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A modification of an embedded-atom method (EAM)-type potential is proposed for a quan-
titative description of equilibrium and non-equilibrium properties of metal systems within the 
molecular dynamics framework. The modification generalizes the previously developed linear 
correction to EAM-type potentials and asymptotically approaches zero at large interatomic 
distances. A general procedure for constructing this modification is outlined and its relation 
to the linear correction is elaborated. To benchmark this procedure, we examine the melting 
phase transition and several equilibrium properties of finite-size nanosystems made of silver, 
gold and titanium. The simulations performed with the modified potential predict higher bulk 
melting temperatures of the metals and agree better with experimental values as compared to 
the original EAM-type potential. Our results show that the modification works well for metals 
with both cubic and hexagonal lattice structures. The Gupta potential is chosen as an example 
but the modification proposed can also be applied to other potentials of the EAM type.
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Предложена модификация потенциалов погруженного атома (EAM) для описания 
равновесных и неравновесных свойств металлических систем в рамках классической 
молекулярной динамики. Данная модификация обобщает разработанную ранее 
авторами линейную поправку к потенциалам типа EAM и асимптотически убывает на 
больших межатомных расстояниях. Описана процедура построения модифицированных 
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потенциалов и показана связь данной модификации с линейной поправкой. Предложенная 
модификация использована для моделирования процесса плавления и изучения ряда 
равновесных свойств наносистем из серебра, золота и титана. Результаты расчетов, 
проведенных при помощи модифицированного потенциала, предсказывают более 
высокие температуры плавления металлов, по сравнению с изначальным потенциалом 
типа EAM, что лучше согласуется с экспериментальными данными. Многочастичный 
потенциал типа Гупта рассмотрен в качестве примера, но предложенная модификация 
может также применяться и к другим потенциалам типа EAM.

Ключевые слова: метод молекулярной динамики, многочастичный потенциал, фазовый 
переход, металлическая наночастица
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Introduction
Computer simulations based on atomistic 

models have emerged as a powerful tool for the 
analysis of physicochemical processes occurring 
in materials and related materials properties [1]. 
A vast number of atomistic simulations employ 
molecular dynamics (MD) methods that require 
the evaluation of total potential energy of many-
atom systems and the forces acting on constituent 
atoms [2, 3]. MD simulations provide insights 
into many physical processes, such as diffusion 
[4–6], plastic deformation [7, 8], melting [9–
11], crystallization [10, 12] and other phase 
transformations [13, 14]. All of these processes 
happen on temporal and spatial scales exceeding 
by far those accessible by ab initio methods. 
In order to reach these scales, semi-empirical 
interatomic potentials parameterized for specific 
material compositions and structures are used 
[3, 15–17]. A potential constructed by fitting 
to a specific set of properties should perform 
well for other properties that were not explicitly 
considered during its construction phase [18].

Different interatomic potentials [19–24] 
belonging to a general class of embedded-atom 
method (EAM)-type potentials are commonly 
used in MD simulations of metal systems [25]. 
In the past decades, more complex potentials, 
based on the modified EAM (MEAM) or the 
second-neighbor (2NN) MEAM, have also been 
developed for different metals and alloys (see, 
e.g., a few recent examples [26, 27]). Parameters 
of these potentials are usually fitted to reproduce 
experimental data on the properties of bulk 
materials (e.g., cohesive energy, equilibrium 
lattice constants, bulk modulus, elastic 
constants, vacancy-formation energy, etc.) or 
fitted to zero-temperature ab initio calculations 
of perfect crystalline structures.

It has also been widely discussed that EAM-
type potentials are less accurate in describing 
the dynamics of systems being far from 
equilibrium, for instance, the melting phase 
transition. In particular, these potentials often 
struggle to reproduce the experimental values 
of melting temperature for bulk metals and 
yield the discrepancy up to several hundred 
degrees [5, 28–30]. This indicates the necessity 
to modify the exploited force fields in order to 
enable a more accurate description of systems’ 
properties at elevated temperatures. An 
accurate description of both equilibrium and 
non-equilibrium properties of metal systems 
is important, e.g., for studying irradiation-
driven phase and structural transformations of 
nanostructures [31, 32] or irradiation-induced 
chemistry underlying novel nanofabrication 
techniques [33, 34].

