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OBOBLIEHHASA NMOMPABKA K MNMOTEHUHXAJIAM
NMOrPY>XXEHHOIo ATOMA Ana MOAE/IMPOBAHUA
PABHOBECHbIX U HEPABHOBECHbIX CBOMCTB METAJIJ/IOB

A.B. BepxoBueB', A.B. Koponb', I.b. Cywko',

2, A.B. ConoBbés'

! HayyHo-1ccneaoBaTeNbCKUM LEHTP ME30OMOHAHOCUCTEM,
r. ®paHkdypT-Ha-MaiHe, epmaHus;
2 YHuBepcuTeT uM. F'éTe, 1. PparkdypT-Ha-MaltHe, MepMaHus

IIpennoxena MoanduKalms TOTeHIMAIOB orpyxkeHHoro aroma (EAM) nist onmurcanust paBHO-
BECHBIX M HEPAaBHOBECHBIX CBOMCTB METANIMUYECKUX CUCTEM B paMKaxX KJIACCUYECKO MOJIEKYISIPHOM
nuHaMuKkM. JlaHHas Mmoaudukanuss 06o011aeT pa3paboTaHHYIO paHee aBTOpaMU JIMHEHHYIO TToMpaB-
Ky K TToTeHIIanam turna EAM 1 acuMnToTu4ecKy yObIBaeT Ha OOJIBIINX MEXATOMHBIX PACCTOSIHUSX.
OnucaHa npolueaypa NoCTpoeHUs MOIUMUIIMPOBAHHBIX MTOTEHIIMAIOB 1 TTOKa3aHa CBSI3b JaHHOW MO-
nuduKaluy ¢ TMHeHOo nonpaBkoi. [1pemioxkxeHHas MoauduKays NCIoib30BaHa IS MOAEIUPO-
BaHUs Mpollecca TIaBICHUS U U3yYeHUS Psiia PAaBHOBECHBIX CBOMCTB HAHOCHCTEM U3 cepedpa, 30J10-
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Ta ¥ TUTaHa. Pe3yabTaThl pacueToB, MPOBEACHHBIX TTPU TTOMOIIY MOIUGUIIMPOBAHHOTO MOTEHIIMATIA,
MpeACcKa3bIBaloT 00JIee BRICOKKME TEMITepaTyphI TJIaBJICHUS METAJUIOB, IO CPAaBHEHUIO C M3HAYaTbHBIM
noreHuaiom tuna EAM, 4To Jydilie corjiacyeTcsl ¢ 9KCTIepUMeHTaTbHBIMU JaHHBIMU. MHOTOYa-
CTUYHBIN TOTeHLIMaI TUMa [yrnTa paccMOTpeH B KauyecTBe MprMepa, HO MpelioKeHHas MonuduKa-

11T MOXKET TakKXKe MIPUMEHSIThCS M K IPpyTUM MoTeHuaiaM tuna EAM.

KiroueBbie ciioBa: MeTom MOJIEKYISIPHOM TWHAMUKW, MHOTOYACTMYHBIM MOTEHIMAN, (Ha30BbIi

IIEPEXoa, MCTAJIJIMYCCKAaA HaHOYACTULIA

Ccpuika mpu murupoBanun: Bepxosues A.B., Kopons A.B., Cymko I'b., Ilpamm ., Co-
JoBbEB A.B. O0001IeHHasT TIONpaBKa K MOTEHIMaJaM IMOTPYKEHHOIO aToMa ISl MOJETUPOBAHUS
PaBHOBECHBIX U HEPABHOBECHBIX CBOMCTB MeTauioB // HayuHo-Texuudyeckue Benomoctu CIIOTTIY.
®dusuko-maremarnyeckue Hayku. 2020. T. 13. Ne 3. C. 23—41. DOI: 10.18721/JPM.13303

CraTbsl OTKPBITOTO J0CTyMa, pacinpoctpaHsemMas mo auieH3uu CC BY-NC 4.0 (https://creative-

commons.org/licenses/by-nc/4.0/)

Introduction

Computer simulations based on atomistic
models have emerged as a powerful tool for the
analysis of physicochemical processes occur-
ring in materials and related materials proper-
ties [1]. A vast number of atomistic simulations
employ molecular dynamics (MD) methods that
require the evaluation of total potential energy
of many-atom systems and the forces acting on
constituent atoms [2, 3]. MD simulations provide
insights into many physical processes, such as dif-
fusion [4 — 6], plastic deformation [7, 8], melting
[9 — 11], crystallization [10, 12] and other phase
transformations [13, 14]. All of these processes
happen on temporal and spatial scales exceed-
ing by far those accessible by ab initio methods.
In order to reach these scales, semi-empirical
interatomic potentials parameterized for specific
material compositions and structures are used |3,
15 — 17]. A potential constructed by fitting to a
specific set of properties should perform well for
other properties that were not explicitly consid-
ered during its construction phase [18].

