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Abstract: Nowadays, methods and techniques of Deep Learning are being used in various
scientific areas. In this paper, the applying of convolutional neural network was considered in
frame of problems from statistical physics and computer simulation of magnetic films. In a
frame of the first task, CNN was used to determine critical Curie point for Ising model on 2D
square lattice. Obtained results were compared with classical Monte-Carlo method and exact
solution. Systems of various lattice sizes and the influence of the size effect on the results’
accuracy were considered. Also, authors considered the classical two-dimensional Heisenberg
model, a spin system with direct short-range exchange, and studied of its competition with the
Dzyaloshinskii-Moriya interaction. A neural network was applied to the recognition of Spiral
(Sp), Spiral-skyrmion (SpSk) Skyrmion (Sk), Skyrmion-ferromagnetic (SkF) and Ferromag-
netic (FM) phases of the Heisenberg spin system with magnetic skyrmions.
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Annotanus. B HacTosee BpeMsi METOIbI IJTyOOKOTo 0OOYUYEHMST MCTOJIb3YIOTCS B Pa3IMUHbIX
Hay4HbIX obJyiacTsix. B naHHO# paboTe npruMeHeH1e CBEPTOUHOI HEMPOHHOM CETH PaCCMOTPEHO
B paMKax 3aJad CTaTUCTHUYECKONM (DM3WKKM M KOMITBIOTCPHOTO MOICIMPOBAHUS MaTHUTHBIX
wieHoK. B pamkax mepBoit 3amaun CNN wucmnonb3oBajiach ISl OMpPEAeeHUs] KPUTUUECKOU
Toukn Kiopu mna momenu WM3uHra Ha aByMepHO# KBaapaTHO# peuietke. IlomydeHHBIe
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pe3yJibTaThl CPABHUBAIUCH C KJaccuueckuM MeTtonoM MonTe-Kapio m TOUHBIM pelleHueM.
PaccMoOTpeHBI CUCTEMBI C pa3IMYHBIMU pa3MepaMU PelIeTKU U BIUSHUE pa3MepHOTo 3¢ ¢deKkTa
Ha TOYHOCTh pe3yjbTaTOB. TakxKe aBTOPHI PACCMOTPENIM KJIACCUYECKYIO ABYMEPHYIO MOJIEIb
[eiizenbepra, CIMHOBYIO CUCTEMY C MPSIMBIM KOPOTKOIEUCTBYIOIIMM OOMEHOM, U U3YUWIIU €€
KOHKYPEHIIMIO ¢ B3anmoeiicTeuem JI3smommHackoro-Mopus. HelipoHHast ceTh IpUMeHsIach
st pacnio3HaBanust CrimpanbHoi (Sp), CrnupanbHo-ckupMuoHHoil (SpSk), CkupMuoHHOMN
(Sk), Ckupmuon-deppomaruutHoii (SkF) u ®eppomaruutHoii (FM) ¢a3 crnuHOBOI CUCTEMbI
TeiizeHOepra ¢ MarHUTHBIMUA CKUPMUOHAMMU.

KmoueBbie ciioBa: CBepTouHast HEMpOHHAsI CETh, aITOPUTM MeTporionnca, Mmojesb M3uHra,
Moaenb ['eiizeHbepra, MarHUTHBIA CKUPMUOH
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Introduction

In the fundamental scientific works [1, 2], as well as in modern ones [3-6], much attention is
paid to lattice structures. The interactions between spins in the lattice sites can lead to collective
behavior and macroscopic effects, for example, as widely known as ferromagnetism or anti-
ferromagnetism. Also, recently, structures that have no analogues in natural materials have been
actively investigated. This is the reason for the use of supercomputer modelling to study such
artificial structures and theoretically predict their properties. Because of supercomputers, it possible
to use new classes of algorithms and operate with large and super-large amounts of data to carry
out numerical experiments. Numerical methods and computer simulation on a supercomputer
are of paramount importance in statistical and mathematical physics, nanophysics, and statistical
thermodynamics since supercomputers significantly speed up the solution of various scientific
problems [7]. And thanks to the development of machine learning (ML), the software tools for
conducting numerical experiments have significantly expanded recently, but scientists are just
beginning to reveal the full potential of introducing machine learning methods into their research
[8-10].