Different approaches to account for finite-
temperature effects in classical force fields 
for metal systems have been discussed in 
literature. A method for re-parameterization 
of interaction potentials was proposed [35] 
to adjust the calculated melting temperature 
of materials without affecting mechanical 
properties to which the potentials were fitted. 
In that method, the melting temperature was 
calculated using a trial interatomic potential 
and the Gibbs–Duhem equation (which relates 
changes in the chemical potential of a system 
to changes in its temperature and pressure) 
was then solved to update the parameters of 
potentials. This method was applied [35] to 
re-parameterize an EAM-type potential for 
Al and improved the calculated bulk melting 
temperature without considerable change 
in other properties. A correction to a many-
body force field for titanium proposed in Ref. 
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[36] included the contribution of thermal 
excitations of electronic degrees of freedom. 
In that approach, an EAM-type potential 
was augmented by an additional term (related 
to electronic entropy) that arises from the 
Sommerfeld theory of metals. According to 
that theory, there is a temperature-dependent 
contribution to the free energy of a metal 
system that depends also on the density of 
states at the Fermi energy. In Ref. [37], several 
parameterizations of EAM-type potentials for 
Ti describing defects, plasticity and melting 
were presented. These potentials fit well to 
either low- or high-temperature experimental 
data but could not describe both temperature 
regions simultaneously. On this basis, a 
temperature-dependent potential, being a 
combination of potentials operating better in 
different regions, was suggested to study the 
properties of Ti in a wide temperature range. 
The knowledge accumulated in these studies 
suggests that modifications of conventional 
EAM-type potentials are required in order to 
match the calculated non-equilibrium properties 
(the melting temperature in particular) of metal 
materials to experimental values.

In our previous work [38], we presented 
a modification of an EAM-type potential 
(considering a many-body Gupta potential 
[39] as an example). With that modification, 
both the melting temperature and the near-
equilibrium properties of selected metal 
systems were reproduced. It was revealed 
that augmenting steepness of the interaction 
potential by enhancing its repulsive part leads 
to an increase of the melting temperature. 
This happens because a higher thermal energy 
is needed to reach the threshold of atomic 
vibration amplitudes at which the melting 
occurs. To that end, the original EAM-type 
potential was augmented by adding a linear 
term to the repulsive part [38]. The linear 
correction represented a minor change to 
the potential energy but led to a significant 
increase of the melting temperature. It was 
applied to study thermal, geometrical and 
energetic properties of magnesium, titanium, 
platinum and gold, yielding a good agreement 
with experimental results. In Ref. [40], this 
method was used to evaluate melting points 
of finite-size NiTi nanoalloys with different 
composition of Ni and Ti. These results were 
used to evaluate bulk melting temperatures 
of Ni1−xTix alloys, which agreed with an 
experimental phase diagram for the NiTi 
material.

In this paper, the previously developed 
methodology is generalized in the form of a 
new modification of an EAM-type potential. 
This modification represents a linear function 
multiplied by a sigmoid function, which 
gradually tends to zero beyond a given 
distance. A general procedure for constructing 
this modification is outlined and its parameters 
are related to the parameters of the linear 
correction [38]. The modified EAM-type 
potential is used for MD simulations of 
melting of nanometer-sized nanoparticles 
made of silver, gold and titanium. Structural 
and energetic equilibrium properties of these 
systems, such as lattice constants, cohesive 
energy and vacancy formation energy are also 
analyzed. Our results demonstrate that the new 
modification is applicable for metals with both 
cubic and hexagonal crystalline lattices. To be 
consistent with our previous works [38, 40] the 
Gupta potential is considered as an example but 
we stress that the modification proposed can 
also be applied to other interatomic potentials 
of the EAM type, e.g., to Sutton–Chen [20] or 
Finnis–Sinclair [41] potentials.

EAM-type Gupta potential

Similar to other many-body potentials of the 
EAM type the Gupta potential is constructed 
as a sum of (i) a short-range repulsive term 
that stems from the repulsion between atomic 
cores and (ii) a long-range attractive term 
which imitates delocalization of the outer-shell 
electrons and is related to electron density at 
a given atomic site. The total energy of an 
N-atom system interacting via an EAM-type 
potential reads as

1 1

1 ( ) ( ),
2

N N

ij i i
i j i i

U V r F
= ≠ =

= + ρ∑∑ ∑ (1)

Where V(rij) is the short-range repulsive in-
teraction between atoms i and j separated by 
the distance rij; the attractive term Fi stands for 
the energy obtained by embedding atom i into 
the local electron density ρi provided by the 
remaining atoms of the system. 

The functional form of Fi(ρi) may vary in 
different EAM-type potentials [25] while the 
Gupta potential employs a specific form of this 
function,

( ) .i i iF ρ ∝ − ρ

This functional form is based upon the 
second-moment approximation of the tight- 
binding model [42, 43], according to which the 
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attractive many-body term is related to the en-
ergy of d valence electron band and expressed 
as a square root of ρi. The latter is constructed 
empirically as a linear superposition of electron 
charge densities of constituent atoms, 

( ).i ijj i
r

≠
ρ = ψ∑

Within the Gupta representation, the func-
tions V(rij) and ψ(rij) are introduced in expo-
nential forms so that the total potential energy 
UGup reads as follows:
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where d is the first-neighbor distance; p, q are 
related to bulk elastic constants; ξ represents an 
effective orbital-overlap integral; A adjusts the 
cohesive energy.