Different interatomic potentials [19 — 24]
belonging to a general class of embedded-atom
method (EAM)-type potentials are commonly
used in MD simulations of metal systems [25].
In the past decades, more complex potentials,
based on the modified EAM (MEAM) or the
second-neighbor (2NN) MEAM, have also been
developed for different metals and alloys (see,
e.g., a few recent examples [26, 27]). Parameters
of these potentials are usually fitted to reproduce
experimental data on the properties of bulk ma-
terials (e.g., cohesive energy, equilibrium lattice
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constants, bulk modulus, elastic constants, va-
cancy-formation energy, etc.) or fitted to zero-
temperature ab initio calculations of perfect crys-
talline structures.

It has also been widely discussed that EAM-
type potentials are less accurate in describing the
dynamics of systems being far from equilibrium,
for instance, the melting phase transition. In par-
ticular, these potentials often struggle to repro-
duce the experimental values of melting temper-
ature for bulk metals and yield the discrepancy
up to several hundred degrees [5, 28 — 30]. This
indicates the necessity to modify the exploited
force fields in order to enable a more accurate de-
scription of systems’ properties at elevated tem-
peratures. An accurate description of both equi-
librium and nonequilibrium properties of metal
systems is important, e.g., for studying irradia-
tion-driven phase and structural transformations
of nanostructures [31, 32] or irradiation-induced
chemistry underlying novel nanofabrication
techniques [33, 34].

Different approaches to account for fi-
nite-temperature effects in classical force fields
for metal systems have been discussed in litera-
ture. A method for re-parameterization of in-
teraction potentials was proposed [35] to adjust
the calculated melting temperature of materials
without affecting mechanical properties to which
the potentials were fitted. In that method, the
melting temperature was calculated using a trial
interatomic potential and the Gibbs — Duhem
equation (which relates changes in the chemical
potential of a system to changes in its tempera-
ture and pressure) was then solved to update the
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parameters of potentials. This method was applied
[35] to re-parameterize an EAM-type potential
for Al and improved the calculated bulk melt-
ing temperature without considerable change in
other properties. A correction to a many-body
force field for titanium proposed in Ref. [36] in-
cluded the contribution of thermal excitations of
electronic degrees of freedom. In that approach,
an EAM-type potential was augmented by an
additional term (related to electronic entropy)
that arises from the Sommerfeld theory of met-
als. According to that theory, there is a temper-
ature-dependent contribution to the free energy
of a metal system that depends also on the density
of states at the Fermi energy. In Ref. [37], sev-
eral parameterizations of EAM-type potentials
for Ti describing defects, plasticity and melting
were presented. These potentials fit well to ei-
ther low- or high-temperature experimental data
but could not describe both temperature regions
simultaneously. On this basis, a temperature-
dependent potential, being a combination of po-
tentials operating better in different regions, was
suggested to study the properties of Ti in a wide
temperature range. The knowledge accumulat-
ed in these studies suggests that modifications of
conventional EAM-type potentials are required
in order to match the calculated nonequilibrium
properties (the melting temperature in particu-
lar) of metal materials to experimental values.

In our previous work [38], we presented a
modification of an EAM-type potential (consid-
ering a many-body Gupta potential [39] as an ex-
ample). With that modification, both the melting
temperature and the near-equilibrium properties
of selected metal systems were reproduced. It was
revealed that augmenting steepness of the inter-
action potential by enhancing its repulsive part
leads to an increase of the melting temperature.
This happens because a higher thermal energy is
needed to reach the threshold of atomic vibra-
tion amplitudes at which the melting occurs. To
that end, the original EAM-type potential was
augmented by adding a linear term to the repul-
sive part [38]. The linear correction represented
a minor change to the potential energy but led
to a significant increase of the melting tempera-
ture. It was applied to study thermal, geometrical

and energetic properties of magnesium, titani-
um, platinum and gold, yielding a good agree-
ment with experimental results. In Ref. [40], this
method was used to evaluate melting points of
finite-size NiTi nanoalloys with different com-
position of Ni and Ti. These results were used to
evaluate bulk melting temperatures of Ni_Ti_
alloys, which agreed with an experimental phase
diagram for the NiTi material.

