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Abstract. Very often in practical schemes of quantum key distribution various realistic de-
vice imperfections are usually neglected. In this work we consider the imperfect phase-modu-

lation encoding that might lead to a potential information leakage and study its effect on the
secret key generation rate.
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AnHoranuga. O4eHb 4acTO B IIPAKTUYECKUX CXEMaxX paclipelelieHus] KBaHTOBOIO KJio4a
OOBIYHO MPEHEOperaT pa3IuYHbIMU pPealbHbIMU HECOBEPILIEHCTBAMM YCTPOIMCTB. B 3T0i1 pa-
00Te MBI paccMaTpuBaeM HEUACaTbHOCTU (Da30BO-MOMYISLIMOHHOTO KOAMPOBAaHUS, KOTOPBIC
MOTYT IIPUBECTU K MOTEHIIMAJBbHON yTeuke MHGOPMALIMM 1M U3y4yaeM UX BIUSHHUE Ha CKOPOCTh
reHepaly CeKPeTHOro Kitoya.
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Introduction

The quantum key distribution (QKD) is based on fundamental laws of quantum physics and
theoretically provides security regardless eavesdropper’s potential resources. However, the practical
QKD implementations suffer from imperfections of realistic devices [1]. One of the sources of
potential information leakage in practical BB84 [2] schemes is the imperfect state preparation by a
phase modulator (PM) used for the qubit state encoding. This imperfection leads to an asymmetry
between the bases, that can provide more efficient strategies for an eavesdropper [3]. In this work
we consider the general quantum state description and introduce two possible phase modulation
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uncertainties. Using the density matrix formalism, we provide a metrics of distinguishability
between the BB84 bases in our model and estimate its effect on the secret key rate.

Theory and Methods

In our setup the linearly polarized light is brought to the Alice’s PM at an angle of 45° with
respect to the crystal axes of the modulator with an error 60. In general, there is some phase
difference ¢ between the field amplitudes along the ordinary and extraordinary axes. By applying an
electric voltage along one of the axes, an additional phase difference (ij’f” (with some uncertainty

8¢,~") is created, which determines the basis
) and bit states. '
s n Without uncertainty 8¢ and error 360,
\ the polarization state, prepared by Alice in X'
and Y’ bases, can be described on the Bloch

| — v N sphere (Fig. 1) in the following form,
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Fig. 1. Physical polarization states on the Bloch and vertical polarization states. The general

sphere; experimental phase uncertainties are polarization state with PM imperfection
schematically depicted as red and blue cones corrections is given by
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where 80 represents in Fig. 1 the deviation from the xy — plane on the Bloch sphere caused by
e.g. the 45° fiber input error.

To describe the distinguishability between the states in two bases, the metric A called the imbalance
of “quantum coin’ [4] is used. It can be expressed in terms of fidelity F [5]:

)

_ Xy
Azl F(zp P ) 3)
and fidelity F is given by
2
F(pX’,pY')E(Tr\/F p“\p" ) , 4)
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4 Simulation of physical processes >

where the density matrices p* and p” are given by p"** = (|\|Ib “S’S>< basis | |\yb“m>< pasts )/ 2 and
can be written (with help (2)) as:
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It’s leads us to the following result for fidelity:

. yy 1+sin’80 cos’80 S 8¢p,, cos’ 80 i+
F(p*,p" )= + cos—2 cos—*+ + i Tsindp,,  (6)
(p"-p") 2 2 2 2 5 20 P
where des1gnat10n 6(p = 0¢, — 8(p is used. The minimum of (6) is achieved at 66 = 0 and
8(P1(3) 6(p2(4) 8(Pmax’
_1+cos’ 89,

min 2 (7)

Results and Discussion

Using explicit state parametrization (2), we provide the analytical computation of fidelity (6) and
estimate the single-photon phase error rate correction according to [4]:

E' = E" +4A'(1- A")(1-2E" ) +4(1 —2A')\/A’(1—A')E1”” (1-E"),

where the single-photon yield Y, and bit error rate E, bt are determined via decoy-state technique
taking into account the finite- key size effects [6]. Here we consider the worst case, when only a
part of the pulses reached to Bob due to losses, but all the different (in the sense of a quantum
coin) and useful for eavesdropper pulses were not lost during transmission over the channel.
That’s way we use A' instead of A:

E| Phase s used for the secret key rate calculation [7],

rslec :g[l_hz (Elphase ):|_fechz (EH), ()

i

where Q, is single-photon gain, O is signal gain and E is measured quantum bit error. Then we
study the effects of 50 and 6(pb =% Yuncertainties on . ."

Our main result is presented in Fig. 2. One can see that for the 100 km—Iong optical line the
critical (i.e. when 7. <0 no secret key can be distributed) value of a phase disturbance is about
1.5°. For the length of 50km our result is more promising — the key rate vanishes only for the

phase error is about 5°.
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Fig. 2. Minimized secret key rate (7) (per bit) lower bound as function of maximum phase modulation

error 59max. The parameters , Vs Vo, My Pyos P,y AT€ signal, week decoy and vacuum decoy intensities,

quantum efficiency, dark count rate probability and probability of the optical error respectively. The
simulation is run for the 50km (orange line) and 100 km (blue line) optical fiber distances.

Conclusion

From our research we conclude that rather precise (~ 1° for short distances and ~ 0.1° for large
distances) fine tuning of PM is required in order to have a reasonable secret key generation rate.
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