The parameters for silver, gold and titanium 
used in this work were taken from Ref. [22].

Linear correction to EAM-type potentials

The EAM-type Gupta potential (2) 
corrected with the linear term Ulin introduced 
in Ref. [38] reads

U U U

U Br C

lin

ij
i j

N

� � �

� � �� �
�
�

Gup

Gup

1

2 1,

, (3)

where B and C are parameters.

The linear form was chosen to match the 
curvature of the modified potential energy profile 
in the vicinity of the equilibrium point (governed 
by the second derivative of potential energy U) to 
that of the original EAM-type potential.

As discussed in Ref. [38], the term Brij (B > 
0) makes the potential energy profile steeper at 
interatomic distances exceeding the equilibrium 
point r0 whilst also slightly changing the depth 
of the potential well at r0. The constant term 
C < 0 was therefore added to mitigate the 
latter effect. In Ref. [38], parameters B and C 
were obtained empirically for a specific cutoff 
distance rc for titanium, gold, platinum and 
magnesium. As shown below, these parameters 
can be derived for any material and any rc using 
the following analytical estimate.

The correction to an EAM-type potential 
should not change the cohesive energy of a 
bulk material to which the potential was fitted. 
Therefore, the change in the total potential 
energy due to a linear correction should be 
equal to zero. If we approximate the real 
crystalline structure of a metal with a uniform 
distribution of atoms with number density n0, 
this condition can be written as

( )0 0,
c

ijr r
n Br C dV

<
+ =∫ (4)

leading to the relation

3 .
4 cC Br= − (5)

Fig. 1 shows (lines) the calculated 
dependence C(B) for gold and titanium for 
different values of rc. These parameters of 
the linear correction leave intact the cohesive 
energy of bulk metal systems. Bulk gold and 

Fig. 1. C(B) dependence for Au (a) and Ti (b) for different cutoff values of rc; 
lines show the results obtained using Eq. (5); symbols show the results of structure optimization 
calculations which account for the realistic crystal structures (see the ‘Results and discussion’ section)
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silver have fcc crystal lattices and very similar 
lattice constants, so the results shown for gold 
also describe silver crystals. For each metal 
we consider three cutoff distances between 
6 and 8 Å, corresponding to minima in the 
radial distribution function (see the vertical 
lines in Fig. 2). The indicated values of rc were 
chosen following Ref. [22]. In that work, the 
parameters of the Gupta potential for the fcc 
metals were derived accounting for interatomic 
interactions up to the fifth-neighbor shell, while 
the suggested cutoff values for titanium and 
other hcp structures corresponded to inclusion 
of seven to eight shells of neighboring atoms.

The linear correction causes a small dis-
placement ∆r of atoms from their equilibrium 
positions defined by the original EAM-type po-
tential. Expanding U in a Taylor series about 
the equilibrium atomic positions for the origi-
nal potential and keeping only the first term of 
this expansion one evaluates a change in po-
tential energy associated with ∆r as

� �

�

U F r

C
B
n r

lin� � �
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�
�

�
�
�

2

3

4

3

3 3

2 0

�
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(6)

As it was demonstrated in our earlier work 
[38], augmenting steepness of the interatomic 
potential beyond the equilibrium point by en-
hancing the repulsive contribution of the force 
field leads to a rise of the melting point. It 
happens because an increased thermal energy 
is needed to reach the threshold of atomic vi-
bration amplitudes at which the melting phase 
transition occurs. Knowing the experimental 
bulk melting temperature Texp

m and the value 
predicted by the original Gupta potential, TGup

m , 

parameters B and C can be chosen such that 
an increase in the melting temperature will be 
equal to ΔT = Texp

m  – TGup
m .

Eqs. (5) and (6) define, for any rc, a 
combination of parameters B, C that reproduce 
experimental values of cohesive energy and 
melting temperature of bulk materials. These 
conditions were used to define B and C for the 
three metals studied.