In this paper, the previously developed meth-
odology is generalized in the form of a new mod-
ification of an EAM-type potential. This modifi-
cation represents a linear function multiplied by
a sigmoid function, which gradually tends to zero
beyond a given distance. A general procedure for
constructing this modification is outlined and its
parameters are related to the parameters of the
linear correction [38]. The modified EAM-type
potential is used for MD simulations of melting
of nanometer-sized nanoparticles made of sil-
ver, gold and titanium. Structural and energetic
equilibrium properties of these systems, such as
lattice constants, cohesive energy and vacancy
formation energy are also analyzed. Our results
demonstrate that the new modification is appli-
cable for metals with both cubic and hexagonal
crystalline lattices. To be consistent with our pre-
vious works [38, 40] the Gupta potential is con-
sidered as an example but we stress that the mod-
ification proposed can also be applied to other
interatomic potentials of the EAM type, e.g., to
Sutton — Chen [20] or Finnis — Sinclair [41] po-
tentials.

EAM-type Gupta potential

Similar to other many-body potentials of the
EAM type, the Gupta potential is constructed
as a sum of (i) a short-range repulsive term that
stems from the repulsion between atomic cores
and (/i) a long-range attractive term which im-
itates delocalization of the outer-shell electrons
and is related to electron density at a given atomic
site. The total energy of an N-atom system inter-
acting via an EAM-type potential reads as

N

D WS WACH
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(1)
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where V(rl.j) is the short-range repulsive inter-
action between atoms / and j separated by the
distance r the attractive term F, stands for the
energy obtained by embedding atom i into the lo-
cal electron density p, provided by the remaining
atoms of the system.

The functional form of F(p,) may vary in dif-
ferent EAM-type potentials [25] while the Gupta
potential employs a specific form of this function,

Fi(p,) < —p;.

This functional form is based upon the sec-
ond-moment approximation of the tight-binding
model [42, 43], according to which the attrac-
tive many-body term is related to the energy of d
valence electron band and expressed as a square
root of p.. The latter is constructed empirically as
a linear superposition of electron charge densities
of constituent atoms,

p=2. V().

Within the Gupta representation, the func-
tions V(r,.j.) and \y(r[j) are introduced in exponen-
tial forms so that the total potential energy UGup
reads as follows:

iy

=S| L5

J#i

i=1

2)

where d is the first-neighbor distance; p,q are
related to bulk elastic constants; & represents an
effective orbital-overlap integral; A adjusts the
cohesive energy.

The parameters for silver, gold and titanium
used in this work were taken from Ref. [22].

Linear correction to EAM-type potentials

The EAM-type Gupta potential (2) corrected
with the linear term U, introduced in Ref. [38]
reads

26

u=Ug,, +U,, =

Gup lin

1 N
EUGUP +EZ(BFIJ' +C)’

i,j=1

)

where B and C are parameters.

The linear form was chosen to match the cur-
vature of the modified potential energy profile in
the vicinity of the equilibrium point (governed by
the second derivative of potential energy U) to
that of the original EAM-type potential.

As discussed in Ref. [38], the term Brij (B>0)
makes the potential energy profile steeper at inter-
atomic distances exceeding the equilibrium point
r, whilst also slightly changing the depth of the
potential well at r,. The constant term C < 0 was
therefore added to mitigate the latter effect. In Ref.
[38], parameters B and C were obtained empiri-
cally for a specific cutoff distance r, for titanium,
gold, platinum and magnesium. As shown below,
these parameters can be derived for any material
and any r, using the following analytical estimate.

The correction to an EAM-type potential
should not change the cohesive energy of a bulk
material to which the potential was fitted. There-
fore, the change in the total potential energy due
to a linear correction should be equal to zero. If
we approximate the real crystalline structure of a
metal with a uniform distribution of atoms with
number density n,, this condition can be written
as

[ ny(Br,+C)av=o, (4)
leading to the relation
3
C=——_Br. 5
R (5)

Fig. 1 shows (by lines) the calculated depend-
ence C(B) for gold and titanium for different val-
ues of . These parameters of the linear correc-
tion leave intact the cohesive energy of bulk met-
al systems. Bulk gold and silver have fcc crystal
lattices and very similar lattice constants, so the
results shown for gold also describe silver crystals.
For each metal we consider three cutoff distanc-
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es between 6 and 8 A, corresponding to minima
in the radial distribution function (see the ver-
tical lines in Fig. 2). The indicated values of r,
were chosen following Ref. [22]. In that work,
the parameters of the Gupta potential for the fcc
metals were derived accounting for interatomic
interactions up to the fifth-neighbor shell, while
the suggested cutoff values for titanium and other
hep structures corresponded to inclusion of seven
to eight shells of neighboring atoms.

