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OBOBLWEHHASA MNOMNMPABKA K NOTEHUUANAM
MOIrPYXXEHHOIo ATOMA ANA MOAE/IUPOBAHUA
PABHOBECHbIX U HEPABHOBECHbIX CBOUCTB METAJ1JIOB

A.B. BepxoBue@', A.B. Koponv', I'.b. Cyuwiko',
(il Wpanm]>, A.8. Conotess

! Hay4Ho-uccneaoBaTeNbCKUM LEHTP ME30O6MOHAHOCUCTEM,
r. ®paHkdypT-Ha-MaiiHe, FepMaHus;

2 YHuBepeuteT uM. [éte, r. dpaHkdypT-Ha-MaliHe, MepMaHus;

IlpennoxeHa moaudukauus MOoTeHUMATOB norpyxkeHHoro atomMa (EAM) nng onucaHus
PaBHOBECHBIX M HEPaBHOBECHBIX CBOWCTB METATMUECKUX CHCTEM B paMKaX KIIaCCHYECKOW
MOJIEKYJISIpHOW aAuHaMMKU. JlaHHasg Moaudukauuss o6o01aeT pa3padOTaHHYIO paHee
aBTOpaMM JIMHEMHYIO ITONpaBKy K MoTeHIMaaaM Tuna EAM m acuMmmrormyecku yOBIBaeT Ha
OOJIBILIMX MEXATOMHBIX paccTossHusX. OmnucaHa mpolueaypa ocTpoeHUsT MOAUGUIIUPOBAHHBIX
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MOTEHLIMAJOB 1 IToKa3aHa CBsI3b JaHHOI MOIU(UKALIUY C IMHEHO monpaBkoii. [TpeaioxeHHast
MoauduKaluus UCHOJb30BaHa IS MOJAEJMPOBAHUS Tpollecca TUIaBJIEHUS U U3YyYeHMs psiaa
PaBHOBECHBIX CBOMCTB HAHOCUCTEM U3 cepebpa, 30Ji0Ta U TUTaHA. Pe3yabTaThl pacyeToB,
MPOBEACHHBIX IIPU TIOMOINM MOAUGHUIIMPOBAHHOTO ITOTEHIIMAJa, IIPEeIcKa3bIBalOT 0OoJjce
BBICOKME TeMIIepaTyphl IUIABJIEHUS METAJIOB, IO CPaBHEHUIO ¢ M3HAYAIBLHBIM MOTECHIIMAIOM
tuna EAM, 4To nydle coryiacyeTcsl ¢ 3KCHEepUMEHTaJbHBIMU JaHHBIMU. MHOTrOYacTUYHBIN
noteHuuran tumna I'yrnra paccMOTpeH B KayecTBe NMpuUMepa, HO MpeaaokeHHass MoaupuKauus
MOXKET TakKXe MPUMEHSTLCS U K APYruM noTeHuuanaMm tuna EAM.

KioueBbie coBa: MeTOI MOJICKYJISIPHOM TMHAMMKK, MHOTOYACTUYHBIN MOTeHIIMAI, (pa30BbIit
nepexoi, MeTa/uInyeckasi HaHoJacTuIla
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Introduction

Computer simulations based on atomistic
models have emerged as a powerful tool for the
analysis of physicochemical processes occurring
in materials and related materials properties [1].
A vast number of atomistic simulations employ
molecular dynamics (MD) methods that require
the evaluation of total potential energy of many-
atom systems and the forces acting on constituent
atoms [2, 3]. MD simulations provide insights
into many physical processes, such as diffusion
[4—6], plastic deformation [7, 8], melting [9—
11], crystallization [10, 12] and other phase
transformations [13, 14]. All of these processes
happen on temporal and spatial scales exceeding
by far those accessible by ab initio methods.
In order to reach these scales, semi-empirical
interatomic potentials parameterized for specific
material compositions and structures are used
[3, 15—17]. A potential constructed by fitting
to a specific set of properties should perform
well for other properties that were not explicitly
considered during its construction phase [18].

