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Abstract. The necessity of developing atomic clocks with high long-term stability for space 
exploration and improving the operation of satellite systems is substantiated. The photon 
detection system for the design of atomic clocks on mercury-199 ions for space applications is 
developed. A comparison is made of various data on the Allan deviation for various models of 
atomic clocks based on mercury-199 ions. For comparison, we used the results obtained by us 
and other scientists. The directions for further research are determined.
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Аннотация. Обоснована необходимость разработки атомных часов с высокой 

долговременной стабильностью для исследования космического пространства и 
улучшения работы спутниковых систем. Разработана система регистрации фотонов 
для конструкции атомных часов на ионах ртути-199 для космического применения. 
Проведено сравнение различных данных по девиации Аллана для различных моделей 
атомных часов на ионах ртути-199. Для сравнения использовались результаты, 
полученные нами и другими учеными. Определены направления для дальнейших 
исследований.

Ключевые слова: спутниковая навигационная система, атомные часы, атомные часы 
на ионах ртути-199, ионная ловушка Паули, девиация Аллана
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Introduction

Modern society in the age of advanced technologies cannot function without the exact time 
[1–7]. Especially in such areas as information transmission and navigation [1, 3, 8–12]. Atomic 
clocks or quantum frequency standards as high-precision devices provide a time reference for 
solving problems of information transfer and determination of object coordinates at any time 
[10–14]. The accuracy of positioning and synchronization of satellite navigation and positioning 
in outer space depends on the reliable operation of atomic clocks [15–20]. According to the 
positioning principle of navigation systems, and small deviation in time can lead to huge deviations, 
for example, if the time shift is 1 μs, the positioning accuracy will be shifted by 300 m, so to 
reduce the positioning deviation caused by time shift, increased requirements are imposed on the 
accuracy of atomic clocks [15–23]. 

At present, there are three types of modern space atomic clocks that are relatively well developed 
and widely used in global navigation satellite systems: cesium atomic clocks, rubidium atomic 
clocks, and passive hydrogen masers, these atomic clocks use the spectral lines of transitions 
of hyperfine energy levels of the ground states of atomic systems, to distinguish appropriate 
excitation signals and receive error signals, and then adjust the output frequency of the crystal 
oscillator to output a stable and accurate time-frequency signal [20–26]. There are problems 
when using these standards. In cesium atomic clocks the frequency instability is mainly influenced 
by the second-order Doppler effect and magnetic field, in rubidium atomic clocks it is mainly 
influenced by external environments such as optical shifts and buffer gases, and passive hydrogen 
masers it is mainly influenced by collisions with the vessel walls [16–29]. Therefore, it is necessary 
to adjust the frequency standards during the communication session with the Earth. With the 
development of satellite navigation system technology and deep space exploration technology, the 
characteristics of these space satellite atomic clocks no longer meet the requirements, and atomic 
clocks with better characteristics are needed as time standards, we have noticed that atomic clocks 
on mercury-199 ions can be the best solution.

Atomic clocks on mercury-199 ions are microwave atomic clocks, which entered the space 
after cesium atomic clocks, rubidium atomic clocks, and passive hydrogen masers, compared 
to them this new generation of atomic clocks uses the Paul ion trap to trap mercury ions, this 
device effectively reduces the collisions of ions with the wall and reduces interference from the 
external environment, eliminates the second-order Doppler effect [30–33]. The main problem 
in the development of atomic clocks on mercury-199 ions is associated with reducing the size 
and weight of the Paul ion trap, as well as reducing power consumption while maintaining the 
metrological characteristics that have been obtained for atomic clocks on mercury-199 ions 
ground application. 