The linear correction causes a small dis-
placement Ar of atoms from their equilibrium
positions defined by the original EAM-type
potential. Expanding U in a Taylor series about
the equilibrium atomic positions for the original
potential and keeping only the first term of this
expansion one evaluates a change in potential
energy associated with Ar as

0.00 T T T y T y T
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AU =—F, Ar =
2 4Y ¢ (6)
—? FI’IOAI".

3

As it was demonstrated in our earlier work
[38], augmenting steepness of the interatomic po-
tential beyond the equilibrium point by enhanc-
ing the repulsive contribution of the force field
leads to a rise of the melting point. It happens
because an increased thermal energy is needed
to reach the threshold of atomic vibration am-
plitudes at which the melting phase transition
occurs. Knowing the experimental bulk melting
temperature 7" and the value predicted by the
original Gupta potential, T mG“p, parameters Band C
can be chosen such that an increase in the melting
temperature will be equalto AT =7 - T mG“p.
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Fig. 1. The C(B) dependence for Au (a) and Ti (b) for different cutoff values 7 ;
lines show the results obtained using Eq. (5); symbols show the results of structure optimization
calculations which account for the realistic crystal structures (see the ‘Results and discussion’ section)
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Fig. 2. The calculated radial distribution functions (RDFs) for 10-nm Au (@) and Ti (b) nanoparticles
(composed of approximately 30,000 atoms). The used cutoff values r, are shown by dashed lines
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Egs. (5) and (6) define, for any r, a com-
bination of parameters B, C that reproduce
experimental values of cohesive energy and melt-
ing temperature of bulk materials. These condi-
tions were used to define B and C for the three
metals studied.

Generalized modification
of EAM-type potentials

In this section, we generalize the above de-
scribed methodology and propose a new modifi-
cation of an EAM-type potential. The modifica-
tion should keep features of the linear correction,
i.e., maintain its behavior in the vicinity of atomic
equilibrium points and enhance the repulsive
interactions with an increase of atomic displace-
ments. We construct the modification in such a
way that it contains a parameter describing the
characteristic range of the potential thus elimi-
nating the dependence of the potential on the
choice of the cutoff distance. These conditions
are fulfilled by multiplying U, by a sigmoid func-
tion which is equal to unity at small interatomic
distances and asymptotically approaches zero be-
yond a given distance. The modified EAM-type
Gupta potential then reads as

U :UGup +Umod =
1, Br.+C (7)
U, +=-y —L —
o 2:‘;1+ex(”"_rs)

The parameters B and C have the same
meaning as B and C in Eq. (3): B defines an ad-
ditional force acting on the nearest atoms and
C adjusts the depth of the potential well in the vi-
cinity of the equilibrium point where U = 0. The
parameter A describes the slope of U, at large in-
teratomic distances, while r, defines the sigmoid’s
midpoint and hence the range of this potential.
Fig. 3 shows the potential U, for a pair of atoms
as a function of interatomic distance . Due to
its sigmoid-type shape, U  (r) asymptotically
approaches zero and its range serves as a natural
cutoff distance for this interaction.

For each pair of atoms, the potential U, grows
monotonically with interatomic distance up to the
cutoff r, and all atoms located within the sphere
of radius r, experience the same force exerted by
a given atom. On the contrary, U  has a maxi-
mum at interatomic distances of about 5 — 8 A
depending on the choice of A and 7, (see Fig. 3).
Thus, the force exerted by an atom due to U, ,

0.02 . T ' . T T
S
)
3 0.00
()
c
qJ B -
- [ =
§ -0.02 +
@] ;
o A=18A"7 A=27A" A=584"
rr=49A r,.=6.6A rr=81A
-0.04 : ' . L
0 2 4 6 8 10

Interatomic distance (A)

Fig. 3. Plotsof U (r) (7) for different values of the parameters (solid lines) and U, (a dashed gray line) vs.
the interatomic distance r, and also the piecewise linear approximation U, _,(7) (8) (dotted curves,
see the Appendix for details). The used procedure of deriving the parameter values is given in the text
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enhances interaction with several nearest atomic
shells while the interaction with more distant
atoms weakens. The strength of this interaction is
governed by the steepness of the potential beyond
its maximum, i.e., by the parameter A. Therefore,
the force acting on the nearest neighbors due to
U, ., should exceed (by the absolute value) the
force F, as its effect is compensated by weaker
interactions with more distant atoms. Thus, for
each pair of atoms interacting via U, (r), the in-
itial slope of the potential should be steeper than
the slope of U, (r), i.e. B> B.

To analytically derive parameters of the new
modification, U, (r) in Egs. (4) and (6) was sub-
stituted with U, (r) — a piecewise linear approx-
imation of the sigmoid-type function U, (r), see
Eq. (8) in Appendix. Then, parameters of this
function were expressed through the parameters
B and C of the linear correction. As a last step of
this procedure, U, ,(r) was fitted with u.m
to derive A and r,. Further technical details are
given in the Appendix. The parameters of U
used for an analysis of melting temperature and
near-equilibrium properties of silver, gold and ti-
tanium nanosystems are summarized in Table 1.
Details of this analysis are presented below in the
‘Results and Discussion’ section.