Different interatomic potentials [19—24]
belonging to a general class of embedded-atom
method (EAM)-type potentials are commonly
used in MD simulations of metal systems [25].
In the past decades, more complex potentials,
based on the modified EAM (MEAM) or the
second-neighbor (2NN) MEAM, have also been
developed for different metals and alloys (see,
e.g., a few recent examples [26, 27]). Parameters
of these potentials are usually fitted to reproduce
experimental data on the properties of bulk
materials (e.g., cohesive energy, equilibrium
lattice constants, bulk modulus, elastic
constants, vacancy-formation energy, etc.) or
fitted to zero-temperature ab initio calculations
of perfect crystalline structures.
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It has also been widely discussed that EAM-
type potentials are less accurate in describing
the dynamics of systems being far from
equilibrium, for instance, the melting phase
transition. In particular, these potentials often
struggle to reproduce the experimental values
of melting temperature for bulk metals and
yield the discrepancy up to several hundred
degrees [5, 28—30]. This indicates the necessity
to modify the exploited force fields in order to
enable a more accurate description of systems’
properties at elevated temperatures. An
accurate description of both equilibrium and
non-equilibrium properties of metal systems
is important, e.g., for studying irradiation-
driven phase and structural transformations of
nanostructures [31, 32] or irradiation-induced
chemistry underlying novel nanofabrication
techniques [33, 34].

Different approaches to account for finite-
temperature effects in classical force fields
for metal systems have been discussed in
literature. A method for re-parameterization
of interaction potentials was proposed [35]
to adjust the calculated melting temperature
of materials without affecting mechanical
properties to which the potentials were fitted.
In that method, the melting temperature was
calculated using a trial interatomic potential
and the Gibbs—Duhem equation (which relates
changes in the chemical potential of a system
to changes in its temperature and pressure)
was then solved to update the parameters of
potentials. This method was applied [35] to
re-parameterize an EAM-type potential for
Al and improved the calculated bulk melting
temperature without considerable change
in other properties. A correction to a many-
body force field for titanium proposed in Ref.
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[36] included the contribution of thermal
excitations of electronic degrees of freedom.
In that approach, an EAM-type potential
was augmented by an additional term (related
to electronic entropy) that arises from the
Sommerfeld theory of metals. According to
that theory, there is a temperature-dependent
contribution to the free energy of a metal
system that depends also on the density of
states at the Fermi energy. In Ref. [37], several
parameterizations of EAM-type potentials for
Ti describing defects, plasticity and melting
were presented. These potentials fit well to
either low- or high-temperature experimental
data but could not describe both temperature
regions simultaneously. On this basis, a
temperature-dependent potential, being a
combination of potentials operating better in
different regions, was suggested to study the
properties of Ti in a wide temperature range.
The knowledge accumulated in these studies
suggests that modifications of conventional
EAM-type potentials are required in order to
match the calculated non-equilibrium properties
(the melting temperature in particular) of metal
materials to experimental values.

In our previous work [38], we presented
a modification of an EAM-type potential
(considering a many-body Gupta potential
[39] as an example). With that modification,
both the melting temperature and the near-
equilibrium properties of selected metal
systems were reproduced. It was revealed
that augmenting steepness of the interaction
potential by enhancing its repulsive part leads
to an increase of the melting temperature.
This happens because a higher thermal energy
is needed to reach the threshold of atomic
vibration amplitudes at which the melting
occurs. To that end, the original EAM-type
potential was augmented by adding a linear
term to the repulsive part [38]. The linear
correction represented a minor change to
the potential energy but led to a significant
increase of the melting temperature. It was
applied to study thermal, geometrical and
energetic properties of magnesium, titanium,
platinum and gold, yielding a good agreement
with experimental results. In Ref. [40], this
method was used to evaluate melting points
of finite-size NiTi nanoalloys with different
composition of Ni and Ti. These results were
used to evaluate bulk melting temperatures
of Ni,_Ti_alloys, which agreed with an
experimental phase diagram for the NiTi
material.

In this paper, the previously developed
methodology is generalized in the form of a
new modification of an EAM-type potential.
This modification represents a linear function
multiplied by a sigmoid function, which
gradually tends to zero beyond a given
distance. A general procedure for constructing
this modification is outlined and its parameters
are related to the parameters of the linear
correction [38]. The modified EAM-type
potential is used for MD simulations of
melting of nanometer-sized nanoparticles
made of silver, gold and titanium. Structural
and energetic equilibrium properties of these
systems, such as lattice constants, cohesive
energy and vacancy formation energy are also
analyzed. Our results demonstrate that the new
modification is applicable for metals with both
cubic and hexagonal crystalline lattices. To be
consistent with our previous works [38, 40] the
Gupta potential is considered as an example but
we stress that the modification proposed can
also be applied to other interatomic potentials
of the EAM type, e.g., to Sutton—Chen [20] or
Finnis—Sinclair [41] potentials.

