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Annotanud. JlaHHas cTaThs IIPOAOJDKACT LMK PabOT, MMOCBIIIEHHBIX PEIICHUIO TTPOOJIEMEI,
COTJIACHO KOTOPOW HEEeIMHUYHbIN KJIacC COMPSIKEHHOCTU B KOHEUYHOI MpOCTOi HeabesieBoit
TpyMIe COAEPKUT KOMMYTUPYIOLIME BJIeMeHTbl. PaHee 3To yTBepXkiaeHue ObLIO MPOBEPEHO
IJIsT CHIOPAAMYeCKUX, IPOCKTUBHBIX, 3HAKOMEPEMEHHBIX TPYMNIl U psiaa MCKIOUYUTEIbHBIX
rpynn. B aroii paboTe mpoBepsieTCsl CIpaBeIMBOCTD BBIIICYIOMSIHYTOIO YTBEPXKACHUS IS
CEpUM MCKIIIOUMTENIbHBIX KOHEYHBIX MPOCThIX rpynn *F, (q). ITocne ocHOBHBIX onpeneneHuii
JIOKA3bIBAIOTCSl JIBE TEOPEMbI: O COJAEPXKAHUM B TPyMINe KOMMYTUPYIOIIMX DJIEMEHTOB U O
HaJIWYNU COTPSKCHUS ITOJYIIPOCTOIO 3JIEMEHTa CO CBOMM OOpaTHBIM. 3aTeM pacCMOTPEHBI
KJIACChl YHUMOTEHTHBIX M CMEIIaHHBbIX 32JieMeHTOB. Mcrnoiab30BaHHbBIE B CTAaTb€ METO/bI
HCCeA0BaHUSI peKOMEHIOBAHO IIPUMEHSTH IJIsI IIPOBEPKU OOI1Ie i TUIIOTE3bI IPY PACCMOTPEHUU
JNPYTUX TPYMII.
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Introduction

Investigations of left distributive quasigroups, i.e., binary systems G(o) with the left-distributivity
identity

xo(yoz)=(xoy)o(xoz) forx,y,zeG(o),

have led to the problem that should be solved via calculations based on the theory of finite groups.
The left-distributivity identity is appealing because the mapping

L =(x—>aox)

in the binary system G(o) containing it, is clearly an endomorphism, or even an automorphism if
G(o) is a quasigroup.

This issue is thoroughly explored in [1]. Consideration of left distributive quasigroups is equiv-
alent to consideration of homogeneous spaces, i.e., a set containing cosets of a subgroup 7 in
group II. Turning to groupoids and weakening the axiom of right divisibility x o a = a > x = a, it
generally follows that a groupoid cannot be represented by a homogeneous space.

Left distributive groupoids are often found in applications, manifesting close relationships to
groups. Symmetric spaces can be given in differential geometry, characterizing the nodes from a
topological standpoint [2,3]. Representations of finite groups by homogeneous spaces have been
described by Erofeeva in several studies [4—6]. Apparently, this statement is equivalent to the
hypothesis borrowed from pure group theory, assuming that a union of two conjugacy classes in a
finite group always contains commuting elements. An even stronger assertion is formulated in [7],
arguing that a non-identity class in a finite non-Abelian group must contain commuting elements.

This study continues to verify the hypothesis put forward in [7] that a non-identity class of
conjugate elements in a finite simple group contains commuting elements. We have earlier tested
some exceptional Lie-type groups and simple groups SP,(¢g) in [8—11]. In this paper, we intend
to test a series of exceptional groups *F,(q).

Basic definitions

General information about Chevalley groups is assumed to be known. This is discussed in suffi-
cient detail in the monograph by Robert Steinberg [12]. Specific results on the structure of groups
F,(q) and ?F,(q) are primarily given in Ken-ichi Shinoda’s studies [13, 14], as well as in [15].