The modification U, (7) is qualitatively sim-
ilar to the well-known Dzugutov potential [45]
which was developed to model glass-forming
liquid metals. The Dzugutov potential coincides
with the Lennard — Jones potential at small in-
teratomic distances but has a maximum beyond
the equilibrium point. This enables the suppres-
sion of crystallization and enforces the emer-
gence of icosahedral structures. The maximum

of U corresponds to the positions of more dis-
tant atoms (see Fig. 3 and the RDFs in Fig. 2).
As a result, the modification U, does not affect
crystal structure but leads to an increase in the
melting temperature whilst slightly changing the
near-equilibrium properties of metals.

Computational details

All simulations described in this work were
conducted using the MBN Explorer software
package [46]. We considered spherical nanopar-
ticles with radii from 1 to 5 nm (ranging from 250
to 30,000 atoms) that were cut from ideal silver,
gold and titanium crystals. The systems were
constructed using the MBN Studio software [47].

Prior to the analysis of the structural and en-
ergetic parameters of each system, energy mini-
mization calculations were performed using the
velocity-quenching algorithm. The MD simu-
lations of the melting process were performed
using a large simulation box of 20 x 20 x 20 nm in
the NVT canonical ensemble. The temperature
T was controlled by a Langevin thermostat with
a damping time of 1 ps. The nanoparticles were
heated up (starting from the initial temperature
T, well below the expected melting temperatures,
T, =300 K for Ag and Au and 1000 K for Ti) with
a constant heat rate of 0.5 K/ps, which is within
the range of typical values used for MD simula-
tions of phase transitions. The total simulation
time for each run was 3 ns. The time integration
of the equations of motion was done using the
velocity-Verlet algorithm [2] with an integration
time step of 1 fs. In the calculations performed
with the linear correction U, , the interatomic in-
teractions were truncated at the cutoff radius r,

Tablel
Parameters of the potential U,
Element B,eV/A C.,eV A, AT r, A
Ag 0.009 —0.048 5.93 7.10
Au 0.026 —0.145 4.68 7.36
Ti 0.052 -0.269 2.77 6.68

Notation: B isan additional force acting on the nearest atoms; C adjusts the depth of the potential well

in the vicinity of the equilibrium point where U = 0; A describes the slope of U at large interatomic

distances; r, defines the sigmoid’s midpoint.
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ranging from about 6 to 8 A as shown in Fig. 2. In
the case of the potential augmented with U, i
range served as a natural cutoff distance, Wthh
varied between 8 and 9 A.

The melting temperatures of nanoparticles
were determined from the analysis of heat ca-

pacity
C, = (6E /oT )V

defined as a partial derivative of the internal en-
ergy of the system with respect to temperature
at a given volume. A sharp maximum of C,, was
attributed to the nanoparticle melting and the
position of the maximum was referred to as the
nanoparticle’s melting point. The bulk melting
temperature 7 was estimated by extrapolating
the obtained values to the N — oo limit accord-
ing to the Pawlow law [48, 49],

with y being the factor of proportionality.

Results and discussion

Fig. 1 shows the dependence C(B) that de-
scribes the parameters of the linear correction
U, at different values of cutoff r. Dashed lines
were obtained by means of Eq. (5) within the
uniform density model (see the section ‘Linear
correction to EAM-type potentials’), while sym-
bols show the results of structure optimization of
gold and titanium systems with realistic crystal
structures. In the case of structure optimization,
the parameters B and C were chosen to match
experimental cohesive energies [50]. The out-
comes of the uniform density model are in good
agreement with the results of optimization calcu-
lations. Table 2 summarizes the bulk cohesive en-
ergy for silver, gold and titanium, calculated with
the linear correction as well as the experimental

Tnf“lk =T + YN—1/3 values and the results obtained by means of the
original EAM-type Gupta potential.
Table?2
Comparison of the calculated bulk cohesive energy values
with experimental data
Bulk cohesive energy, eV per atom
Element .
Usip Usw T U, Usip T Uooa Experiment [50]

Ag 2.96 2.96 2.97 2.96

Au 3.78 3.77 3.78 3.78

Ti 4.87 4.87 4.83 4.85

Notation: U,

is the one corrected by the sigmoid-type modification U
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518 the original Gupta potential, Eq. (2); (U,
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mod’®

