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Abstract. The necessity of modernization of quantum frequency standards (QFS), atomic 

clocks, which are used in satellite navigation and telecommunication systems, is substantiated. 
The main goal of all QSC upgrades is to improve the metrological characteristics. In the case 
of its use on moving objects, its dimensions, weight and power consumption also become 
important characteristics. The new developed optic system has been applied to low mass ion 
clock prototype. With its help it has become possible to significantly take up short term stability 
and temperature coefficients. The prospects for using this design in various moving objects are 
considered.
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Аннотация. Обоснована необходимость модернизации квантовых стандартов частоты 
(КСЧ) – атомных часов, которые используются в спутниковых навигационных 
и телекоммуникационных системах. Основной целью всех модернизаций КСЧ 
является улучшение метрологических характеристик. В случае применения его на 
подвижных объектах, также важными характеристиками становятся его габариты, вес 
и энергопотребление. Разработанная новая оптическая система была применена к 
прототипу ионных часов с малой массой. С его помощью удалось значительно улучшить 
кратковременную стабильность. Рассмотрены перспективы использования данной 
конструкции в различных подвижных объектах.
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Introduction

In the modern world, generators of highly stable oscillations (frequency standards) are used 
by humanity to solve various problems [1–5]. The highest accuracy among them is possessed by 
quantum frequency standards, which are actively used to solve various problems [6–11]. One of 
these tasks is related to ensuring a stable reference oscillation on a moving object [1, 6, 8, 12–17]. 
For various reasons, atomic clocks used in satellite systems experience a frequency delay, which 
is compensated during communication with the ground [12–22]. With a long-term absence of 
communication to adjust the time scale, delays will accumulate [22–26]. This may lead to various 
problems. For example, fractions of a second might spell the difference between reaching Mars 
safely and missing it entirely.

In the last years there is a common trend in developing new highly stable frequency standards, 
because of the growing demand from developing navigation and telecommunication systems 
[1–5]. Mostly these new designs are cold ion traps or laser-based. Ionic standards have somewhat 
worse stability indicators, but they compete with standards based on neutral atoms in terms of 
accuracy, since a single ion in a Paul trap is weakly subject to external perturbations. In addition, 
ion traps are compact (volume up to 1 dm3) and less sensitive to the settings of the cooling 
and interrogating laser fields. In CIS-countries, optical clocks are being created for ultracold 
strontium atoms with a relative error of part costs at the level of 10–17 (VNIIFTRI), and work 
is also underway on the creation of optical clocks on single ions of ytterbium, aluminum, and 
neutral thulium atoms.

As it has been mentioned, there are several uses for ultra-stable clocks in space and on Earth 
that necessitate a tiny package size. Deep-space vehicles, for example, have strong physical 
size limits for onboard instruments; total spacecraft mass (unfueled) is frequently less than 400 
kg, with projected trends toward even less mass. Current paper describes the newly developed 
optical system for one of these standards, the ion-based Hg-199 for telecommunication and 
space applications [23, 28, 29]. This device stands from other common “brothers” with its high 
tolerance to great G-values, which makes it a solid candidate for onboard use.

© Лукашев Н. А., Давыдов В. В., 2022. Издатель: Санкт-Петербургский политехнический университет Петра Великого.

Fig. 1. Clock stability: gas chamber based 1, ion beam based 2, femtosecond laser 3, 4, 
optical standards device 5 of the cesium frequency standard
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Materials and Methods

We have developed a high-performance 199Hg+ trapped-ion clock with frequency stability near 
2∙10-16. The ion-trapping technologies developed for this clock are critical to achieving this level 
of stability. The ion trap design for the liter clock is be based on “ion-shuttling” between a linear 
quadrupole and a linear multipole, similar to what is utilized in ground clocks [1, 3]. However, 
improvements and redesigns in the vacuum and optical systems are required to achieve the 1 to 
2 liter size requirement. 

Optical standards may be the perfect solution for onboard use right now for the high stability, 
those based on ultracold atoms and femtosecond lasers are too fragile for onboard applications.