EAM-type Gupta potential

Similar to other many-body potentials of the
EAM type the Gupta potential is constructed
as a sum of (/) a short-range repulsive term
that stems from the repulsion between atomic
cores and (i) a long-range attractive term
which imitates delocalization of the outer-shell
electrons and is related to electron density at
a given atomic site. The total energy of an
N-atom system interacting via an EAM-type
potential reads as

U__ZZV( )+ZE(pz)’ (1)

l|j¢l

Where V(r) is the short-range repulsive in-
teraction between atoms i and J separated by
the distance I the attractive term F; stands for
the energy obtamed by embedding atom i into
the local electron density p, provided by the
remaining atoms of the system.

The functional form of F(p) may vary in
different EAM-type potentials [25] while the
Gupta potential employs a specific form of this

function,
E(p,) = —p;.

This functional form is based upon the
second-moment approximation of the tight-
binding model [42, 43], according to which the
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attractive many-body term is related to the en-
ergy of d valence electron band and expressed
as a square root of p,. The latter is constructed
empirically as a linear superposition of electron
charge densities of constituent atoms,

p=2. W)

Within the Gupta representation, the func-
tions V(rl.j) and \V(”,-,-) are introduced in expo-
nential forms so that the total potential energy

UGu]D reads as follows:

)

where d is the first-neighbor distance; p, g are
related to bulk elastic constants; & represents an
effective orbital-overlap integral; A adjusts the
cohesive energy.

The parameters for silver, gold and titanium
used in this work were taken from Ref. [22].

Linear correction to EAM-type potentials

The EAM-type Gupta potential (2)
corrected with the linear term U, introduced
in Ref. [38] reads

u=U,, +U, =

Gup lin

1 N
Ui ¥ (Byc), O

i,j=1

where B and C are parameters.

The linear form was chosen to match the
curvature of the modified potential energy profile
in the vicinity of the equilibrium point (governed
by the second derivative of potential energy U) to
that of the original EAM-type potential.

As discussed in Ref. [38], the term B”,—,— (B>
0) makes the potential energy profile steeper at
interatomic distances exceeding the equilibrium
point r, whilst also slightly changing the depth
of the potential well at r,. The constant term
C < 0 was therefore added to mitigate the
latter effect. In Ref. [38], parameters B and C
were obtained empirically for a specific cutoff
distance r, for titanium, gold, platinum and
magnesium. As shown below, these parameters
can be derived for any material and any 7, using
the following analytical estimate.

The correction to an EAM-type potential
should not change the cohesive energy of a
bulk material to which the potential was fitted.
Therefore, the change in the total potential
energy due to a linear correction should be
equal to zero. If we approximate the real
crystalline structure of a metal with a uniform
distribution of atoms with number density n,,
this condition can be written as

Jom(Br+Clr =0 @
leading to the relation

3
C=-—0Br. 5
40 (&)

Fig. 1 shows (lines) the calculated
dependence C(B) for gold and titanium for
different values of r. These parameters of
the linear correction leave intact the cohesive
energy of bulk metal systems. Bulk gold and
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Fig. 1. C(B) dependence for Au (a) and Ti (b) for different cutoff values of r;
lines show the results obtained using Eq. (5); symbols show the results of structure optimization
calculations which account for the realistic crystal structures (see the ‘Results and discussion’ section)
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Fig. 2. The calculated radial distribution functions (RDFs) for 10-nm Au (a) and Ti (b) nanoparticles
(composed of approximately 30,000 atoms). The cutoff values of r, used are shown by dashed lines

silver have fcc crystal lattices and very similar
lattice constants, so the results shown for gold
also describe silver crystals. For each metal
we consider three cutoff distances between
6 and 8 A, corresponding to minima in the
radial distribution function (see the vertical
lines in Fig. 2). The indicated values of r, were
chosen following Ref. [22]. In that work the
parameters of the Gupta potential for the fcc
metals were derived accounting for interatomic
interactions up to the fifth-neighbor shell, while
the suggested cutoff values for titanium and
other hcp structures corresponded to inclusion
of seven to eight shells of neighboring atoms.

The linear correction causes a small dis-
placement Ar of atoms from their equilibrium
positions defined by the original EAM-type po-
tential. Expanding U in a Taylor series about
the equilibrium atomic positions for the origi-
nal potential and keeping only the first term of
this expansion one evaluates a change in po-
tential energy associated with Ar as

AU =-F, Ar =

lin

2n 4 C3 (6)
3 3 7 — n,Ar.