Here we generally follow the notations adopted by Shinoda [13, 14]. Let us point out some
differences. The main field in group F,(g) is a field of g-elements, g = 2**'; conversely, Shinoda
uses the letter / instead of g, while ¢ = VI. Further, the author 1ntroduces the notation x,,; for
a = e, L e instead of x (7), writing x,,,,, for a = 1/2(e Te te te).

Below ‘we give the main definitions of groups F,(¢) and 2F .(q). The type F, Dynkin diagram
has the form shown in Fig. 1. The vertices 1, 2, 3, 4 of the graph in it correspond to the roots

. . . 1
€, —6; €76, €, E(el 66 _64),

1 2 3 4

Fig. 1. Dynkin diagram:
graph vertices 1—4 correspond to the roots e,— e,, e,— ¢,, ¢,, (e, — e,— e,— ¢,)/2

where e, (i = 1,2,3,4) is a system of orthogonal unit vectors in R'.
The complete system of roots consists of vectors

1
te;te te; (i# j)and E(ie1 te, te te).
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Group F,(g) is defined by the generators x (7), where a is the root, 7 € F is the finite field of ¢
elements w1th certain ratios (see [12, p. 32]); notice the commuting form fere:

(*. @, %) =TT..., (c;tw )(@+p=0),

where ¢, are some constants from the main field.

The ‘twisted’ group 2F,(q) is constructed as follows. The so-called automorphism o is selected
in the Dynkin diagram (see Fig. 1). 1<4; 2<3. Apparently, it can be continued until some per-
mutation of all roots, where the long root is mapped onto the short one, and vice versa. The so-
called field automorphlsm ®: x — x*, is selected in the field F 2 Now the automorphism ¢ over
group F,(¢g) acts on the generators x ( 7) that are root subgroups in the following manner:

Xo(o (t®), if o is the long root,
Xoa (%), if o is the short root.

c:x,(t)—> {

The subgroup of o-fixed elements in group F,(¢) is precisely the required group 2F,(q), which

is simple at n > 1. A separate case is group *F,(2), for which the field automorphism © is identical
provided that n = 0. This group is not simple, but its commutator (*£,(2))’ of index 2 in 2F(2) is.

Analysis of the group 2F,(q)

The following statements are crucial for subsequent consideration of group 2F,(g).
Statement 1. The involution class in a finite simple group contains commuting elements.
It is not necessary to prove this, since it follows from Glauberman’s theorem from group
theory (see [7] for more details).
Statement 2. [If the number of classes containing elements of this order n with centralizers of the
same order is less than ¢(n), the class contains commuting elements.
Here ¢(n) is the Euler function.
This statement can be assumed to be elementary; it is also proved in [7].
Let us now examine the corresponding group.
Theorem 1. The non-identity conjugacy class in group *F,(q) contains commuting elements.
Proof. Consider the data in Table 1,
Table 1 where the element classes and their central-

Representatives of conjugacy classes izers for group (°F,(2))" are given (the table
for group (°F,(2))’ is taken from Atlas [16]). For example, Table
shows a representative of the conjugacy class
Element class Centralizer 84, 8 B”; this means that there are two classes
21 10240 84 and 8B containing 8"-order elements
with 32"-order centralizers of the correspond-
2B 1536 ing elements. The presence of commuting ele-
34 102 ments in the involution class is guaranteed by
44 192 virtue of Statement 1, assuming that this holds
4B 128 true for any finite simple group. Statement 2

4C 64 is applied for the remaining classes.

The theorem is proved.
54 0 Let us now examine the classes of
64 12 semisimple elements.
84, 8B™ 32x2 Theorem 2. The semisimple element in group
8C, 8D 16x2 *F,(q) is conjugate to its inverse.

104 10 Proof. Notice that a semisimple element
DA 128 12 has an odd order, i.e., there are no involutions
> — among semisimple elements. A semisimple el-
134, 13B 13x2 ement in the algebraic group G, obtained from
164, 16B™, the group G by algebraic closure of the field
16C™, 16D 16x4 F is conjugate to a Cartan element, i.e., an

element of the form
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B (6)h, ()

where a,, o,, a,,... are simple roots.

