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The paper aims at calculation of the effective elastic properties of metals with a micro-
structure typical for hydrogen-enhanced degradation. For the purpose of this study, we use the 
Maxwell homogenization scheme and explicit expression for compliance contribution tensor 
to determine the overall Young’s moduli. The model introduces oblate spheroids to describe 
intergranular microcracks and spheres to describe pores. Within the frame of the paper, we 
consider random orientations of the microcracks, certain preferential orientation accompanied 
by random scatter with the scattering parameter and random orientations of the spheroids’ axes 
in the same plane. The dependences of the effective Young’s moduli on the porosity and aspect 
ratio of the spheroid have been studied.
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ОПРЕДЕЛЕНИЕ ЭФФЕКТИВНОГО МОДУЛЯ ЮНГА  
СРЕДЫ С МИКРОСТРУКТУРОЙ,  

ХАРАКТЕРНОЙ ДЛЯ ВОДОРОДНОЙ ДЕГРАДАЦИИ
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Работа посвящена определению эффективных упругих свойств металлов с 
микроструктурой, характерной для водородной деградации. С целью определения 
эффективных модулей Юнга решается задача гомогенизации по схеме Максвелла 
в терминах тензоров вклада. Микротрещины, возникающие по границам зерен, 
моделируются сплюснутыми сфероидами, поры – сферами. Рассматривается три варианта 
ориентации осей симметрии сфероидов в материале: произвольная, преимущественная 
ориентация с параметром рассеяния, произвольная ориентация в одной плоскости. 
Исследуются зависимости эффективных модулей Юнга от пористости материала и от 
соотношения длин полуосей сфероидов.

Ключевые слова: эффективный модуль Юнга, схема гомогенизации Максвелла, водоо-
родная деградация, сфероидальная неоднородность
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Introduction
Hydrogen dissolved in metals may lead 

to degradation of mechanical properties and 
premature fracture of metal workpieces. The 
impact of hydrogen on the properties and 
character of material fracture largely depends 
on both external factors, and the features of 
the internal structure and characteristics of 
materials. This is why the phenomenon of 
hydrogen degradation, comprising an entire 
range of negative effects induced by hydrogen, 
remains an important topic in materials science 
demanding further comprehensive studies [1, 2].

Many works considered the effects of 
hydrogen on the material microstructure [3–
9]. Hydrogen is assumed to diffuse through the 
metal lattice and interact with the defects of the 
structure, such as dislocations, pores, vacancies, 
etc., thus inducing microcracks. The defects 
develop in workpieces during production, and 
are typically located along the boundaries of 
grains or inclusions in alloys (the defects are 
also found inside the grains, but to a lesser 
extent). Ultimately, if there are no significant 
internal or external stresses, hydrogen-induced 
microcracks form, propagating along the grain 
boundaries [3–5, 9] or blisters that lead to 
embrittlement of the surface [7, 9]. At the same 
time, microcracks can be observed at grain 
boundary triple junctions as well [4, 5, 8, 9]. 
Microcracks are often seen to initiate with a 
preferential orientation, which is parallel to the 
rolling direction [3, 7].

Several papers [10–12] studied hydrogen 
diffusion along the grain boundaries, finding 
the effective diffusion coefficient in a composite 
material, where one phase consisted of grain 
boundaries with a high diffusion coefficient, and 
the other phase included the actual grains with 
a low diffusion coefficient. However, hydrogen-
induced changes in the microstructure were not 
simulated in these studies. For example, [13] 
used phenomenological approaches to solve 
a related problem of hydrogen transfer and 
changes in the defects structure of the material. 
The effect of hydrogen on the material was 
accounted for within the cumulative damage 
theory. A number of papers discussed hydrogen-
induced degradation of elastic properties of 

material [9, 14, 15]; in particular, [9] dealt with 
hydrogen degradation in low carbon steels at 
different levels. The authors found that long-
term hydrogen saturation leads to a reduction 
in bulk elastic modulus. Microstructural 
analysis revealed that the reasons for this may 
lie in the deformation of larger grains, cracks, 
and blisters caused by hydrogen penetration. As 
observed in [14], prolonged hydrogen charging 
may decrease the value of Young’s modulus 
by up to 15% in a gamma titanium aluminide 
alloy. The experiments in [15] were conducted 
for three different grades of high-strength 
steel. Hydrogen charging of steels resulted 
in degradation of mechanical properties and 
changes in the microstructure in all cases.

Summarizing the above, we can remark 
that analytical models of hydrogen degradation 
generally tend to account for diffusion assumed 
to be the primary process leading to changes 
in microstructure and to degradation of 
mechanical properties. The degradation of 
elastic properties due to the actual changes 
in the microstructure has received much less 
attention.

The goal of our study consisted in determining 
the effective elastic moduli for a material whose 
microstructure is assumed to have formed as a 
result of hydrogen degradation.