In our paper, we discussed the applying of CNN in frame of two problems from statistical
physics and computer simulation of magnetic films. The first problem is about determination of
critical Curie point for Ising model. And the second one is the recognition of different phases of
the Heisenberg spin system with magnetic skyrmions.

Research problems and methods

In our work, it was demonstrated that modern machine learning methods can provide new
approaches to the study of physical systems within the frame of statistical physics models. For
this, the TensorFlow library was used to create a convolutional neural network [11]. In this study,
the Metropolis algorithm for Monte Carlo simulation was applied to generate input data for the
neural network, and then compared with the results obtained after training the convolutional
neural network. We considered two mathematical models of statistical physics: the Ising model
with direct exchange and the Heisenberg one with the Dzyaloshinskii-Moriya [12,13] interaction
and skyrmions in a system, see more details [7,14]. All values in the work are given in dimensionless
values.
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4 Simulation of physical processes

A convolutional neural network

We used configurations of spin systems obtained at different simulation parameters for the
training and subsequent classification of them in a neural network. To date, the most accurate
analysis results are demonstrated by neural networks based on convolutional architecture. We
used the TensorFlow library to create a convolutional neural network and to classify our spin
systems to different phases.

In our research, we have reduced the problem of determining the phases of spin systems to
the problem of image classification - in fact, to the main problem area in which neural networks
are used. For recognizing images, CNN accepts them in the RGB format as a three-dimensional
matrix. In our case, the convolutional neural network received as input a three-dimensional array
representing the components of a spin.

Following this, the convolutional neural network learned, using the training dataset, to highlight
the features inherent in one or another spin configuration. Our CNN consists of next layers (main
ones), see Figure 1:

— ~——T ——T —T — ——T
Fig. 1. Architecture of the convolutional neural network

1. Input layer

Input data (configurations of spins), each of the neurons (spins) of which is assigned an
initial random weight. The components of a three-dimensional vector were fed to the network
input (i.e., the components of Heisenberg spin). The dataset was prepared using Monte Carlo
simulation data for training the neural network in state recognition.

2. Convolutional layer with 3x3 filter

When neurons are connected to only a few neurons in the next layer, the layer is said to be
convolutional. The convolutional layer acts as a filter that discards the least informative parts of
the input data. Each layer has filters (i.e., matrices with weight values). When the filter moves
along the matrix of the previous layer, each filter element is multiplied by the value of the neuron,
and the values are summed up and written to the feature map.

3. Pooling layer for reducing the dimensions of the data.

4. Fully connected layer

Fully connected layers are used for classification. All layers before the fully connected layer
are used to highlight various features that are fed to the input of the classifier. This layer can
also be used as the final (output) CNN layer, the result of which is the probability of the input
configuration of spins belonging to a certain class.

Results and Discussion
Determination of the second order transition of the Ising model

Different sets of input data of the neural network obtained with different parameters of the
Metropolis algorithm for systems of 10x10 and 20%20 Ising spins were used. The obtained data
will be used to select the optimal simulation parameters, which will be further used in the study
of more complex spin systems. A comparative analysis is carried out with the results of MC
modelling and the exact solution of Onsager.
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At the first stage, the network was trained on spin configurations obtained during on MC
simulation with the following parameters: system size: 10x10, 7= 0.1 ... 5.0 with a step of 0.01,
the number of MC steps for preliminary equilibration of the system: 10000, the number of MC
steps for calculating thermodynamic averages in the Metropolis algorithm: 10000, the sample size
of configurations for training the network: 50 per one step in temperature, the results are shown
in Fig. 2. In Fig. 2, the result of applying a convolutional neural network to the calculation of
the critical point 7 was presented in comparison with Onsager's exact solution and the result of
MC simulation.
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Fig. 2. Results of T calculations by various methods

The effect of system size on the accuracy of the obtained results was tested on the system with
20%20 spins. These values were generally similar to the ones given above. It should be noted
that an increase of the system size had a positive effect on the results of MC modelling in the
calculations of 7: T =2.29, due to a decrease of the influence of the size effect, while the increase
in the system size did not significantly affect the results of the neural network operation. The
accuracy of the predicted value of the critical temperature, in comparison with the case described
above, on average did not change, and in some numerical experiments it even worsened, because
network training is based on a probabilistic approach.