As it was demonstrated in our earlier work
[38], augmenting steepness of the interatomic
potential beyond the equilibrium point by en-
hancing the repulsive contribution of the force
field leads to a rise of the melting point. It
happens because an increased thermal energy
is needed to reach the threshold of atomic vi-
bration amplitudes at which the melting phase
transition occurs. Knowing the experimental
bulk melting temperature 7%° and the value
predicted by the original Gupta potential, 75",

parameters B and C can be chosen such that
an increase in the melting temperature will be
equal to AT = 7o — TG,

Egs. (5) and (6) deﬁne for any r, a
combination of parameters B, C that reproduce
experimental values of cohesive energy and
melting temperature of bulk materials. These
conditions were used to define B and C for the
three metals studied.

Generalized modification of
EAM-type potentials

In this section, we generalize the above
described methodology and propose a new
modification of an EAM-type potential. The
modification should keep features of the linear
correction, i.e., maintain its behavior in the
vicinity of atomic equilibrium points and
enhance the repulsive interactions with an
increase of atomic displacements. We construct
the modification in such a way that it contains a
parameter describing the characteristic range of
the potential thus eliminating the dependence
of the potential on the choice of the cutoff
distance. These conditions are fulfilled by
multiplying U, by a sigmoid function which
is equal to unity at small interatomic distances
and asymptotically approaches zero beyond a
given distance. The modified EAM-type Gupta
potential then reads as

U=Ug, +U,,, =
1& Br,+C (7)
U, 4= —L
aw 2;:114_;(%/—%)

The parameters B and C have the same
meaning as B and C in Eq. (3): B defines an
additional force acting on the nearest atoms
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Fig. 3. Plots of U,

A1) (7) for different values of the parameters (solid lines) and U, (a dashed gray line)

vs. the interatomic distance r, and also the piecewise linear approximation U (r) (8) (dotted curves,
see the Appendix for details). The used procedure of deriving the parameter Values is given in the text

and C adjusts the depth of the potential well
in the vicinity of the equilibrium point where
U = 0. The parameter A describes the slope
of U ., at large interatomic distances, while
r, defines the sigmoid’s midpoint and hence
the range of this potential. Fig. 3 shows the
potential U for a pair of atoms as a function
of interatomic distance r. Due to its sigmoid-
type shape, U (r) asymptotically approaches
zero and its range serves as a natural cutoff
distance for this interaction.

For each pair of atoms, the potential U,
grows monotonically with interatomic distance
up to the cutoff r, and all atoms located
within the sphere of radius r, experience the
same force exerted by a given atom. On the
contrary, U, has a maximum at interatomic
distances of about 5—8 A depending on the
choice of A and r, (see Fig. 3). Thus, the force
exerted by an atom due to U , enhances
interaction with several nearest atomic shells
while the interaction with more distant atoms
weakens. The strength of this interaction is
governed by the steepness of the potential
beyond its maximum, i.e., by the parameter
L. Therefore, the force acting on the nearest
neighbors due to U, , should exceed (by the
absolute value) the force F, as its effect is
compensated by weaker interactions with
more distant atoms. Thus, for each pair of
atoms interacting via U (r), the initial slope
of the potential should be steeper than the
slope of U, (r), i.e., B > B.

24

To analytically derive parameters of the
new modification, U, (r) in Egs. (4) and (6)
was substituted with U (r), a piecewise lin-
ear approximation of the sigmoid-type func-
tion U (r), see Eq. (8) in Appendix. Then,
parameters of this function were expressed
through the parameters B and C of the lin-
ear correction. As a last step of this proce-
dure, U, [(r) was fitted with U (r) to derive
A and r Further technical detalls are given
in the Appendlx The parameters of U, used
for an analysis of melting temperature and
near-equilibrium properties of silver, gold
and titanium nanosystems are summarized
in Table 1. Details of this analysis are pre-
sented below in the ‘Results and Discussion’
section.

The modification U, , (7) is qualitatively
similar to the well-known Dzugutov potential
[45] which was developed to model glass-
forming liquid metals. The Dzugutov potential
coincides with the Lennard—Jones potential at
small interatomic distances but has a maximum
beyond the equilibrium point. This enables
the suppression of crystallization and enforces
the emergence of icosahedral structures. The
maximum of U, corresponds to the positions
of more distant atoms (see Fig. 3 and the
RDFs in Fig. 2). As a result, the modification
U, , does not affect crystal structure but leads
to an increase in the melting temperature
whilst slightly changing the near-equilibrium
properties of metals.
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Computational details

All simulations described in this work were
conducted using the MBN Explorer soft-
ware package [46]. We considered spherical
nanoparticles with radii from 1 to 5 nm (rang-
ing from 250 to 30,000 atoms) that were cut
from ideal silver, gold and titanium crystals.
The systems were constructed using the MBN
Studio software [47].