Generalized modification of 
EAM-type potentials

In this section, we generalize the above 
described methodology and propose a new 
modification of an EAM-type potential. The 
modification should keep features of the linear 
correction, i.e., maintain its behavior in the 
vicinity of atomic equilibrium points and 
enhance the repulsive interactions with an 
increase of atomic displacements. We construct 
the modification in such a way that it contains a 
parameter describing the characteristic range of 
the potential thus eliminating the dependence 
of the potential on the choice of the cutoff 
distance. These conditions are fulfilled by 
multiplying Ulin by a sigmoid function which 
is equal to unity at small interatomic distances 
and asymptotically approaches zero beyond a 
given distance. The modified EAM-type Gupta 
potential then reads as

U U U

U
Br C

e
ij

r r
i j

N

ij s
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�
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�
�

Gup

Gup

mod

,
.1
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(7)

The parameters B̃ and C̃ have the same 
meaning as B and C in Eq. (3): B̃ defines an 
additional force acting on the nearest atoms 

Fig. 2. The calculated radial distribution functions (RDFs) for 10-nm Au (a) and Ti (b) nanoparticles 
(composed of approximately 30,000 atoms). The cutoff values of rc used are shown by dashed lines
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and C̃ adjusts the depth of the potential well 
in the vicinity of the equilibrium point where 
U = 0. The parameter λ describes the slope 
of Umod at large interatomic distances, while 
rs defines the sigmoid’s midpoint and hence 
the range of this potential. Fig. 3 shows the 
potential Umod for a pair of atoms as a function 
of interatomic distance r. Due to its sigmoid-
type shape, Umod(r) asymptotically approaches 
zero and its range serves as a natural cutoff 
distance for this interaction.

For each pair of atoms, the potential Ulin 
grows monotonically with interatomic distance 
up to the cutoff rc, and all atoms located 
within the sphere of radius rc experience the 
same force exerted by a given atom. On the 
contrary, Umod has a maximum at interatomic 
distances of about 5–8 Å depending on the 
choice of λ and rs (see Fig. 3). Thus, the force 
exerted by an atom due to Umod enhances 
interaction with several nearest atomic shells 
while the interaction with more distant atoms 
weakens. The strength of this interaction is 
governed by the steepness of the potential 
beyond its maximum, i.e., by the parameter 
λ. Therefore, the force acting on the nearest 
neighbors due to Umod should exceed (by the 
absolute value) the force Flin as its effect is 
compensated by weaker interactions with 
more distant atoms. Thus, for each pair of 
atoms interacting via Umod(r), the initial slope 
of the potential should be steeper than the 
slope of Ulin(r), i.e., B̃ > B.

To analytically derive parameters of the 
new modification, Ulin(r) in Eqs. (4) and (6) 
was substituted with Umod(r), a piecewise lin-
ear approximation of the sigmoid-type func-
tion Umod(r), see Eq. (8) in Appendix. Then, 
parameters of this function were expressed 
through the parameters B and C of the lin-
ear correction. As a last step of this proce-
dure, Umod(r) was fitted with Umod(r) to derive 
λ and rs. Further technical details are given 
in the Appendix. The parameters of Umod used 
for an analysis of melting temperature and 
near-equilibrium properties of silver, gold 
and titanium nanosystems are summarized 
in Table 1. Details of this analysis are pre-
sented below in the ‘Results and Discussion’ 
section.

The modification Umod (7) is qualitatively 
similar to the well-known Dzugutov potential 
[45] which was developed to model glass-
forming liquid metals. The Dzugutov potential 
coincides with the Lennard–Jones potential at 
small interatomic distances but has a maximum 
beyond the equilibrium point. This enables 
the suppression of crystallization and enforces 
the emergence of icosahedral structures. The 
maximum of Umod corresponds to the positions 
of more distant atoms (see Fig. 3 and the 
RDFs in Fig. 2). As a result, the modification 
Umod does not affect crystal structure but leads 
to an increase in the melting temperature 
whilst slightly changing the near-equilibrium 
properties of metals.

Fig. 3. Plots of Umod(r) (7) for different values of the parameters (solid lines) and Ulin (a dashed gray line) 
vs. the interatomic distance r, and also the piecewise linear approximation Umod (r) (8) (dotted curves, 
see the Appendix for details). The used procedure of deriving the parameter values is given in the text
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Computational details

All simulations described in this work were 
conducted using the MBN Explorer soft-
ware package [46]. We considered spherical 
nanoparticles with radii from 1 to 5 nm (rang-
ing from 250 to 30,000 atoms) that were cut 
from ideal silver, gold and titanium crystals. 
The systems were constructed using the MBN 
Studio software [47].

