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The paper aims at calculation of the effective elastic properties of metals with a micro-
structure typical for hydrogen-enhanced degradation. For the purpose of this study, we use the
Maxwell homogenization scheme and explicit expression for compliance contribution tensor
to determine the overall Young’s moduli. The model introduces oblate spheroids to describe
intergranular microcracks and spheres to describe pores. Within the frame of the paper, we
consider random orientations of the microcracks, certain preferential orientation accompanied
by random scatter with the scattering parameter and random orientations of the spheroids’ axes
in the same plane. The dependences of the effective Young’s moduli on the porosity and aspect
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ONPEAEJIEHUE DPDEKTUBHOTO MOLY/IA FOHTA
CPEQbl C MUKPOCTPYKTYPOM,
XAPAKTEPHOM A9 BOOOPOAHOM OErPAAALLUU

K.[1. ®posnoba

MHCTUTYT npobnem MalumnHoBefeHust PAH, CaHkT-MNeTepbypr, Poccuitickas deanepauus;
CaHkT-MNeTepbyprckuii NONUTEXHUYECKUI YHUBEpPCUTET MNeTpa Benukoro,
CaHkT-lNeTepbypr, Poccuiickas ®eaepauns

PaGora mnocesiieHa onpenaeiacHuo 3GGEKTUBHBIX  YOPYTMX CBOMCTB  METaIOB €
MUKPOCTPYKTYpPOI, XapaKTepHOU [ BOAOpoAHOW paerpagaumu. C IEJbIO ONpeneeHUs
abdekTnBHBIX Momyieir KOHra pemaeTcss 3amada roMoreHM3alMu IO cxeme Makcsesuia
B TEepMWHAX TEH30pOB BKJIaga. MUKPOTPEIINHBI, BO3HMKAIOIIME I10 TpaHWIAM 3EpeH,
MOIEJINPYIOTCS CILTIOCHYTBIMU cheponaaMu, Mopsl — chepamu. PaccMaTpuBaeTcest Tpu BapruaHTa
OpUEHTAllUM OCeil CUMMETpUM c(EepoUIOB B MaTepuaie: IPOU3BOJIbHAS, IPEUMYILIEeCTBEHHAS
OpUEHTallMsl C MapaMeTPOM pacCesHMsI, MPOM3BOJIbHAS OPMEHTALUMsI B OMHOM IIJIOCKOCTH.
Hccnenytores 3aBrucuMocTH 3(PpPeKTUBHBIX Moayieid KOHTa OT MOpMCTOCTH MaTepHaja M OT
COOTHOIIIEHUS JUTMH TIOJIyoceil chepounmIoB.

KmoueBbie ciaoBa: sapdexkTuBHbINN Moaynab FOHra, cxema romoreHusauuu Makcsellsia, BOA0©O
pomHas nerpanaius, cheponnaabHasi HEOJHOPOIHOCTh
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Introduction

Hydrogen dissolved in metals may lead
to degradation of mechanical properties and
premature fracture of metal workpieces. The
impact of hydrogen on the properties and
character of material fracture largely depends
on both external factors, and the features of
the internal structure and characteristics of
materials. This is why the phenomenon of
hydrogen degradation, comprising an entire
range of negative effects induced by hydrogen,
remains an important topic in materials science
demanding further comprehensive studies [1, 2].

Many works considered the effects of
hydrogen on the material microstructure [3—
9]. Hydrogen is assumed to diffuse through the
metal lattice and interact with the defects of the
structure, such as dislocations, pores, vacancies,
etc., thus inducing microcracks. The defects
develop in workpieces during production, and
are typically located along the boundaries of
grains or inclusions in alloys (the defects are
also found inside the grains, but to a lesser
extent). Ultimately, if there are no significant
internal or external stresses, hydrogen-induced
microcracks form, propagating along the grain
boundaries [3—5, 9] or blisters that lead to
embrittlement of the surface [7, 9]. At the same
time, microcracks can be observed at grain
boundary triple junctions as well [4, 5, 8, 9].
Microcracks are often seen to initiate with a
preferential orientation, which is parallel to the
rolling direction [3, 7].