We use o to denote an element of the Weil group, which can be obtained by taking the prod-
uct of reflections relative to four orthogonal roots, for example, relative to vectors e, e,, e, e,.
Conjugating the Cartan element using o converts it into an equality

By (@D (8o =H, ()R, (2).. .

However, the element h_ (Hh_(r') commutes with elements of any root subgroup x (), and
the center in the universal adjoint group of type F, is trivial [17]. Therefore, h_ (1) = (Bza(t))*1 is
conjugate to 4 (7). Thus, a semisimple element is conjugate to the inverse in the algebraic group.
Conjugacy in subgroup ?F,(¢g) of the algebraic group follows from the above observation on the
triviality of the center [17,18].

Further reasoning here is as follows. The algebraic group F, is simply connected, the central-
izer of the semisimple element is connected (see [17, p. 192, sentence 3.9]). Making a transition
from the algebraic group G to G, there is no splitting of the class of semisimple elements, i.e.,
the element from the group G conjugate in G is also conjugate in G_ (see [17], p. 171, 3.4 (¢)).
Conjugacy of a semisimple element to the inverse in an algebraic group is discussed above.

The theorem is proved.

Next, we consider the class of unipotent elements.

There are 18 classes of unipotents in ?F,(g), listed in [13] together with the order of centralizers

for the corresponding elements. Here we
Table 2 present a fragment of this table.

Selected classes of unipotent elements The table compiled by Shinoda [13]
7 does not provide classes x,—x,, because the
u [£(w) u~x corresponding representatives are conju-
u, q'*(qg—1D(g*+ 1) X, gate to the inverse ones as the centralizer
u, 7"°(q> - 1) X, order has a single value.

20(a — 1) (a* + 1 The orders of class representatives x,

U, q'(¢—D(g°+1) X are oiven i -
- > given in [15]. In particular, the rep-
U 29'(g=D(g"+ 1) Xig resentatives of classes u, and u, are invo-
u,, 4q* X,q lutions (x,, x, have the order equal to 2).
u, 4q* X, Consequently, _they contain commuting
U 24 X elements, by virtue of Statement 1. The
= 3 24 orders of elements u,, and u,, equal to
Uy 29 X2g the order of elements x,,, are equal to 8,
U, 4q* X, so, according to Statement 1, both classes
u, 4q° X, contaip commpting elements. The same
y 4q? X reasoning applies for classes u, and u,,
12 > 34 whose orders of elements are equal to 8,
Uy 4q Xy and for classes u,;—u,, whose orders of

182
Note: u, x, are the class representatives in subgroups 2F,(q) elements are equal to 16.

and in F,(q), respectively, |Z(u)| is the order of the centralizer Now the remaining step is to consider
Z(u) of the corresponding element. classes with the representatives

uy = x,(1)x,_, ()x, (Dx, (Dx,,, (1) and u, = x,(1)x,_, (1)x, (D).

Both classes are inverse to each other, which is easy to verify using the commutation formula
or, alternately, taking into account that both classes merge to F,(g). Thus, it is sufficient to con-
sider one of them, for example x,.

We obtain the following equality:

uy = ous(1) = x, (Dx;_, (Dox, (D).

This element lies in a subgroup generated by the root subgroups
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X, (1), ‘xi(l—Z)(t)b X, (2).

This subgroup corresponds to the following Dynkin diagram in Fig. 2.

a = »
2

Fig. 2. Dynkin diagram:

e,, (e, — e,) are the roots of the graph vertices

e e — e

The Dynkin diagram is constructed by the well-known technique, based on the scalar product
of the vertex roots. A graphic automorphism represents the vertices, the field automorphism
remains the same as in group F,(g).

The twisted variation leads to the Suzuki ?B,(g) group, for which the hypothesis put forward in
[7] has already verified in [9]. Thus, the class of conjugate elements u, must contain commuting
elements even in the subgroup 2B,(q) c 2F,(q).