Prior to the analysis of the structural and en-
ergetic parameters of each system, energy mini-
mization calculations were performed using the 
velocity-quenching algorithm. The MD simula-
tions of the melting process were performed using 
a large simulation box of 20 × 20 × 20 nm in 
the NVT canonical ensemble. The temperature 
T was controlled by a Langevin thermostat with 
a damping time of 1 ps. The nanoparticles were 
heated up (starting from the initial temperature T0 
well below the expected melting temperatures, T0 
= 300 K for Ag and Au and 1000 K for Ti) with 
a constant heat rate of 0.5 K/ps, which is within 
the range of typical values used for MD simula-
tions of phase transitions. The total simulation 
time for each run was 3 ns. The time integration 
of the equations of motion was done using the 
velocity-Verlet algorithm [2] with an integration 
time step of 1 fs. In the calculations performed 
with the linear correction Ulin, the interatomic 
interactions were truncated at the cutoff radius 
rc ranging from about 6 to 8 Å as shown in Fig. 
2. In the case of the potential augmented with 
Umod, its range served as a natural cutoff distance, 
which varied between 8 and 9 Å.

The melting temperatures of nanoparticles 
were determined from the analysis of heat 
capacity

( )/V V
C E T= ∂ ∂

defined as a partial derivative of the internal 
energy of the system with respect to temperature 

at a given volume. A sharp maximum of CV 
was attributed to the nanoparticle melting and 
the position of the maximum was referred to 
as the nanoparticle’s melting point. The bulk 
melting temperature Tbulk

m was estimated by 
extrapolating the obtained values to the N → 
∞ limit according to the Pawlow law [48, 49]

3/1−+= NTT m
bulk

m γ

with γ being the factor of proportionality.

Results and discussion

Fig. 1 shows the dependence C(B) that 
describes the parameters of the linear correction 
Ulin at different values of cutoff rc. Dashed lines 
were obtained by means of Eq. (5) within 
the uniform density model (see the section 
‘Linear correction to EAM-type potentials’), 
while symbols show the results of structure 
optimization of gold and titanium systems 
with realistic crystal structures. In the case of 
structure optimization, the parameters B and 
C were chosen to match experimental cohesive 
energies [50]. The outcomes of the uniform 
density model are in good agreement with 
the results of optimization calculations. Table 
2 summarizes the bulk cohesive energy for 
silver, gold and titanium, calculated with the 
linear correction as well as the experimental 
values and the results obtained by means of the 
original EAM-type Gupta potential.

Fig. 4 shows the melting temperature 
of bulk silver, gold and titanium calculated 
using the linear correction Ulin to the Gupta 
potential, Eq. (3), at different values of the 
parameter B and the cutoff rc. The parameter 
C was defined according to Eq. (5). Symbols 
denote the results of MD simulations of finite-
sized nanoparticles melting, extrapolated to the 
bulk limit. The figure shows that the calculated 
melting temperature increases linearly with B.

T ab l e  1
Parameters of the potential Umod 

Element B̃, eV/Å C̃, eV λ , Å–1 rs, Å
Ag 0.009 – 0.048 5.93 7.10
Au 0.026 – 0.145 4.68 7.36
Ti 0.052 – 0.269 2.77 6.68

Nota t i on : B̃ is an additional force acting on the nearest atoms; C̃ adjusts the depth of 
the potential well in the vicinity of the equilibrium point where U = 0; λ describes the 
slope of Umod at large interatomic distances; rs defines the sigmoid’s midpoint.
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These results can be used to evaluate 

( ) .lin Gup
m mT T B T∆ = ∆ −∆

As follows from Eq. (6), 

� � �U k T r� � ,

where ∆r stands for an increase in the ampli-
tude of thermal vibrations of atoms with re-
spect to the values predicted by the original 
Gupta potential. 

The slope of ∆T(B) is therefore proportional 
to the distance by which the atoms should be 
additionally displaced from equilibrium positions 
to initiate the melting process at the temperature 
corresponding to the experimental value. For sil-
ver and gold Δr ≈ 0.09 Å, which is about 3% of 
their nearest-neighbor distances. For titanium we 
observed the dependence of ∆r on the cutoff dis-
tance. For smaller cutoff values, rc = 6.2 Å and 
6.8 Å, an increase in the amplitude of thermal 
vibrations is equal to 0.06 Å and it increases up 
to 0.09 Å for rc = 8.1 Å. These results suggest 

that an increase in the amplitude of thermal vi-
brations by a few percent leads to a dramatic rise 
of the melting point. A much steeper slope of 
∆T(B) for Ti at rc = 8.1 Å suggests that more dis-
tant atoms located in a concentric shell between 
7 and 8 Å make a significant contribution to the 
melting process and the original Gupta potential 
cannot account properly for this contribution.

Tables 2–4 summarize the results on 
structural and energetic properties of silver, 
gold and titanium nanocrystals obtained with 
the sigmoid-type modification Umod (7). These 
results are compared to those obtained by means 
of the original EAM-type Gupta potential (2) 
and the linear correction Ulin (3).