Prior to the analysis of the structural and en-
ergetic parameters of each system, energy mini-
mization calculations were performed using the
velocity-quenching algorithm. The MD simula-
tions of the melting process were performed using
a large simulation box of 20 x 20 x 20 nm in
the NVT canonical ensemble. The temperature
T was controlled by a Langevin thermostat with
a damping time of 1 ps. The nanoparticles were
heated up (starting from the initial temperature 7;
well below the expected melting temperatures, T
= 300 K for Ag and Au and 1000 K for Ti) W1th
a constant heat rate of 0.5 K/ps, which is within
the range of typical values used for MD simula-
tions of phase transitions. The total simulation
time for each run was 3 ns. The time integration
of the equations of motion was done using the
velocity-Verlet algorithm [2] with an integration
time step of 1 fs. In the calculations performed
with the linear correction U, , the interatomic
interactions were truncated at the cutoff radius
r, ranging from about 6 to 8 A as shown in Fig.
2. In the case of the potential augmented with
U, its range served as a natural cutoff distance,
which varied between 8 and 9 A.

The melting temperatures of nanoparticles
were determined from the analysis of heat
capacity

C, =(E/oT),

defined as a partial derivative of the internal
energy of the system with respect to temperature

at a given volume. A sharp maximum of C,
was attributed to the nanoparticle melting and
the position of the maximum was referred to
as the nanoparticle’s melting point. The bulk
melting temperature 7% was estimated by
extrapolating the obtained values to the N —
oo limit according to the Pawlow law [48, 49]

Trfulk — Tm +7/N71/3

with y being the factor of proportionality.

Results and discussion

Fig. 1 shows the dependence C(B) that
describes the parameters of the linear correction
U, at different values of cutoff . Dashed lines
were obtained by means of Eq. (5) within
the uniform density model (see the section
‘Linear correction to EAM-type potentials’),
while symbols show the results of structure
optimization of gold and titanium systems
with realistic crystal structures. In the case of
structure optimization, the parameters B and
C were chosen to match experimental cohesive
energies [50]. The outcomes of the uniform
density model are in good agreement with
the results of optimization calculations. Table
2 summarizes the bulk cohesive energy for
silver, gold and titanium, calculated with the
linear correction as well as the experimental
values and the results obtained by means of the
original EAM-type Gupta potential.

Fig. 4 shows the melting temperature
of bulk silver, gold and titanium calculated
using the linear correction U, to the Gupta
potential, Eq. (3), at different values of the
parameter B and the cutoff r. The parameter
C was defined according to Eq (5). Symbols
denote the results of MD simulations of finite-
sized nanoparticles melting, extrapolated to the
bulk limit. The figure shows that the calculated
melting temperature increases linearly with B.

Table 1
Parameters of the potential U,
Element B, eV/A C, eV A, A r, A
Ag 0.009 —0.048 5.93 7.10
Au 0.026 —0.145 4.68 7.36
Ti 0.052 —0.269 2.77 6.68

Notation: B is an additional force acting on the nearest atoms; C adjusts the depth of
the potential well in the vicinity of the equilibrium point where U = 0; A describes the

slope of U, ,

at large interatomic distances; r, defines the sigmoid’s midpoint.
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These results can be used to evaluate
AT = AT (B)-AT".

As follows from Eq. (6),
AU = kAT o« Ar,

where Ar stands for an increase in the ampli-
tude of thermal vibrations of atoms with re-
spect to the values predicted by the original
Gupta potential.

The slope of AT(B) is therefore proportional
to the distance by which the atoms should be
additionally displaced from equilibrium positions
to initiate the melting process at the temperature
corresponding to the experimental value. For sil-
ver and gold Ar= 0.09 A, which is about 3% of
their nearest-neighbor distances. For titanium we
observed the dependence of Ar on the cutoff dis-
tance. For smaller cutoff values, », = 6.2 A and
6.8 A, an increase in the amplitude of thermal
vibrations is equal to 0.06 A and it increases up
to 0.09 A for r, = 8.1 A. These results suggest

>

that an increase in the amplitude of thermal vi-
brations by a few percent leads to a dramatic rise
of the melting point. A much steeper slope of
AT(B) for Ti at r, = 8.1 A suggests that more dis-
tant atoms located in a concentric shell between
7 and 8 A make a significant contribution to the
melting process and the original Gupta potential
cannot account properly for this contribution.