+ U, is the one corrected by U, , Eq. (3); (U,
Eq. (7), proposed in this work.
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Fig. 4. The calculated dependences of the melting temperature of bulk silver (a), gold (b)
and titanium (c) on the parameter B at the different cutoff r_ values (symbols) as well as the least-squares
fit to these results (solid lines). Experimental values from Ref. [50] are shown by dashed lines.
The calculation procedure is given in the text. B = 0 corresponds to the original Gupta potential, Eq. (2)
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Fig. 4 shows the melting temperature of bulk
silver, gold and titanium calculated using the
linear correction U, to the Gupta potential, Eq.
(3), at different values of the parameter B and
the cutoff . The parameter C was defined ac-
cording to Eq. (5). Symbols denote the results
of MD simulations of finite-sized nanoparticles
melting, extrapolated to the bulk limit. The fig-
ure shows that the calculated melting tempera-
ture increases linearly with B. These results can
be used to evaluate

AT = AT (B) - ATS™.
As follows from Eq. (6),

AU = kAT < Ar

where Ar stands for an increase in the amplitude
of thermal vibrations of atoms with respect to the
values predicted by the original Gupta potential.

The slope of AT(B) is therefore proportional
to the distance by which the atoms should be ad-
ditionally displaced from equilibrium positions
to initiate the melting process at the temperature
corresponding to the experimental value. For sil-
ver and gold Ar = 0.09 A, which is about 3% of
their nearest-neighbor distances. For titanium
we observed the dependence of Ar on the cutoff
distance. For smaller cutoff values, r, = 6.2 A and
6.8 A, an increase in the amplitude of thermal
vibrations is equal to 0.06 A and it increases up to
0.09 A for r.=38.1 A. These results suggest that an
increase in the amplitude of thermal vibrations
by a few percent leads to a dramatic rise of the
melting point. A much steeper slope of AT(B) for
Tiatr,=38.1 A suggests that more distant atoms
located in a concentric shell between 7 and 8 A
make a significant contribution to the melting
process and the original Gupta potential cannot
account properly for this contribution.

Tables 2—4 summarize the results on struc-
tural and energetic properties of silver, gold and
titanium nanocrystals obtained with the sig-
moid-type modification U (7). These results
are compared to those obtained by means of the
original EAM-type Gupta potential (2) and the
linear correction U, (3).

As mentioned above, the calculated bulk co-

hesive energies are summarized in Table 2. Nei-
ther linear correction nor sigmoid-type modifi-
cation significantly change the values predicted
by the original Gupta potential; all these values
are in good agreement with experimental data
[50] with a relative discrepancy of less than 0.5%.

Table 3 presents the vacancy-formation ener-
gy that is the amount of cohesive energy required
to form a vacancy in a crystal. It is defined [62,
63] as

E,=(N-D(Ey, -EY")=

N—lE

N

=F

o
where
E, = NEY",
Ey,=(N-DEY,

are the potential energies of systems containing
N and (N — 1) atoms, whereas E”" and E
are the corresponding cohesive energies per
atom. The calculated values (columns labeled as
Us» Usyp T U, and U+ U, [J) are com-
pared with available experimental data and the
results of DFT calculations and M D simulations
employing different EAM-type potentials.

The values calculated with the original Gupta
potential are consistent with some experimental
and theoretical values reported in literature [22,
23, 52, 55, 57], whereas other works predicted
either smaller or much larger values of £ ” Note
that the theoretical results reported in literature
were obtained with different EAM-type poten-
tials (Finnis — Sinclair and Gupta potentials as
well as a distinct potential introduced in Ref.
[54]) as well as with different EAM and modified
EAM (MEAM) potentials. The variety of poten-
tials and parameterizations used has resulted in a
large (up to 40%) discrepancy between the calcu-
lated values of £ ”

Calculations performed with the Gupta po-
tential corrected by U, (see the column ‘UGup +
+ U,)) yield smaller values of Evf as compared to
the original Gupta potential, and the magnitude
of the decrease depends on the parameter B. The
values of £ . listed in Table 3 were obtained for
each metal using the B values that reproduce the
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Table3
Comparison of the vacancy formation energy E ,, Obtained
in this paper with the published experimental and calculated data
Vacancy formation energy £, , eV
Element ) Calculation
U, , U, ot U, U, ) 4 Experiment
U] ] mn u mo EAM_type DFT
0.79 [19] (Gupta)
0.99 +0.06 [52] | 0.88 [22] (Gupta) -
Ag 0.54 0.50 0.51 1.09+0.10 [53] | 0.97 [23] (EAM)
1.10 [54]
0.60 [19] (Gupta)
0.62—0.67[55] | 0.75[22] (Gupta) -
Au 0.72 0.58 0.31 0.70 - 1.10[55] | 1.03 [23] (EAM)
1.10 [54]
1.43 [21] (FS) 1.97 [60]
1.49 [57] (EAM)
Ti 1.49 1.22 1.44 1.55 [56] 1.56 [58] (Gupta)
1.78 [59] (MEAM) | 2.14[61]
1.79 [28] (MEAM)