As mentioned above, the calculated bulk 
cohesive energies are summarized in Table 
2. Neither linear correction nor sigmoid-type 
modification significantly change the values 
predicted by the original Gupta potential; 
all these values are in good agreement 
with experimental data [50] with a relative 
discrepancy of less than 0.5%.

Fig. 4. The calculated dependences of the melting temperature of bulk silver (a), gold (b) 
and titanium (c) on the parameter B at the different cutoff rc values (symbols) as well as the least-squares 

fit to these results (solid lines). Experimental values from Ref. [50] are shown by dashed lines.
The calculation procedure is given in the text. B = 0 corresponds to the original Gupta potential, Eq. (2)

Tab l e  2
Comparison of the calculated bulk cohesive energy values 

with experimental data

Bulk cohesive energy, eV per atom

Element UGup UGup + Ulin UGup + Umod
Experiment

[50]
Ag 2.96 2.96 2.97 2.96
Au 3.78 3.77 3.78 3.78
Ti 4.87 4.87 4.83 4.85

Notation: UGup is the original Gupta potential, Eq. (2); (UGup + Ulin) is the one corrected by Ulin, Eq. (3); 
(UGup + Umod) is the one corrected by the sigmoid-type modification Umod, Eq. (7), proposed in this work.
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Table 3 presents the vacancy-formation 
energy that is the amount of cohesive energy 
required to form a vacancy in a crystal. It is 
defined [62, 63] as

( )1

1

( 1)

1 ,

coh coh
vf N N

N N

E N E E

NE E
N

−

−

≡ − − =

−
= −

where 

1 1

,
( 1)

coh
N N

coh
N N

E NE
E N E− −

=

= −
are the potential energies of systems containing 
N and (N − 1) atoms, whereas Ecoh

N and Ecoh
N–1 

are the corresponding cohesive energies per 
atom. The calculated values (columns labeled 
as ‘UGup’, ‘UGup + Ulin’ and ‘UGup + Umod’) are 
compared with available experimental data 
and the results of DFT calculations and MD 
simulations employing different EAM-type 
potentials.

The values calculated with the original 
Gupta potential are consistent with some ex-
perimental and theoretical values reported in 
literature [22, 23, 52, 55, 57], whereas other 
works predicted either smaller or much larger 
values of Evf. Note that the theoretical re-
sults reported in literature were obtained with 

different EAM-type potentials (Finnis–Sinclair 
and Gupta potentials as well as a distinct po-
tential introduced in Ref. [54]) as well as with 
different EAM and modified EAM (MEAM) 
potentials. The variety of potentials and pa-
rameterizations used has resulted in a large (up 
to 40 %) discrepancy between the calculated 
values of Evf.

Calculations performed with the Gupta po-
tential corrected by Ulin (see the column ‘UGup + 
Ulin’) yield smaller values of Evf as compared to 
the original Gupta potential, and the magnitude 
of the decrease depends on the parameter B. 
The values of Evf listed in Table 3 were obtained 
for each metal using the B values that reproduce 
the experimental bulk melting temperatures (see 
Fig. 4). The figure shows that for rc ≈ 8 Å, Å the 
value of B for silver, 0.0016 eV/Å, is three times 
smaller than that for gold, 0.005 eV/Å, and five 
times smaller than for titanium, 0.008 eV/Å. As 
a result, the vacancy-formation energy for silver 
calculated by means of the linear correction is 
slightly (by about 5 %) smaller than the value 
predicted by the original Gupta potential. For 
gold and especially titanium, larger values of 
B should be used to reproduce the experimen-
tal bulk melting temperatures, which leads to a 
more pronounced decrease of Evf. The magni-
tude of this discrepancy for titanium is within 

Tab l e  3
Comparison of the vacancy formation energy E

vf 
obtained in this paper

with the published experimental and calculated data

Element

Vacancy formation energy Evf , eV

UGup UGup+Ulin UGup+Umod Experiment Calculation
EAM-type DFT

Ag 0.94 0.90 0.91 0.99±0.06[52]
1.09±0.10 [53]

0.79[19] (Gupta)
0.88[22] (Gupta)
0.97 [23] (EAM)

1.10 [54]
–

Au 0.72 0.58 0.81 0.62–0.67 [55]
0.70–1.10 [55]

0.60[19] (Gupta)
0.75[22] (Gupta)
1.03 [23] (EAM)

1.10 [54]
–

Ti 1.49 1.22 1.44 1.55 [56]