Several papers [10—12] studied hydrogen
diffusion along the grain boundaries, finding
the effective diffusion coefficient in a composite
material, where one phase consisted of grain
boundaries with a high diffusion coefficient, and
the other phase included the actual grains with
a low diffusion coefficient. However, hydrogen-
induced changes in the microstructure were not
simulated in these studies. For example, [13]
used phenomenological approaches to solve
a related problem of hydrogen transfer and
changes in the defects structure of the material.
The effect of hydrogen on the material was
accounted for within the cumulative damage
theory. A number of papers discussed hydrogen-
induced degradation of elastic properties of

material [9, 14, 15]; in particular, [9] dealt with
hydrogen degradation in low carbon steels at
different levels. The authors found that long-
term hydrogen saturation leads to a reduction
in bulk elastic modulus. Microstructural
analysis revealed that the reasons for this may
lie in the deformation of larger grains, cracks,
and blisters caused by hydrogen penetration. As
observed in [14], prolonged hydrogen charging
may decrease the value of Young’s modulus
by up to 15% in a gamma titanium aluminide
alloy. The experiments in [15] were conducted
for three different grades of high-strength
steel. Hydrogen charging of steels resulted
in degradation of mechanical properties and
changes in the microstructure in all cases.

Summarizing the above, we can remark
that analytical models of hydrogen degradation
generally tend to account for diffusion assumed
to be the primary process leading to changes
in microstructure and to degradation of
mechanical properties. The degradation of
elastic properties due to the actual changes
in the microstructure has received much less
attention.

The goal of our study consisted in determining
the effective elastic moduli for a material whose
microstructure is assumed to have formed as a
result of hydrogen degradation.

For this purpose, we solve the problem of
homogenization which allows to estimate the
contribution of inhomogeneities to a given
property. We consider the influence that the
potential shape and orientation of microcracks
in the material, as well as its porosity have on
effective Young’s moduli.

Microstructure of the material

This paper studies the influence of coin-like
microcracks, as well as pores on the effective
properties of materials, assuming that the
former accounts for intergranular cracking, and
the latter for the impact of the pores which did
not merge into microcracks, and the voids near
grain boundary triple junctions. It was found in
[16] that jagged boundaries of planar cracks or
deviations from circular shape are unimportant
for elastic properties of the material, so these
inhomogeneities can be simulated as elliptical.
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Microcracks were modelled by oblate spheroids
and pores by spheres in our study. We consider
three cases of inhomogeneities in the material.

In the first case, we assumed that microcracks
have random (isotropic) distribution in the
bulk. This pattern is characteristic for metal
products weakly deformed during production.

In the second case, we assumed that
microcracks have preferential orientation (for
instance, in case of rolling and layered structure
of material). A factor that we took into account
was that microcracks may deviate from the
preferential orientation in this instance.

Finally, to complete the picture, we considered
the case when the symmetry axes of spheroid
microcracks have random orientation in a certain
plane. This situation is observed, for example,
when a material is compressed and there are no
cracks forming in the plane of loading.

Compliance tensor of spheroid microcrack

Contribution tensors are used within the
homogenization method to describe the
contributions of individual inhomogeneities
into the given properties [17].

Taking a homogenous elastic material (ma-
trix) with the compliance tensor S°, let us con-
sider a representative volume V, containing an
isolated inhomogeneity of volume V, with the
compliance tensor S'. The volume V should be,
on the one hand, large enough to reflect the
characteristic microstructure, and, on the other
hand, small enough compared with the entire
volume of the material so that the variations of
the macroscopic fields are negligible.

Correct choice of representative volume is
discussed, for example, in [17]. The effective
elastic properties of the material are estimated
by means of a tensor accounting for the con-
tribution of inhomogeneities to compliance:
it is a fourth-rank tensor H, which describes
extra strain Ag generated in volume V due to
inhomogeneity:

A8=%HZGO, (1)

where o, is the stress field depending on bound-
ary conditions, which would be generated in
the volume in the absence of inhomogeneities.