Let us now examine the class of mixed elements.

Shinoda [13] compiled information about mixed elements into a table, which is given
below (Table 3).

Classes of mixed elements

Table 3 [13]

N Class representative Centralizer order
1 £x,(x, (1) 7*(q-1)

2 o, (1, (Dx, (1) 2¢°(q— 1)

3 £, (D, (D)x, (1) 29(q - 1)

4 10X (DX (D) q(qg—1)

5 1Y s (DX (1) g+ 1)

6 tx, (Dx, (Dx o (t)x, (D (D, (129) 3¢?

7 £x, (x, (x5, (T)x, (7)x, (P)x, (1) 3¢?

8 o, (Px, ()X, (T,)x, (*)x, (), () 3¢?

9 tX 0 (DX, (D) q(qg + 1)

10 £6,(1x, (1) 7(q—2q+1)

11 £ (Dxy(Dx (1) 29(q ~ V2 +1)
12 tx,,(Dx, (D, (1) 29(q ~ V2 +1)
13 tx,(Dx, (1) gHg+\2g + 1)

14 tx,(Dx,(Dx (1) 2g(qg +\2g + 1)
15 tyx, ,(Dx, (D, (1) 29(q +\2g + 1)
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Table 4
Structure of centralizers for semisimple elements
! Centralizer order Structure
t (- Dg*(qg—D(g*+ 1) Z,’B(q)
t, (g—Dalg—1) Z_SL,(q)
1

£, 3543(42 - D(g*+ 1) ZsU3(Q)

L (g + Dg(g>—1) Z,.SLy(q)
t, (q—\2g + Dg*g - (g + 1) Z 5.2B9)
t, (q+\2q+ Dg*(g—1)(g +1) Z . 5. ’B(q)

Conclusion

Here the representatives of the classes are written as a product of semisimple and unipotent
factors, i.e., x = x - u_is a decomposition of the mixed element into a product of a semisimple
factor x, and a unipotent u. The factors commute if the decomposition is of the Jordan type, but
this requirement is not always satisfied in Table 3 for representatives of classes containing mixed
elements. It follows from the existence of the Jordan-type decomposition of the mixed element
that it lies in the centralizer of the semisimple factor. In turn, it is easy to determine the structure
of the centralizers of semisimple factors. Each such centralizer Z(f) contains powers of ¢ and,
being a reductive group, has a semisimple factor. It is not necessary to consider the elements ., 7,

L, Lo» 1,5 1, since their centralizers do not contain unipotents of semisimple elements. Inspecting

the centralizers 7, ¢, 1,, &, t, ,, we find that they have semisimple parts of the orders. The struc-
ture of the centralizers of the semisimple elements considered is given in Table 4, where the factor
of type Z is a cyclic group consisting of the powers of 7 and included in the center of the cen-
tralizer 7. The second factors *B,(q), >SL,(q), U,(q) represent a Suzuki group, a linear group and a
unitary group, respectively. Notably, these factors are simple groups. The presence of commuting
unipotent factors lying in the same class is proved in [7] for the Suzuki group *B,(¢g) and the linear
group *** (q). The commutator of the Sylow r-subgroup for an identity group lies in its center. If
the unipotent lies in the center, conjugating it to an element from the Cartan subgroup gives a
commuting element from the same conjugacy class. If the unipotent « is not from the center of
the Sylow p-subgroup, then there is another unipotent «', not commuting with u. Elements # and
u' =u' -u- (u)'lie in the same class and commute, since their commutator lies in the center of
the Sylow p-subgroup. Elements x and «' - x - (¢')"' clearly commute, lie in the same class, and
are in fact different, since u’' # «". This concludes the consideration of mixed elements.

This study makes another step towards verifying the general hypothesis that a non-identity
conjugacy class in a finite simple non-Abelian group contains commuting elements. We have
described the methods for testing this hypothesis for the exceptional group 2F,(q).

The research methods used in the study can be directly applied to verifying the general
hypothesis for analysis of other groups.
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