1.43 [21] (FS)
1.49 [57] (EAM)
1.56[58] (Gupta)
1.78[59](MEAM)
1.79[28](MEAM)

1.97
[60]

2.14 
[61]

Nota t i on : UGup corresponds to the Evf value calculated with the original EAM-type Gupta potential; (UGup+Ulin), 
(UGup+Umod) correspond to the Evf values done using the potential corrected by Ulin and the new modification Umod; 
EAM, MEAM – embedded-atom method and modified EAM [51]; DFT is the density functional theory; FS is 
the Finnis–Sinclair potential [41].
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the uncertainty range of the existing theoretical 
data obtained by means of different EAM-type 
potentials (see Table 3). In MD simulations re-
ported in literature [21, 28, 57–59] Evf varies 
from about 1.4 to 1.8 eV while DFT calcula-
tions [60, 61] predicted even larger values up to 
2.1 eV.

The sigmoid-type modification Umod gives 
the results which are closer to the experimental 
values and the results of other MD simulations 
[21–23, 57] compared to the original Gupta 
potential and linear correction. This is due to 
the change in the asymptotic behavior of the 
original Gupta potential, i.e., the weakening of 
interatomic interactions at large distances.

Table 4 presents the equilibrium lattice con-
stants for silver, gold and titanium calculated 
with UGup, UGup + Ulin and UGup + Umod. The 
force created by the linear correction causes a 
uniform strain on crystals, which become uni-
formly compressed. For silver and gold this ef-
fect is rather small (the relative change in the 

lattice parameters is less than 1 %) while the 
relative shortening of titanium crystals is about 
2.5 %. This can also be attributed to a very 
steep linear correction (i.e., a large force) that 
should be used to reproduce the experimen-
tal bulk melting temperature of Ti. Note also 
that the geometry optimization of a Ti crystal 
using the original Gupta potential yields the 
structure which is elongated along the [0001] 
axis as compared to the experimental value (the 
calculated lattice parameter c = 4.75 Å vs. the 
experimental value of 4.68 Å). The geometry 
optimization by means of the linear correction 
results in a uniform compression of the crystal, 
which brings the parameter c in a better agree-
ment with the experimental value.

The sigmoid-type modification Umod has a small 
impact on the equilibrium lattice parameters, 
which almost coincide with those predicted 
by the original Gupta potential and agree 
reasonably well with the experimental results. 
Contrary to the linear correction, Umod does not 

Fig. 5. Melting temperature of Ag (a), Au (b) and Ti (c) nanoparticles of diameter D calculated by 3 ways: 
using the original EAM-type Gupta potential (Eq. (2)), its linear correction Ulin (Eq. (3)) 

and the new modification Umod (Eq. (7)); 3 values of rc were considered (symbols). 
The extrapolation of the calculated numbers to the bulk limit was made (lines). 

Experimental values of bulk melting temperature are shown by stars

Tab l e  4
Comparison of the calculated equilibrium lattice constants with experimental data

Element
Equilibrium lattice constant, Å

UGup UGup + Ulin UGup + Umod Experiment [50]
Ag 4.07 4.05 4.07 4.09
Au 4.06 4.03 4.09 4.08

Ti (a) 2.91 2.83 2.89 2.95
Ti (c) 4.75 4.63 4.77 4.68

Foo tno t e . The presented results were calculated with the original Gupta potential (UGup), as well as with the Gupta 
potential corrected by Ulin and the new modification Umod. Two lattice parameters, a and c, are listed for titanium.
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induce a strong compression of the Ti crystal 
and its lattice parameters obtained by means of 
Umod are similar to those calculated with UGup. 
As discussed above, this is due to the functional 
form of Umod wherein a positive contribution of 
U'mod  plays the role at small interatomic distances 
(which span over a few nearest atomic layers) 
while a negative contribution of U'mod plays the 
role at larger values of r.