The tensor accounting for the contribution
of an ellipsoidal inhomogeneity to compliance
can be expressed in terms of compliance
tensors of the matrix, inhomogeneities
characterizing the material properties, and the
second Hill’s tensor Q reflecting the influence
of inhomogeneity shape:
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The fourth-rank tensor Q is related to the
first Hill’s tensor P by

Q=C-C":P:C,

where C’is the matrix stiffness tensor.
In turn, the fourth-rank tensor P is ex-
pressed in terms of derivatives of Green’s func-

tion G for displacements as
N

P=|V[G(x-x)VaV’ )

n (1,2)(3,4)
where ( )(31‘2)(3’ " indicates symmetry with respect
to permutation of subscripts in the first and the
second pair.

Pores and microcracks are characterized by
zero elastic moduli. Then S' — o0, and expression
(2) is reduced to H = Q~'. Tensors H and Q are
transversely isotropic for a spheroidal microcrack
in an isotropic matrix (the symmetry axis is
codirectional to the inhomogeneity symmetry
axis), and can be expressed as linear combinations
of the tensor basis elements T, T,, ..., T, [18]:

6 6
H:thTk9 QZZQka- 4)
k=1 k=1

The basis elements have the following form:

T, =00, T, = %((ee) +(00),,, - 06),

T

(14)

T,=,nn, T,=nn,,

T

(2:4)

1 T
T, =Z(n6n+(n9n) + (&)

(12)(3:4)
T

+(9nn)(1’4) + (Gnn)(Tm)),

T, =nnnn,

where 6 = I — nn (I is the second-rank unit
tensor) is the projection to the plane normal to
the unit vector n along the symmetry axis.

The basis introduced allows to represent
the transversely isotropic tensor B = )T,
(summation over repeated indices from 1 to 6)
and its inverse in one basis [17]:

B =b—6T1 +L ) —5T3 -
2A b, A
—QL +iT5 +%T6,
A b A

where A = 2(b,b,— b.,b,).

(6)
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Thus, determining the tensors Q and H for a
pore or a microcrack is reduced to determining
the components of tensor Q, which are calculated
as follows in case of a spheroidal inclusion [19]:

= [4x-1-2(3k-1) £, -2, |,
g, =20 [1-(2-x) f, ~ ;.
g =q,=20"[(2x-1) fy+2xf, |, (D)
qs = 4% [ f, +4xf, ],
g5 =80k £, — £]. k=(1-1") /2,

where p° and Vv’ are the shear modulus and
Poisson’s ratio of the matrix, respectively.

Parameters f, and f, depend on the aspect
ratio of spheroid semiaxes y = a,/a (a, is the
axis of rotation) as follows:

o 2(1-v7)

, \/l—yz arctan y
L (y+\/y —1} -
2y4y* -1 N

For a spheroidal inhomogeneity, y = 1,

=1, f,= 1/3, f,= 1/15. The compliance

tensor of a spher01da1 pore H is isotropic and
takes the followin, form

REEIN

2p

(8)
[ I P (J_lnﬂ,
10(1+v)3 7-5v 3

where I is the second-rank unit tensor,

1 T T
J= E((H)(l’“) + (II)(2,4))

is the fourth-rank unit tensor.
Tensors II and J can be represented as
follows in the transversely isotropic basis [17]:

H=T+T,+T,+T,

p

1 )
J:ET1 +T, + 2T, + T,.

Effective properties of metals
with spheroidal microcracks and pores

Effective properties of heterogeneous materials
can be determined by different methods. A
historical review of these methods can be found,
for example, in [20], while [17] presents analysis
of the current situation. All analytical methods are
approximate solutions, while the exact solution
can be obtained only numerically for specific
materials with a known microstructure. The best-
known analytical methods include:

non-interaction approximation,

effective media schemes,

differential scheme,

effective field methods (including both
Mori—Tanaka and Kanaun—Levin methods),

Maxwell scheme.

These methods differ in their approaches to
accounting for the mutual influence of multiple
inhomogeneities, while their applicability
is limited by material symmetry, shape and
orientation of inclusions. The Maxwell scheme
seems to be an optimal method to describe the
contributions of inhomogeneities of different
shape and orientation [21].