The Hg-199 standard conceptually has a negative feedback loop where the magnetic trap 
provides the controller with information regarding its resonance shift. The photon counter 
determines time interval τ that could be varied in a certain range depending on deployment 
conditions: from 1 to 10 seconds, the number of registered photons by PEM: from 104 to 5·105. 
The driving system produces processing commands judging by the number of photons emitted 
with the help of the newly developed algorithm in order to drive the frequency of the main quartz 
generator and also the power circuits. Voltage output from these circuits passes transformer coils 
and corrects the magnetic field in the trap in order to ensure stable and precise maintenance of 
the device. The programmable part consists of CPU, counter and quartz generator driver (QGD), 
quartz generator itself receives the error signal information and shifts the produced frequency 
to resonance. The whole work is performed inside the counter and CPU-related parts, thus 
taking the most crucial tasks, digital and analog circuitry are also separated making it easier for 
developers to maintain the device as well as further reducing its size.

Trap and its containing substance must be 
preserved at the operating state. Multiplying 
loop, controlling CPU and the optical system 
inside the trap are dedicated to this task.

While some optical components of the 
focusing system act as components that create 
an image, others are provided for all kinds of 
transformations of the illuminating beam, and 
also perform filtering and transmitting functions. 
The image-forming components of the optical 
system are considered to be a converging lens 
(located in or near the illuminator), a condenser, 

an objective, an eyepiece tube (or eyepiece) and refractive components or a video camera lens. 
But some of these components are not typically image-forming, and their properties are of 
primary importance in determining the property of the final microscopic image.

Awareness of the role of individual lenses, the elements that make up the optical system, is 
considered the main one for understanding the process of formation of a focusing beam in an 
optical system. A perfect lens is considered to be a simple, image-creating component (Fig. 3): 

Fig. 2. Block diagram for the developed standard

Fig. 3. Wave diagram through a perfect lens
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flawlessly corrected, free of aberrations and focused light into 1 point. A parallel, paraxial beam 
of light, refracted in a converging lens, is focused at its focal point or focus (it is labeled Focus 
in Fig. 3). These lenses are often referred to as positive lenses because they help converge a 
convergent (converging) light beam more sharply and slow down the diverging beam. Light from 
a point source placed at the focal point of the lens emerges from it in a parallel, paraxial beam 
(direction from right to left in Fig. 3). The distance between a lens and its focus is called the focal 
length of the lens, denoted f in Fig. 3.

The optical system that collects appropriate 
ultraviolet (UV) fluorescence from the trapped Hg ions 
is crucial for achieving the desired short-term stability. 
The apparatus depicted in Fig. 4 was conceived and 
built by us, and it is utilized for both concentrating 
the source light from a 202Hg lamp onto the trapped 
ions and capturing fluorescence from these ions. The 
dielectric-coated folding mirror acts as a dichroic 
reflector, reflecting 194-nm ion fluorescent light with 
>95% reflectance and parasitic 254-nm light from a 
neutral Hg transition with just 10 % reflectance. Because 
stray light limits the stability, it is critical to remove the 
10 stronger 254-nm light from the beam because it is 
situated inside the UV-sensitive photomultiplier tube’s 
detection band.

This system is integrated with the ion trap 
assembly. The electronics modules that control the 
photomultiplier tubes, pulse amplifier–discriminator, 
and discharge lamp are housed in the same enclosure 
as the lens, mirrors, and detectors/source. The ground 
clock used three independently movable optics modules 
to optimize ion fluorescence, but the single-module 
approach to the optical package here is different. The 
three identical optical arms of the integrated optical 

system described here may be placed on the bench such that their focuses fall in the same place. 
Since the production and assembly of the optical package have been recently completed, the 
optical alignment process is just getting started.

Results and Discussion

Fig. 5 shows the dependence of the change in the values of the Allan variance σy(τ) on time τ 
for the laboratory design of atomic clocks.

The experimental results show that the Allan dispersion σ(τ) satisfies the requirements that 
apply to the accuracy characteristics of atomic clocks. Studies of the operation of atomic clocks 
were carried out for 12 days in a temperature chamber. 

Fig. 4. UV Optical system: source 1, 
refractors 2, focus system 3, 

working substance 4

Fig. 5. Plot of Allan variance σy versus time t
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Conclusion

The obtained results have shown that the developed optical systems for the small-sized design 
of atomic clocks on mercury-199 ions can be used in the basic model for satellite systems. In 
addition to this design, it is necessary to develop a thermal stabilization unit for the optical part, 
taking into account the space use of atomic clocks. 
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