertical ordering of nanoislands in the direction of 
growth. Thus, a structure with 10 layers of Ge(Si) nanoislands was obtained, with a total thickness 
above the oxide layer of ~ 300 nm; the upper layer of nanoislands was not overgrown for visual 
control of nanoislands location. At the second stage, in the obtained multilayer structure, in 
regions with ordered nanoislands, PhCs with a hexagonal lattice of holes were formed, with 
periods a = 525 ÷ 600 nm and the ratio r/a = 0.14 ÷ 0.17 (where r is the radius of the holes), 
the depth of the holes was ~ 220 nm. The growth technology and the fabrication process of this 
sample are described in more detail in [9].

In the one-stage approach to the nanoislands ordering, deep seed pits with vertical walls etched 
through the entire thickness of the active layer were used. Arrays of seed pits 200 nm in diameter 
were formed, arranged in a square lattice with a period of 500–2000 nm. Further, as in the 
previous case, a multilayer structure was grown with 4 layers of Ge(Si) nanoislands, with a total 
thickness of ~ 255 nm above the oxide layer. In contrast to the previous structure, the ordering 
of nanoislands in this case occurred around seed pits or between them. Under certain conditions, 
during growth, such pits did not overgrow, acting as holes of the PhC. The process of formation 
of such a sample is described in more detail in the article [10].

The studies in this work were carried out using a standard micro-photoluminescence (micro- PL) 
technique, which provides the possibility of measurements with high spatial (up to 2 μm) and 
spectral (up to 0.01 cm-1) resolution [11]. All measurements were performed at a temperature 
of 77 K. The PL signal was excited by a solid-state laser with a wavelength of 532 nm, the laser 
power was varied from 3 to 4 mW.

The theoretical analysis of the formed PhCs was performed by the Fourier modal method in 
the scattering matrix formalism [12].

Results and Discussion

Fig. 1, a shows: the micro-PL spectra of PhC obtained using the two-stage approach, and, for 
comparison, of the initial, unprocessed region of the sample, without ordered Ge(Si) nanoislands. 
PhC period was 525 nm, r/a = 0.17. PhC was formed in the ordering region of nanoislands with 
a period of 1μm. For this PhC, the maximum enhancement (η) of the luminescent response of 
Ge(Si) nanoislands was observed. At the maximum, PL signal increased almost 40 times, with 
respect to the signal measured in the unprocessed sample region, the increase in the integral 
intensity of the signal exceeded an order of magnitude (ηintegral = 12). This enhancement of PL 
signal is explained by the interaction of Ge(Si) nanoislands with the optically active PhC modes, 
as evidenced by the presence of narrow peaks in the PL spectrum. As we showed earlier, the 
formation of photonic crystals in regions with long ordering periods of Ge(Si) nanoislands leads 
to a weaker increase in signal intensity, which is explained by a decrease in the surface density 
of nanoislands and, as a consequence, the number of ones interacting with PhC modes and 
contributing to PL signal [9].

The micro-PL spectrum of photonic crystal obtained using the one-stage approach is shown 
in Fig. 1, b, period of PhC is a = 700 nm. For the PhC presented, the maximum enhancement 
of luminescence response related with Ge(Si) nanoislands was observed. As in the two-stage 
approach, PL signal of photonic crystals obtained by this method exceeded by an order of 
magnitude the signal observed in the unprocessed region (ηpeak = 12). The main feature of these 
PhCs is the strong dependence of their luminescence properties on the conditions of nanoislands 
formation. As the results of studies have shown, in photonic crystals with a small lattice period, 
under the growth conditions used, Ge(Si) nanoislands are not formed and have poor radiating 
properties. At large lattice periods of PhCs, nanoislands turned out to be completely formed, but 
the spectral range of their emission began to overlap with the high-order PhC modes, which are 
characterized by the low efficiency and a high degree of degeneracy, as evidenced by low-intense 
PL spectra observed for such PhCs, represented by broad PL lines [10]. The most optimal in this 
case are the lattice periods of PhCs a = 700–900 nm.

Fig. 2 shows the results of numerical simulation of the dispersion characteristics of emissivity 
carried out for the studied PhCs and the calculated field patterns of the most intense modes. The 
results of numerical simulation show that in PhCs with a hexagonal lattice of holes obtained by 
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Fig. 1. Micro-PL spectra of photonic crystals obtained using (a) two- and (b) one-stage approaches 
to the ordering of Ge(Si) nanoislands. For comparison, in both figures, the micro-PL spectra of 
the original, unprocessed regions of the corresponding sample are shown in dark gray. The insets 
to the figures show SEM images of the studied PhCs. The values ηpeak and ηintegral are the PL signal 
amplification at the maximum and the integral signal amplification observed in the PhCs compared to 

the signal in the initial unprocessed region of the sample

the two-stage method, the most intense PL line corresponds to the doublet E2 mode [11], which 
is characterized by the presence of a symmetry-protected bound state in the continuum (BIC) at 
the Г point of the Brillouin zone (Fig. 2, a). The emission maximum of this mode, observed in 
experiment, turns out to be shifted to the region of large wave-vectors in the Г-K direction nof 
the Brillouin zone, which may be due to the shallow depth of the holes formed in these PhCs. In 
a PhC with a square lattice obtained by a one-stage method, the most intense line in PL spectrum 
is represented by two closely spaced singlet modes A2 and B2, which also show the features of 
BICs (Fig. 2, c). The bound-states in the continuum are characterized by a discontinuity in the 
dispersion curves of the emissivity at the Г point, as it follows from the numerical simulation data 
(Fig. 2, a, c), and by extremely high values of the quality factor when compared with conventional 
radiative modes [12, 13].

Fig. 2. Results of numerical simulation of the emissivity of studied PhCs near the Г-point of Brillouin 
zone (a, c). The calculations were performed for PhCs shown in Fig. 1. The asterisks mark position of 
the maximum of PL signal observed in the experiment. The blue lines in the figures indicate emission 
range of the nanoislands, green lines indicate the collection angles of PL signal. Are the results of 
numerical simulation of field distribution carried out for PhC modes (b, d), indicated by asterisks in 
figures (a, c), respectively. The green circles indicate position of PhC holes, the blue circles in Fig. (d) 

indicate location of Ge(Si) nanoislands

Analyzing both approaches used in this work to the ordering of Ge(Si) nanoislands in photonic 
crystals, and considering the possibilities of embedding nanoislands in the maxima of the field of 
PhC modes, let us focus on the following. As mentioned above, in the two-stage approach, the 
ordering of nanoislands and the formation of PhCs occur at different stages, which makes it possible 
to form PhCs with any parameters and good hole quality, since this technology is well developed. 
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step from the two-stage approach, “once again” form a PhC with the same lattice parameters, 
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