Let us find an effective compliance
tensor using the Maxwell scheme in terms of

contribution tensors:
-1

{ ZVH} -Q, ¢ , (10)

where Q,, is the second Hill’s tensor determined
for a homogenized region Q which contains
isolated inhomogeneities and possesses the
required effective properties.

In the absence of Q,, the effective compli-
ance tensor coincides with the value determined
neglecting the interaction of inhomogeneities.

Let us determine the total contribution of
isolated inhomogeneities to compliance. If the
inhomogeneities have the same shape and size
but different orientation, then their total con-
tribution can be determined as the product of
the averaged contribution by volume fraction
of inhomogeneities [17]. The averaged value
of the contribution tensor for spheroidal inclu-
sions coincides with the contribution tensor of
a separate spheroidal pore H due to symmetry.
If spheroidal microcracks and spherical pores
are present in the material, their total contri-
bution is determined as

S =

1
;ZViHi:(Pmc<Hmc>+(PpHp7 (11)
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I
where ¢, and ¢, are the volume fractions of o Vo
oblate spheroids and spheres, respectively, ZI: Qa3 / Z JUNTE
<H, > is the value of the averaged total tensor ) o @
descrlblng the contribution of microcracks to 1sziQ3333 / ZVQuu =
comp.hance _ i, = P (1 5)
It is sufficient to average the elements of the ZVI P ZV Pz)(zl;z ,
tensor basis to determine <H >, i.e., ; ;
N if 2 V.05 /ZViinipl
< mc>_z mc(k)< k>' i i
= where Q. , P are Hill’s tensor components Q

If there is a preferential orientation m, the
symmetry axes nm of spheroidal microcracks
tend to coincide with m with a certain devia-
tion depending on the scatter parameter A.

Let us introduce a probability density func-
tion for the orientation distribution of spheroid
axes of symmetry over a semisphere (0 <6 <mx/2)
in accordance with [22]:

\y»(e)::zg—[(xz-+1)e‘k9+-xe‘*”2]. (12)
T

If A = 0, the microcracks have a random
orientation in the representative volume and
the material is isotropic. If A — oo, the symme-
try axes of the microcracks are oriented strictly
along the preferential direction and the mate-
rial is transversely isotropic with the symmetry
axis coinciding with m. To average the elements
of the tensor basis, let us integrate them with
respect to the surface of a semisphere Q,, of
unit radius:

(13)

If the spheroid axes of symmetry n are ran-
domly oriented in a certain plane normal to m,
the material is transversely isotropic and its axis
of symmetry is co-directional to m. To average
the tensor basis elements, let us integrate them
with respect to a unit circle /, lying in a plane
normal to m:

1
<Ti>_£;[Tidll' (14)

The averaged values of the elements of
transversely isotropic basis are given in the
Appendix.

The choice of homogenized domain Q used
in the Maxwell scheme to account for the in-
teractions of inhomogeneities is discussed in
detail in [22].

In case of spheroidal inhomogeneities, this
domain is also a spheroid with the aspect ratio
of semiaxes expressed as
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and P, réspectwely

In general the shape of homogenized domain
depends on concentration, orientation and shapes
of inhomogeneities. If the inhomogeneities have
isotropic orientation distribution, the shape is
spherical. Otherwise, if the material contains
spherical pores of the same size and spheroidal
microcracks of the same size and shape, we
need to define the quantity

%ZKQz = Qe <ch>+(prp’

Q C> = ;qmc(k) <Tk>

After we find the components of the effective
compliance tensor, Sef{,, we can determine
effective Young’s moduh To be definite, let us
assume that the symmetry axis of the matenal
coincides with the direction e, of the Cartesian
basis (e, e, e,).

Then the effective Young’s moduli of the

(16)

transversely isotropic material EY = E%, E%
can be calculated as follows:
: 1 .
Ef = Ej) = Ef = (17)

eff > U337 Tqeff -
Sllll S3333
Results and discussion

In this study, we found the effective elas-
tic properties of steel with shear modulus p°=
80 GPa and Poisson’s ratio v = 0.3. Young’s
modulus of steel E° follows the expression

B =2 p(1 + ).