Tables 2—4 summarize the results on
structural and energetic properties of silver,
gold and titanium nanocrystals obtained with
the sigmoid-type modification U, (7). These
results are compared to those obtained by means
of the original EAM-type Gupta potential (2)
and the linear correction U, (3).

As mentioned above, the calculated bulk
cohesive energies are summarized in Table
2. Neither linear correction nor sigmoid-type
modification significantly change the values
predicted by the original Gupta potential;
all these values are in good agreement
with experimental data [50] with a relative
discrepancy of less than 0.5%.

Table 2
Comparison of the calculated bulk cohesive energy values
with experimental data
Bulk cohesive energy, eV per atom
Element UGup UGup + l]lin UGup + Umod Exp[esré)r]nent
Ag 2.96 2.96 2.97 2.96
Au 3.78 3.77 3.78 3.78
Ti 4.87 4.87 4.83 4.85

Notation: UGup isthe original Gupta potential, Eq. (2); (U
( UGup + U, ) is the one corrected by the sigmoid-type modification U

+ U,) is the one corrected by U, , Eq. (3);
Eq. (7), proposed in this work.

up
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Fig. 4. The calculated dependences of the melting temperature of bulk silver (a), gold (b)
and titanium (c) on the parameter B at the different cutoff r, values (symbols) as well as the least-squares
fit to these results (solid lines). Experimental values from Ref. [50] are shown by dashed lines.
The calculation procedure is given in the text. B = 0 corresponds to the original Gupta potential, Eq. (2)
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Table 3 presents the vacancy-formation
energy that is the amount of cohesive energy
required to form a vacancy in a crystal. It is
defined [62, 63] as

E,=(N-D(EY\ -Ey)=

N-1
=Eva——Ew
where
E, =NEY",

E, =(N-DEY

are the potential energies of systems containing
N and (N - 1) atoms, whereas E«" and E<",
are the corresponding cohesive energies per
atom. The calculated values (columns labeled
as ‘U, ‘Ug, + U, and ‘U, + U ) are
compared with available experimental data
and the results of DFT calculations and MD
simulations employing different EAM-type
potentials.

The values calculated with the original
Gupta potential are consistent with some ex-
perimental and theoretical values reported in
literature [22, 23, 52, 55, 57], whereas other
works predicted either smaller or much larger
values of E . Note that the theoretical re-
sults reporte({ in literature were obtained with

different EAM-type potentials (Finnis—Sinclair
and Gupta potentials as well as a distinct po-
tential introduced in Ref. [54]) as well as with
different EAM and modified EAM (MEAM)
potentials. The variety of potentials and pa-
rameterizations used has resulted in a large (up
to 40 %) discrepancy between the calculated
values of £ )

Calculations performed with the Gupta po-
tential corrected by U, (see the column ‘U, =+
U,’) yield smaller values of E  as comparecf) to
the original Gupta potential, and the magnitude
of the decrease depends on the parameter B.
The values of E _listed in Table 3 were obtained
for each metal using the B values that reproduce
the experimental bulk melting temperatures (see
Fig. 4). The figure shows that for r ~ 8 A, A the
value of B for silver, 0.0016 ¢V/A, is three times
smaller than that for gold, 0.005 eV/A, and five
times smaller than for titanium, 0.008 eV/A. As
a result, the vacancy-formation energy for silver
calculated by means of the linear correction is
slightly (by about 5 %) smaller than the value
predicted by the original Gupta potential. For
gold and especially titanium, larger values of
B should be used to reproduce the experimen-
tal bulk melting temperatures, which leads to a
more pronounced decrease of FE o The magni-
tude of this discrepancy for titanium is within

Table 3
Comparison of the vacancy formation energy E obtained in this paper
with the published experimental and calculated data
Vacancy formation energy E eV
Element . Calculation
Usup U U, Uit Uou Experiment EAM-type DFT
0.79[19] (Gupta)
0.99+0.06[52] 0.88[22] (Gupta) _
Ag | 094 0.90 0.91 1.09:0.10 [53] 0.97 [23] (EAM)
1.10 [54]
0.60[19] (Gupta)
0.62-0.67 [55] 0.75[22] (Gupta) B
Au | 072 0.58 0.81 0.70-1.10 [55] 1.03 [23] (EAM)
1.10[54]
1.43 [21] (FS) 1.97
1.49 [57] (EAM) [60]
Ti 1.49 1.22 1.44 1.55 [56] 1.56[58] (Gupta)
1.78[59](MEAM) 2.14
1.79[28](MEAM) [61]
Notation: UGup corresponds to the F vfvalue calculated with the original EAM-type Gupta potential; (U, +U, ),