Principles of trapped mercury-199 ions to provide the necessary precision performance 

The working principles of capturing mercury ions using the Paul ion traps have been described 
in detail in several papers [13–15, 19, 30–33]. Mercury-199 ions captured by the Paul ion trap 
interact with a wavelength λ = 194 nm (this can be provided by a laser, but the simplest option 
is to use a lamp with mercury-202 ions) and a microwave field, whose frequency is formed by 
the transition with a frequency equal to c/λ. When the frequencies match exactly, the maximum 
fluorescence signal is formed, which is registered by the photodetector. If the frequencies do not 
match, an error signal is generated and the frequency of the crystal oscillator is adjusted to the 
transition frequency. In this case, an important element is the photo counter. We proposed a new 
design for the photo counter (the block diagram is shown in Fig. 1). 

© Ван Д., Давыдов В. В., 2022. Издатель: Санкт-Петербургский политехнический университет Петра Великого.
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The input to the counter has three components: the modulation frequency, the signal of the 
clock frequency and the input data received from the microcontroller, which were sent to the 
input of counter, which generated a signal with variable counting and pause windows, and the 
counting of photon pulses at the corresponding time interval.

The sign of the pulse count is positive or negative due to the difference in the half-period of 
the signal of the frequency synthesizer signal, where the photons were recorded. The count result 
of the counter characterizes the frequency detuning of the crystal oscillator, on which basis the 
microcontroller forms a control voltage to change the output frequency of the crystal oscillator.

It is used to count photons by transferring signal parameters through the serial peripheral 
interface SPI. The data transfer standard of this interface allows the microcontroller and the 
peripheral to work in full duplex mode (receiving and transmitting information), where the data 
transfer is performed bit by bit.

On the one hand, using this design allowed to improve the signal-to-noise ratio, which depends 
on the number of photons and determines the accuracy of frequency tuning. On the other hand, 
it allowed reducing the weight and size of the frequency standard design.

Frequency stability analysis of quantum frequency standards

The following experimental setup (Fig. 2) was assembled for experimental studies of the output 
characteristics of the quantum frequency standard on cesium-133 and rubidium-87 atoms and the 
laboratory model of the standard on mercury-199 ions.

The signals from the reference and studied quantum frequency standards are fed to the VCH-
308A comparator (Fig. 2). In the comparator, the phase-time method is implemented. Information 
about the signals is converted into time intervals, which are measured using a digital time interval 
meter. Then the signal is transmitted to a personal computer, where the information is archived 
and processed.

Fig. 1. Block diagram of the photon counting functional block

Fig. 2. Block diagram of the installation for the study of metrological characteristics
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The measured parameters were controlled and monitored through a control circuit using the 
Agilent 34970A data acquisition system. The data acquisition system is connected to the same 
computer as the comparator. Every 100 seconds the frequency of the studied standards was 
measured. The obtained frequency values were recorded in the computer memory and then used 
to calculate the parameters that make it possible to estimate the frequency instability.

The Allan variance was chosen as a parameter to estimate the frequency instability and was 
calculated by using the following equation: 
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After processing the obtained data, graphs of the dependence of the values of the Allan 

deviation on time were plotted (Fig. 3). For comparison, Fig. 3 shows the results of the Allan 
deviation for other types of atomic clocks, which are placed on satellites. These data are obtained 
by other scientists.

Analysis of the Allan deviation data for various model atomic clocks shows that the atomic 
clocks on mercury-199 ions have better characteristics than others in some cases. 

Conclusion

The obtained results showed that the atomic clocks on mercury-199 ions, compared with other 
types of atomic clocks, have higher stability of the output characteristics. This allows their use in 
spacecraft during flights to other planets, as well as in situations where the space orbit is already 
overloaded by other satellites.

The main problem of atomic clocks on mercury-199 ions is related to keeping the necessary 
number of charged ions in a fixed zone while reducing the size of the trap is now being addressed 
by groups of other scientists, to expand the possibilities for their use in various space systems.

Fig. 3. Allan deviation of different current space atomic clocks and station communication 
on Earth. Curves 1, 2, 3, 4, 5, and 6 correspond to the following atomic clock: 
Cs-133; Rb-87; 199Hg ion – experimental layout; Leonardo RAFS – Galileo; 

PHM – ship communication station; PHM – communication station on Earth
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