If the inhomogeneities
orientation distribution, the
isotropic, i.e.,

yﬁ:K”H+iW(J—§H} (18)

have random
material is

where K¢ and p¢ are the effective values of the
coefficient of compressibility and shear modu-
lus respectively.
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Fig. 1. Dependences of moduli K%/ K° (solid lines) and p¢//u° (dashed lines)
on porosity of material (¢) and density of cracks (b).
Pores are modeled by spheres (7, 2), microcracks by spheroids
with aspect ratio of semiaxes y = 0.1 (3, 4)

Fig. 1, a shows the dependencies of moduli
K/ K, nf/u° on porosity of the material ¢ for
a spherical pore (y = 1) and a spheroidal mi-
crocrack (at y = 0.1). Evidently, the porosity
of the material with spherical inhomogeneities
may theoretically reach 100% (the material
disappears). In case of microcracks of oblate
spheroidal shape, the elastic moduli approach
zero at porosities less than 100% (around 26%
at y = 0.1). Negative values of elastic mod-
uli at high concentrations of inhomogeneities
indicate that the problem of homogenization
cannot be solved correctly for this material.

Thus, the acceptable porosity of the mate-
rial is defined by a relation between the as-
pect ratio of the microcrack semiaxes. To take
this correlation into account, we can introduce
crack density into the model

p = (4/3)na’N/V

a)

(N is the number of microcracks) [17], related
to porosity ¢ as ¢ = py.

Fig. 1, b shows the dependences of moduli
K/ K and p¥/p° on crack density.

To find a possible explanation for the limited
acceptable porosity, we studied the dependence
of effective shear modulus p<,,/p° on porosity
for different scatter parameters A. We consid-
ered spheroidal microcracks with y = 0.10 and
0.05. The results are shown in Fig. 2.

The results indicate that given the same as-
pect ratio of spheroid semiaxes y, the porosity
of the material may theoretically reach 100%
if it contains parallel oriented microcracks (A
— o0), or, if the microcracks deviate from the
preferential orientation, the acceptable poros-
ity decreases, reaching the minimum with an
isotropic distribution (A = 0). As evident from
comparing Figs. 2, a and b, spheroids with a
high value of y have a higher value of acceptable

b)

Psﬂ}!‘lﬂ

pérud

1.0 |y

0.5

0.0

0.4

0.0 0.2

Fig. 2. Dependence of effective shear modulus p?,/u° on porosity of material
at aspect ratio of spheroid semiaxes y = 0.10 (@) and y = 0,05 (b).
Scatter parameter L = 0 (dashed lines), L = 10 (solid lines) and A—oo (dotted lines)

147



4St. Petersburg State Polytechnical University Journal. Physics and Mathematics 13 (2) 2020

porosity. Apparently, when porosity reaches a
certain value depending on the degree of devi-
ation of spheroid microcracks from the prefer-
ential orientation, as well as on their degree of
oblateness, multiple narrow microcracks cannot
be regarded as isolated. Since this assumption
is actually adopted for self-consistent schemes
(which also include the Maxwell method), more
accurate methods need to be found to account
for the mutual influence of inhomogeneities.

We determined the dependences of effective
Young’s moduli £%/E° on porosity of material
¢ for three case of orientation distribution of
inhomogeneities:

isotropic distribution (1),

preferential orientation with the scatter
parameter A (1I),

random distribution of symmetry axes of in-
homogeneities in a certain plane (I11I).

>

We assumed that the material contained two
types of inhomogeneities: oblate spheroidal mi-
crocracks with y = 0.1 and spherical pores.

Total porosities ¢ of all inhomogeneities
were taken in the range between 0 and 10%.

Materials with the following types of micro-
structure were considered:

only oblate spheroids are present (¢,
¢,= 0);

ratio of total volume of oblate spheroids
to total volume of pores is 2 : 1 (¢, = 2¢/3,
¢, = ¢/3);

total volume of oblate spheroids equals total
volume of pores (¢, = ¢/2 = 0, );

only pores are present (9,. =0, ¢, = = 0).