U

Gup

+U

mod-

up lin

) correspond to the Evaalues done using the potential corrected by U, and the new modification U,

EAM, MEAM — embedded-atom method and modified EAM [51]; DFT is the density functional theory; FS is

the Finnis—Sinclair potential [41].
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the uncertainty range of the existing theoretical
data obtained by means of different EAM-type
potentials (see Table 3). In MD simulations re-
ported in literature [21, 28, 57—59] E varies
from about 1.4 to 1.8 eV whlle DFT calcula—
tions [60, 61] predicted even larger values up to
2.1eV.

The sigmoid-type modification U, , gives
the results which are closer to the experimental
values and the results of other MD simulations
[21—23, 57] compared to the original Gupta
potential and linear correction. This is due to
the change in the asymptotic behavior of the
original Gupta potential, i.e., the weakening of
interatomic interactions at large distances.

Table 4 presents the equilibrium lattice con-
stants for silver, gold and titanium calculated
with U, UGu + U, and U, . The
force created by the linear correct10n causes a
uniform strain on crystals, which become uni-
formly compressed. For silver and gold this ef-
fect is rather small (the relative change in the

>

lattice parameters is less than 1 %) while the
relative shortening of titanium crystals is about
2.5 %. This can also be attributed to a very
steep linear correction (i.e., a large force) that
should be used to reproduce the experimen-
tal bulk melting temperature of Ti. Note also
that the geometry optimization of a Ti crystal
using the original Gupta potential yields the
structure which is elongated along the [0001]
axis as compared to the experimental value (the
calculated lattice parameter ¢ = 4.75 A vs. the
experimental value of 4.68 A). The geometry
optimization by means of the linear correction
results in a uniform compression of the crystal,
which brings the parameter c in a better agree-
ment with the experimental value.

The sigmoid-type modification U,  hasasmall
impact on the equilibrium lattice parameters,
which almost coincide with those predicted
by the original Gupta potential and agree
reasonably well with the experimental results.
Contrary to the linear correction, U, , does not

Table 4

Comparison of the calculated equilibrium lattice constants with experimental data

Equilibrium lattice constant, A
Element
Usup Usw T U, Usip T Upoa Experiment [50]
Ag 4.07 4.05 4.07 4.09
Au 4.06 4.03 4.09 4.08
Ti (a) 2.91 2.83 2.89 2.95
Ti (¢) 475 4.63 4.77 4.68

Footnote. The presented results were calculated with the original Gupta potential ( Gup), as well as with the Gupta
potential corrected by U, and the new modification U . Two lattice parameters, @ and c, are listed for titanium.

1300

T T T T 2200
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Cis06 l;. 8 =614 13004 ., X r,=68A 1 2000} X r,=68A4
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s o 1200+ 1 . :
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Fig. 5. Melting temperature of Ag (a), Au (b) and Ti (c) nanoparticles of diameter D calculated by 3 ways:
using the original EAM-type Gupta potential (Eq. (2)), its linear correction U, (Eq. (3))

, (Eq. (7)); 3 values of r, were considered (symbols)

The extrapolation of the calculated numbers to the bulk limit was made (lines).
Experimental values of bulk melting temperature are shown by stars
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induce a strong compression of the Ti crystal
and its lattice parameters obtained by means of
U, , are similar to those calculated with U
As dlscussed above, this is due to the functlonal
form of U, wherein a positive contribution of
U’ . plays the role at small interatomic distances
(which span over a few nearest atomic layers)
while a negative contribution of U’ . plays the
role at larger values of 7.