Notation: Uy, corresponds to the Evaalue calculated with the original EAM-type Gupta potential; (UGup +U),

. +U

Gup mod

lin

) correspond to the Evf values done using the potential corrected by U, and the new modification U

lin mod’

EAM, MEAM — embedded-atom method and modified EAM [51]; DFT is the density functional theory; FS is the

Finnis — Sinclair potential [41].

experimental bulk melting temperatures (see Fig.
4). The figure shows that for r = 8 A the value of
B for silver, 0.0016 eV/A, is three times smaller
than that for gold, 0.005 eV/A, and five times
smaller than for titanium, 0.008 eV/A. As a re-
sult, the vacancy-formation energy for silver
calculated by means of the linear correction is
slightly (by about 5%) smaller than the value pre-
dicted by the original Gupta potential. For gold
and especially titanium, larger values of B should
be used to reproduce the experimental bulk melt-
ing temperatures, which leads to a more pro-
nounced decrease of £ > The magnitude of this
discrepancy for titanium is within the uncertainty
range of the existing theoretical data obtained by
means of different EAM-type potentials (see Tab-
Ie 3). In MD simulations reported in literature
[21, 28, 57—59] Evaaries from about 1.4to 1.8 eV
while DFT calculations [60, 61] predicted even
larger values up to 2.1 eV.

The sigmoid-type modification U, , gives the
results which are closer to the experimental val-
ues and the results of other MD simulations [21 —
23, 57] compared to the original Gupta potential
and linear correction. This is due to the change
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in the asymptotic behavior of the original Gupta
potential, i.e., the weakening of interatomic in-
teractions at large distances.

Table 4 presents the equilibrium lattice con-
stants for silver, gold and titanium calculated
with UGup, UGup + U, and UGup + U, . The force
created by the linear correction causes a uniform
strain on crystals, which become uniformly com-
pressed. For silver and gold this effect is rather
small (the relative change in the lattice parameters
is less than 1%) while the relative shortening of
titanium crystals is about 2.5%. This can also be
attributed to a very steep linear correction (i.e.,
a large force) that should be used to reproduce
the experimental bulk melting temperature of Ti.
Note also that the geometry optimization of a Ti
crystal using the original Gupta potential yields
the structure which is elongated along the [0001]
axis as compared to the experimental value (the
calculated lattice parameter ¢ = 4.75 A vs. the
experimental value of 4.68 A). The geometry
optimization by means of the linear correction
results in a uniform compression of the crystal,
which brings the parameter ¢ in a better agree-
ment with the experimental value.
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Fig. 5. Melting temperature of Ag (a), Au (b) and Ti (c) nanoparticles of diameter D calculated by 3 ways:
using the original EAM-type Gupta potential (Eq. (2)), its linear correction U, (Eq. (3))
and the new modification U, , (Eq. (7)); 3 values of r_were considered (symbols).
The extrapolation of the calculated numbers to the bulk limit was made (lines).
Experimental values of bulk melting temperature are shown by stars

Table4
Comparison of the calculated equilibrium lattice constants with experimental data
Equilibrium lattice constant, A
Element .
UGup UGup +U, UGup +U,., Experiment [50]

Ag 4.07 4.05 4.07 4.09
Au 4.06 4.03 4.09 4.08

Ti (a) 2.91 2.83 2.89 2.95

Ti (¢) 4.75 4.63 477 4.68

Footnote. The presented results were calculated with the original Gupta potential (U,

), as well as with the Gupta

up

potential corrected by U, and the new modification U, . Two lattice parameters, a and c, are listed for titanium.

The sigmoid-type modification U,  hasasmall
impact on the equilibrium lattice parameters,
which almost coincide with those predicted by
the original Gupta potential and agree reasona-
bly well with the experimental results. Contrary
to the linear correction, U does not induce a
strong compression of the Ti crystal and its lattice
parameters obtained by means of U are similar
to those calculated with UGup. As discussed above,
this is due to the functional form of U wherein a
positive contribution of U’,  plays the role at small
interatomic distances (which span over a few near-
est atomic layers) while a negative contribution of
U’ plays the role at larger values of r.