Fig. 3 shows the computatlonal results tak-
ing into account the given conditions. As ex-
pected, an increase in porosity leads to a de-
crease in elastic moduli in all cases. Evidently,

=0,

kot
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Fig. 3. Dependence of moduli £ /E® on porosity of material
for different orientation distributions of inhomogeneities
(y=10.1): T (a), IT (mpu A = 10) (b, ¢) and III (d, e) (see explanations in the text).
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Fig. 4. Dependences of moduli E%/E’ on parameter y at different orientation distributions of
inhomogeneities (crack density p = 0.1): I, II (a, b) and III (¢) (see explanations in the text);
a, b correspond to the scatter parameters A = 0 (dashed lines), A = 10 (solid lines) and A—oo (dotted-dashed lines);
¢ corresponds to the moduli £4/E, (dashed lines) and E%/E, (solid lines)

pores have less effect on Young’s modulus than
microcracks at the same value of ¢ for an iso-
tropic distribution (Fig. 3, a). For example, if
¢ = 0.10, then the value of modulus £4/ E* ~ (.82
ate, =0,¢,=¢and EJE ~0.58 at ¢, = o,
¢,= 0.

EZ K

....................
——_—
-
P

0.98 |

096 | .«

0.94 |
0.92 1

0.90 [

0 5 10 15 20

Fig. 5. Dependences of moduli £¥/E,
(dashed line) and E%/E, (solid line)
on scatter parameter;
parameter values y = 0.1, ¢ = 0.01 were taken

If microcracks have a preferential orienta-
tion in the material (Fig. 3, b, ¢), Young’s
modulus along the material axis decreases
more than Young’s modulus in the isotropic
plane. Narrow cracks make a larger contribu-
tion to E%, compared to pores, and a smaller
contribution to E¥. Conversely, if the sym-
metry axes of microcracks are distributed in
the isotropic plane (Fig. 3, d, e), Young’s
modulus along the material axis decreases less
than Young’s modulus in the isotropic plane.
Narrow cracks make a larger contribution to
E¥ compared to pores, and a smaller contri-
bution to E4.

Next, we studied the dependence of effec-
tive Young’s moduli £%/E® on the aspect ra-
tio of spheroid semiaxes y. An increase in the
parameter y from 0 to 1 describes the change
in the shape of the spheroid from a disk to a
sphere. As established above, the total poros-
ity cannot be random in case of narrow mi-
crocracks, so the concentration of cracks was
assumed to be constant and, thus, the total
porosity varied due to varying y.
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It was assumed that crack density p = 0.1;
in this case, if y = 0.1, the total porosity of
material amounts to 1%, which provides the
best agreement with the experimental data.

Fig. 4 shows the computational results for
the considered cases of orientation distribution
of inhomogeneities. Evidently (see Figs. 4, a,
b), if A > 0, the presence of oblate spheroids
leads to a larger decrease in Young’s modu-
lus along the material axis and to a smaller
decrease in the isotropic plane. For example,
the values of the moduli are E%/E, ~ 0.86,
ES/E ~0.92at L= 10,y = 0.5. If the symme-
try axes of microcracks have random orienta-
tions in a certain plane (see Fig. 4,c), Young’s
modulus in the isotropic plane of the material
is more sensitive to the decrease of the as-
pect ratio y of spheroid semiaxes than Young’s
modulus along the material axis. For example,
we obtained E¥/E ~ 0.89, E4/E ~ 0.92 at y
= (.5. A decrease in Young’s moduli was ob-
served with an increase in y for all orientation
distributions of inhomogeneities, because the
total porosity of material depends linearly on
the parameter y.

We considered a separate case of prefer-
ential orientation of spheroids and studied
the dependence of effective properties of the
material on the scatter parameter A, taking y
= 0.1, ¢ = 0.01. Fig. 5 shows the computa-
tional results. The material is isotropic at i
= 0, characterized by effective Young’s mod-
ulus EE° =~ 0.95. As seen from Fig. 5, the
more the symmetry axis of inhomogeneities
deviate from the preferential orientation (with
decreasing 1), the more significantly the ef-
fective moduli change. Different patterns are
observed in the changes in Young’s moduli
along the material axis and in the isotropic
plane: Young’s modulus along the material
axis decreases if inhomogeneities smooth out
(A — ), while Young’s modulus in the isotro-
pic plane conversely decreases with increasing
scatter (A — 0).