The recognition of different phases of the Heisenberg
spin system with magnetic skyrmions

Our second way of using the CCN was a data analysis of a study of different phases that
appeared depending on the magnitude of the external magnetic field and temperature 7 at fixed
Dzyaloshinskii-Moriya interaction D, see Fig. 3. The diagram in Fig. 3 shows that in the low
temperature zone we have ordered phases. Thus, the ground state is the spiral phase, which is
observed in the field range 0 — 0.3; with a further increase in the magnetic field, the spiral phase
passes into the skyrmion phase, after which a further transition from one phase to another is
observed, up to the temperature range 7' > 0.5, where the system goes into a paramagnetic state.
Skyrmions are thermally stable in a fairly wide temperature range, with an external magnetic
field H_from 0.8 to 1.5. The convolutional neural network was used to analyze the data obtained
from the Monte Carlo simulations for the recognition of the different phases of the spin system,
dependent on the simulation parameters.

One of the conventional methods is to compute the skyrmion number, which is evaluated to
keep track of the skyrmion creation process. However, it does not indicate the mixed states of
the spin systems very well, depending on the simulation parameters, e.g. a spiral-skyrmion phase,
therefore, we use the convolutional neural network in our work.

In a magnetic film, with an increase of the magnetic field strength and temperature, various
phases were observed for the flat Heisenberg spin systems: Spiral (S), Labyrinths (L) Spiral-
skyrmion (SS) Skyrmion (Sk), Skyrmion-Ferromagnetic (SkF), Ferromagnetic (F), Paramagnetic
(P) phases, see Fig. 3. In Skyrmion phase, due to the alignment of the stripes against the magnetic
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Fig. 3. Phase diagram (7, H) at D = 1.3

field, stable skyrmions are formed in the system. In these skyrmions, the spins of the nucleus are
directed against the magnetic field. In this study, skyrmions of the Bloch type were formed.

Conclusion

The paper considered the application of convolutional neural networks to determine the critical
temperature of a second-order phase transition in comparison with performed MC simulations
and known solutions. As it was shown above CNN could be successfully used to such problems by
reducing them to the problem of classifying spin states at different temperatures. The dependence
on the number of Monte Carlo steps and the sample size for the accuracy of training the network
and its subsequent application is shown in comparison with the Metropolis algorithm. Systems
of various sizes and the influence of the size effect on the accuracy of the results are considered.

The authors also noted the feature of the results obtained using neural networks to determine
T': if the calculation is performed using the Metropolis algorithm, then always T ME > 77 In
turn in the calculations carried out using convolutional neural networks 7, W T'7*". The reasons
for thls behaviour are the subject of future research, during which it is planned to apply neural
networks for studying more complex models and lattices.

Also, in the frame of the classical two-dimensional Heisenberg model, a spin system with direct
short-range exchange was modelled, and a study of its competition with the Dzyaloshinskii-Moriya
interaction was carried out. Due to the direct exchange interaction, the neighbouring spins of the
system are collinearly aligned, and, in turn, the Dzyaloshinskii-Moriya interaction contributes
to the deviation of the spins from parallel orientation. As a result, competition results between
collinear and noncollinear alignments of spins, which leads to the transition of the system of spins
from a ferromagnetic to a spiral ground state. In the presence of an external magnetic field, stable
topological structures, i.e., magnetic skyrmions, are generated in such systems.

One of the most effective and popular approaches in statistical physics is Monte Carlo
simulation, which consists of a stochastic sample over the state space and an estimate of physical
quantities. Monte Carlo methods are not only actively used to study various physical systems, but
also continue to actively develop and improve due to the development of supercomputers. The
ability of modern machine learning algorithms to classify, identify and interpret large data sets
and, on their basis, to predict new properties and states of the systems under study provides an
additional paradigm to the above approach for processing the exponentially increasing number of
analyzed states in statistical physics.
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