Fig. 5 shows the melting temperatures of fi-
nite-sized Ag, Au and Ti nanoparticles as func-
tion of their inverse diameter, 1/D. For all these
metals, the bulk melting temperature predicted
by the original Gupta potential is significantly
lower than the experimental values. The most il-

lustrative example is titanium (see Fig. 5,c¢) whose
melting temperature calculated with UGup is ap-
proximately 1380 K. It is more than 500 K lower
than the experimental value of 1941 K (marked
by a star symbol) which yields the relative dis-
crepancy of about 30%. A similar feature has
been observed for gold and silver — the absolute
discrepancy is smaller for these metals (about
330 K and 100 K, respectively) while the relative
discrepancy for gold is as large as 25%. These re-
sults further justify the necessity of correcting the
EAM-type potential to bring the calculated bulk
melting temperatures in closer agreement with
the experimental values. The modification U,
produces a similar effect as the linear correction
— it leads to an increase in nanoparticles’ melt-
ing temperatures and, as a result, to an increase
in bulk melting temperatures. The new modifi-
cation improves the calculated bulk melting tem-
perature for the three metals considered. Good
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agreement with the experimental values has been
obtained for titanium and silver (the relative dis-
crepancies from the experimental values are 0.8
and 1.5%, respectively) while a somewhat larger
discrepancy of about 6% has been observed for
gold. This is linked to the observation that the sig-
moid-type modification increases the slope of the
T (1/D)dependence forsilverand titanium nano-
particles but it almost does not change the slope
for gold nanoparticles. The utilized parameters of
U, for gold have been chosen such that all the
quantities considered in this work agree better
with experimental data as compared to the orig-
inal Gupta potential. An even better agreement
might be achieved by performing a more detailed
analysis of the multidimensional parameter sur-
face of U . A finer tuning of parameters should
bring the calculated T nf“”‘ for gold to a better
agreement with experimental data.

Summary

We formulated a recipe for modification of
classical embedded-atom method (EAM)-type
potentials aiming at a quantitative description of
both equilibrium and nonequilibrium properties
of metal systems by means of molecular dynam-
ics simulations. The modification suggested in
this work asymptotically approaches zero at large
interatomic distances and generalizes the previ-
ously developed linear correction [38]. A general
procedure for constructing the modified EAM-
type potential was outlined and the relation be-
tween parameters of the new modification and
the linear correction was elaborated.

The procedure developed has been applied to
analyze the melting temperature as well as lattice
constants, cohesive energy and vacancy forma-
tion energy of nanosystems made of silver, gold
and titanium. It was demonstrated that the mod-
ified potential leads to an increase in the melting
temperature of the metals and to a better agree-
ment with experimental values as compared to
the uncorrected EAM-type potential. The new
modification induces a small (on the order of a
few per cent or less) change of the equilibrium
properties but increases the bulk melting tem-
perature by more than 30% as it is demonstrated
for the case of titanium. We have considered the
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many-body Gupta potential as an example but
the generality of the correction allows its appli-
cation in combination with other potentials of
the EAM type such as Sutton — Chen or Finnis —
Sinclair potentials. The results presented for the
metals with cubic and hexagonal crystalline lat-
tices further confirm a wide range of applicability
of the proposed modification.

Appendix
Derivation of parameters of U_

To analytically derive the parameters of the
sigmoid-type potential U _  (r), the latter was ap-
proximated by a piecewise linear function:

Br+C,, r<R,
U,,(ry=1B,r+C,, R,<r<R,, (8)
0, 7r>R,

where B, > 0 (C, < 0) and B, < 0 (C, > 0),

_CI_CZ
Bl_BZ

0

is the point of intersection of the two linear

segments, and R, = —C,/B, is the point where

U,,.(r)=0 (see dotted curves in Fig. 3). After

substituting Eq. (8) into Eq. (4) and carrying out

the integration one arrives at the condition:
(I-y)' _

(I_B)a = B

where B = B,/B andy=C, /C,.

Substituting Eq. (8) in Eq. (6) one derives
the force F,  due to the potential U,,,(r). This
force should be equal to the force F, arising due
to the linear correction at a given cutoff in order
to increase the melting temperature by the same

value. This can be expressed as

)

aYe -y ¥
Pyl Iy rt |- (10)
3) BB |(1-p) P
The procedure for deriving the parameters of
the sigmoid-type function U, (7) and its approx-
imation U, , (8) can be summarized as follows:
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(f) The parameters B and C of the linear cor-
rection are obtained as described in the section
‘Linear correction to EAM-type potentials’;

(if) Fixing the point R, = —C,/B, at which
U,.. () =0 (see Fig. 3) a scan over different val-
ues of B, and C, is performed,;

(iif) B and vy are derived from the numerical
solution of Egs. (9) and (10), and the corre-
sponding values of B, and C, are obtained;

(iv) Repeating steps (i) — (iii) for different
combinations (B, C|) one obtains a multidimen-
sional parameter surface (B,, C,, B,, C));

(v) Once B, ,, C,, are derived, the resulting
piecewise function is fitted with the sigmoid-type

Simulation of physical processes >

function U, Eq. (7), to obtain the parameters
Landr,.
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