Conclusion

We have analyzed the variation in effective
Young’s moduli of metals with microstructures
typical for hydrogen-enhanced degradation,
specifically, for the microstructures
containing intergranular microcracks and
pores. Microcracks were modeled by oblate
spheroids, and pores were modeled by spheres.
The homogenization problem was solved using
the Maxwell problem in terms of contribution
tensors. We have studied the dependences of
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effective elastic properties on porosity, degree
of oblateness of spheroids and orientation
distribution of inhomogeneities. We have
established that effective Young’s moduli
heavily depend on the aspect ratio of semiaxes
of spheroidal microcracks and porosity of
the material. Effective Young’s moduli along
different directions can change to a greater or
lesser degree depending on the orientation of
microcracks in the material. This proves that
it is essential to account for the structure of
metal products (for example, layered structure
of metal) and, consequently, the method by
which they were produced (for example, rolling)
when determining the characteristics of metals
charged with hydrogen. Moreover, depending
on orientation, microcracks can make smaller
or greater contributions compared to pores,
with the same concentration of microcracks
and pores. In addition, we have found that the
correlation between the porosity of material
and the shape of microcracks should be taken
into account in solving the homogenization
problem.

Appendix

Averaged values of transversely
isotropic basis elements
If inhomogeneities have isotropic orienta-
tion distribution, the averaged values of the
transversely isotropic basis elements have the
following form [16]:

(1)

<T2>:%[Tl +6T, —2(T,+T,) +12T, +4T, |,

%[71 +2T, +6(T,+T,)+ 4T, + 8T, |,

(T,)=(T,) =%[3T1 —2T, +4(T,+T,) -
—4T, +2T,],

(Ty) =%[T1 +6T, —2(T,+T,) +12T, +4T, |,
(T,) =%[2(T1 +T,)+ T, +T, +4T, + 3T, |.

If the symmetry axes of inhomogeneities have
a preferential orientation along the axis m with the
scatter parameter A, the averaged values of trans-
versely isotropic basis elements are expressed as

(T)=(1-2g, (1) + g5 (X)) T, + g5 (A) T, +
+(1—g1 (A)-g,(X)+g, (k))(T3 +T,)+
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+4g, (M) Ty +(1-2g, (1) + g5 (X)) T,

- 5001 13 0y 50

+%(g1 (M) +g, (1) +g, (M) -1)(T, +T,)+

+2(g (X)—gl(K)—gz(K)+l)T5+
( s(M)-2g, (2 )+1)T6’

<>( ()gs())T g3()T

e ()-8 (1)) 3+( )

g, (1
—4g4 )T+ (g, ( )T

(T > ( (M) ¢ ()) g3(7»)T2+
)

+(g (1)~ g (1) Ty + (g2 (1) - g, (M) T, -

_4g4 Ts (gZ(X) gs(k))T

(B2 g

—&; 7”) — &4 (k)(T3+T4)+

+(g1(k) g (*)- 4g4(7‘))T5+
+(&: (1) - g5 (1)) T,
<T6> =83 (k)(Tl +T2)
+g, (M) (T, + T, +4T,) + g5 (L) Ty
Here .
18— kez(k2+3)
6(1”+9)

(3 + Xe_n;)(kz + 3)

3(27 +9)

gl(?‘) -

&> (7“) =

)T~

30
s = W)
= (7x4 +17802 + 435)
60(%2 + 9)(x2 + 25)’
B 3(5+>&)
M=)
N R (x4+19x2+3o)
e 15(+9) (K +23)’
B (x4+22x2+45)
&M=
N =2 (x4+34x2+105)
TS 9) (s

If the symmetry axes of inhomogeneities
have a random orientation along the plane nor-
mal to the axis m, the averaged values of trans-
versely isotropic basis elements are expressed as
follows [16]:

1
T1>:Z[T1 +T,+2(T, +T,) +4T, ],
<T2>:é[Tl +T,-2(T, +T,) +8T; +4T6],

(T,)

1
<T4>:Z[T1—T2+2T3],

1
:Z[Tl -T, +2T4],

<T5> :%[Tz +2T,],

<T6>:%[T1+T2].
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