Fig. 5 shows the melting temperatures of 
finite-sized Ag, Au and Ti nanoparticles as 
functions of their inverse diameter D. For all 
these metals, the bulk melting temperature 
predicted by the original Gupta potential is 
significantly lower than the experimental values. 
The most illustrative example is titanium (see 
Fig. 5, c) whose melting temperature calculated 
with UGup is approximately 1380 K. It is more 
than 500 K lower than the experimental value of 
1941 K (marked by a star symbol) which yields 
the relative discrepancy of about 30 %. A similar 
feature has been observed for gold and silver 
– the absolute discrepancy is smaller for these 
metals (about 330 and 100 K, respectively) while 
the relative discrepancy for gold is as large as 
25 %. These results further justify the necessity 
of correcting the EAM-type potential to bring 
the calculated bulk melting temperatures in 
closer agreement with the experimental values. 
The modification Umod produces a similar 
effect as the linear correction – it leads to an 
increase of nanoparticles’ melting temperatures 
and, as a result, to an increase in bulk melting 
temperatures. The new modification improves 
the calculated bulk melting temperature for the 
three metals considered. Good agreement with 
the experimental values has been obtained for 
titanium and silver (the relative discrepancies 
from the experimental values are 0.8 and 
1.5 %, respectively) while a somewhat larger 
discrepancy of about 6 % has been observed 
for gold. This is linked to the observation that 
the sigmoid-type modification increases the 
slope of the Tm(1/D) dependence for silver and 
titanium nanoparticles but it almost does not 
change the slope for gold nanoparticles. The 
utilized parameters of Umod for gold have been 
chosen such that all the quantities considered 
in this work agree better with experimental data 
as compared to the original Gupta potential. 
An even better agreement might be achieved 
by performing a more detailed analysis of the 
multi-dimensional parameter surface of Umod. 
A finer tuning of parameters should bring the 
calculated Tbulk

m for gold to a better agreement 
with experimental data.

Summary

We formulated a recipe for modification of 
classical embedded-atom method (EAM)-type 
potentials aiming at a quantitative description of 
both equilibrium and non-equilibrium properties 
of metal systems by means of molecular dynamics 
simulations. The modification suggested in 
this work asymptotically approaches zero at 
large interatomic distances and generalizes the 
previously developed linear correction [38]. A 
general procedure for constructing the modified 
EAM-type potential was outlined and the relation 
between parameters of the new modification and 
the linear correction was elaborated.

The procedure developed has been applied 
to analyze the melting temperature as well as 
lattice constants, cohesive energy and vacancy 
formation energy of nanosystems made of sil-
ver, gold and titanium. It was demonstrated that 
the modified potential leads to an increase in 
the melting temperature of the metals and to 
a better agreement with experimental values as 
compared to the uncorrected EAM-type poten-
tial. The new modification induces a small (on 
the order of a few per cent or less) change of 
the equilibrium properties but increases the bulk 
melting temperature by more than 30% as it is 
demonstrated for the case of titanium. We have 
considered the many-body Gupta potential as 
an example but the generality of the correction 
allows its application in combination with other 
potentials of the EAM type such as Sutton–Chen 
or Finnis–Sinclair potentials. The results pre-
sented for the metals with cubic and hexagonal 
crystalline lattices further confirm a wide range 
of applicability of the proposed modification.

Appendix

Derivation of parameters of Umod

To analytically derive the parameters of the 
sigmoid-type potential Umod(r), the latter was 
approximated by a piecewise linear function:

1 1 0

mod 2 2 0 2

2

,
( ) , ,

0,

B r C r R
U r B r C R r R

r R

+ <
= + < <
 >

(8)

where B1 > 0 (C1 < 0) and B2 < 0 (C2 > 0), 

1 2
0

1 2

C CR
B B
−

= −
−

is the point of intersection of the two linear 
segments, and R2 = –C2/B2 is the point where 
Umod(r) = 0 (see dotted curves in Fig. 3). After 
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substituting Eq. (8) into Eq. (4) and carrying 
out the integration one arrives at the condition:

( )
( )

4 4

3 3

1
,

1
− γ γ

= −
β−β

(9)

where β = B2/B1 and γ = C2/C1.
Substituting Eq. (8) in Eq. (6) one derives 

the force Fmod due to the potential Umod(r). This 
force should be equal to the force Flin arising 
due to the linear correction at a given cutoff in 
order to increase the melting temperature by 
the same value. This can be expressed as

( )
( )

33 33 3
1

22 2 2
1

14 .
3 1

CC
B B

 − γ γ  = +   β  −β  
(10)

The procedure for deriving the parameters of 
the sigmoid-type function Umod (7) and its approx-
imation Umod (8) can be summarized as follows:

(i) The parameters B and C of the linear cor-
rection are obtained as described in the section 
‘Linear correction to EAM-type potentials’;

(ii) Fixing the point R1 = –C1/B1 at which 
Umod(r) = 0 (see Fig. 3), a scan over different 
values of B1 and C1 is performed;

(iii) β and γ are derived from the numerical 
solution of Eqs. (9) and (10), and the corre-
sponding values of B2 and C2 are obtained;

(iv) Repeating steps (i)–(iii) for different 
combinations (B1, C1) one obtains a multidi-
mensional parameter surface (B1, C1, B2, C2);

(v) Once B1,2, C1,2 are derived, the result-
ing piecewise function is fitted with the sig-
moid-type function Umod, Eq. (7), to obtain the 
parameters λ and rs.
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