Fig. 5 shows the melting temperatures of
finite-sized Ag, Au and Ti nanoparticles as
functions of their inverse diameter D. For all
these metals, the bulk melting temperature
predicted by the original Gupta potential is
significantly lower than the experimental values.
The most illustrative example is titanium (see
Fig. 5, ¢) whose melting temperature calculated
with U, is approximately 1380 K. It is more
than 500 K lower than the experimental value of
1941 K (marked by a star symbol) which yields
the relative discrepancy of about 30 %. A similar
feature has been observed for gold and silver
— the absolute discrepancy is smaller for these
metals (about 330 and 100 K, respectively) while
the relative discrepancy for gold is as large as
25 %. These results further justify the necessity
of correcting the EAM-type potential to bring
the calculated bulk melting temperatures in
closer agreement with the experimental values.
The modification U, & produces a similar
effect as the linear correction — it leads to an
increase of nanoparticles’ melting temperatures
and, as a result, to an increase in bulk melting
temperatures. The new modification improves
the calculated bulk melting temperature for the
three metals considered. Good agreement with
the experimental values has been obtained for
titanium and silver (the relative discrepancies
from the experimental values are 0.8 and
1.5 %, respectively) while a somewhat larger
discrepancy of about 6 % has been observed
for gold. This is linked to the observation that
the sigmoid-type modification increases the
slope of the T (1/D) dependence for silver and
titanium nanoparticles but it almost does not
change the slope for gold nanoparticles. The
utilized parameters of U for gold have been
chosen such that all the quantities considered
in this work agree better with experimental data
as compared to the original Gupta potential.
An even better agreement might be achieved
by performing a more detailed analysis of the
multi-dimensional parameter surface of U .
A finer tuning of parameters should bring the
calculated 7°"* for gold to a better agreement
with experimental data.

Summary

We formulated a recipe for modification of
classical embedded-atom method (EAM)-type
potentials aiming at a quantitative description of
both equilibrium and non-equilibrium properties
of metal systems by means of molecular dynamics
simulations. The modification suggested in
this work asymptotically approaches zero at
large interatomic distances and generalizes the
previously developed linear correction [38]. A
general procedure for constructing the modified
EAM-type potential was outlined and the relation
between parameters of the new modification and
the linear correction was elaborated.

The procedure developed has been applied
to analyze the melting temperature as well as
lattice constants, cohesive energy and vacancy
formation energy of nanosystems made of sil-
ver, gold and titanium. It was demonstrated that
the modified potential leads to an increase in
the melting temperature of the metals and to
a better agreement with experimental values as
compared to the uncorrected EAM-type poten-
tial. The new modification induces a small (on
the order of a few per cent or less) change of
the equilibrium properties but increases the bulk
melting temperature by more than 30% as it is
demonstrated for the case of titanium. We have
considered the many-body Gupta potential as
an example but the generality of the correction
allows its application in combination with other
potentials of the EAM type such as Sutton—Chen
or Finnis—Sinclair potentials. The results pre-
sented for the metals with cubic and hexagonal
crystalline lattices further confirm a wide range
of applicability of the proposed modification.

Appendix

Derivation of parameters of U,

To analytically derive the parameters of the
sigmoid-type potential U (r), the latter was
approximated by a piecewise linear function:

Br+C,, r<R,
Umod(r) =1Byr+C,, R <r<R,, (8)
0, r>R,

where B > 0 (C, <0) and B, <0 (C, > 0),
_G6-6G

’ B] _Bz
is the point of intersection of the two linear

segments and R,= —C,/B, is the point where
U, =0 (see dotted curves in Fig. 3). After
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substituting Eq. (8) into Eq. (4) and carrying
out the integration one arrives at the condition:

(=)' _ ¢
TR A

B’
where p = B,/B and y = C,/C..

Substituting Eq. (8) in Eq. (6) one derives
the force F| , due to the potential U .n)- This
force should be equal to the force Fl arising
due to the linear correction at a given cutoff in
order to increase the melting temperature by

the same value. This can be expressed as

o [

3) B B12 (I_B)z Bz

The procedure for deriving the parameters of
the sigmoid-type function U (7) and its approx-
imation U _, (8) can be summarized as follows:

(i) The parameters B and C of the linear cor-
rection are obtained as described in the section
‘Linear correction to EAM-type potentials’;

>

(i) Fixing the point R = —C,/B, at which
U, () =0 (see Fig. 3), a scan over different
values of B, and C| is performed;

(iii) B and vy are derived from the numerical
solution of Egs. (9) and (10), and the corre-
sponding values of B, and C, are obtained;

(iv) Repeating steps (i)—(iii) for different
combinations (B,, C|) one obtains a multidi-
mensional parameter surface (B,, C,, B,, C,);

(v) Once B, ,, C , are derived, the result-
ing piecewise function is fitted w1th the sig-
moid-type function U, , Eq. (7), to obtain the
parameters A and r..
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