For this purpose, we solve the problem of 
homogenization which allows to estimate the 
contribution of inhomogeneities to a given 
property. We consider the influence that the 
potential shape and orientation of microcracks 
in the material, as well as its porosity have on 
effective Young’s moduli.

Microstructure of the material

This paper studies the influence of coin-like 
microcracks, as well as pores on the effective 
properties of materials, assuming that the 
former accounts for intergranular cracking, and 
the latter for the impact of the pores which did 
not merge into microcracks, and the voids near 
grain boundary triple junctions. It was found in 
[16] that jagged boundaries of planar cracks or 
deviations from circular shape are unimportant 
for elastic properties of the material, so these 
inhomogeneities can be simulated as elliptical. 
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Microcracks were modelled by oblate spheroids 
and pores by spheres in our study. We consider 
three cases of inhomogeneities in the material.

In the first case, we assumed that microcracks 
have random (isotropic) distribution in the 
bulk. This pattern is characteristic for metal 
products weakly deformed during production.

In the second case, we assumed that 
microcracks have preferential orientation (for 
instance, in case of rolling and layered structure 
of material). A factor that we took into account 
was that microcracks may deviate from the 
preferential orientation in this instance.

Finally, to complete the picture, we considered 
the case when the symmetry axes of spheroid 
microcracks have random orientation in a certain 
plane. This situation is observed, for example, 
when a material is compressed and there are no 
cracks forming in the plane of loading.

Compliance tensor of spheroid microcrack

Contribution tensors are used within the 
homogenization method to describe the 
contributions of individual inhomogeneities 
into the given properties [17]. 

Taking a homogenous elastic material (ma-
trix) with the compliance tensor S0, let us con-
sider a representative volume V, containing an 
isolated inhomogeneity of volume V1 with the 
compliance tensor S1. The volume V should be, 
on the one hand, large enough to reflect the 
characteristic microstructure, and, on the other 
hand, small enough compared with the entire 
volume of the material so that the variations of 
the macroscopic fields are negligible. 

Correct choice of representative volume is 
discussed, for example, in [17]. The effective 
elastic properties of the material are estimated 
by means of a tensor accounting for the con-
tribution of inhomogeneities to compliance: 
it is a fourth-rank tensor H, which describes 
extra strain Δε generated in volume V due to 
inhomogeneity: 

��� ���
V
V

1

0
H : , (1)

where σ0 is the stress field depending on bound-
ary conditions, which would be generated in 
the volume in the absence of inhomogeneities.

The tensor accounting for the contribution 
of an ellipsoidal inhomogeneity to compliance 
can be expressed in terms of compliance 
tensors of the matrix, inhomogeneities 
characterizing the material properties, and the 
second Hill’s tensor Q reflecting the influence 
of inhomogeneity shape:

( )
111 0 .
−− = − +  

H S S Q (2)

The fourth-rank tensor Q is related to the 
first Hill’s tensor P by

Q = C0 – C0 : P : C0,

where C0 is the matrix stiffness tensor. 
In turn, the fourth-rank tensor P is ex-

pressed in terms of derivatives of Green’s func-
tion G for displacements as
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where ( )S
(1,2)(3,4) indicates symmetry with respect 

to permutation of subscripts in the first and the 
second pair. 

Pores and microcracks are characterized by 
zero elastic moduli. Then S1 → ∞, and expression 
(2) is reduced to H = Q–1. Tensors H and Q are 
transversely isotropic for a spheroidal microcrack 
in an isotropic matrix (the symmetry axis is 
codirectional to the inhomogeneity symmetry 
axis), and can be expressed as linear combinations 
of the tensor basis elements T1, T2, …, T6 [18]:
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where θ = I – nn (I is the second-rank unit 
tensor) is the projection to the plane normal to 
the unit vector n along the symmetry axis. 

The basis introduced allows to represent 
the transversely isotropic tensor B = ∑biTi 
(summation over repeated indices from 1 to 6) 
and its inverse in one basis [17]:
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where Δ = 2(b1b6 – b3b4).
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Thus, determining the tensors Q and H for a 
pore or a microcrack is reduced to determining 
the components of tensor Q, which are calculated 
as follows in case of a spheroidal inclusion [19]:
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where μ0 and ν0 are the shear modulus and 
Poisson’s ratio of the matrix, respectively. 

Parameters f0 and f1 depend on the aspect 
ratio of spheroid semiaxes γ = a3/a (a3 is the 
axis of rotation) as follows:
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For a spheroidal inhomogeneity, γ = 1, 
g = 1, f0 = 1/3, f1 = 1/15. The compliance 
tensor of a spheroidal pore Hp is isotropic and 
takes the following form: 
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where I is the second-rank unit tensor, 

( )( ) ( )( )( )1,4 2,4
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is the fourth-rank unit tensor.
Tensors II and J can be represented as 

follows in the transversely isotropic basis [17]:
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Effective properties of metals 
with spheroidal microcracks and pores

Effective properties of heterogeneous materials 
can be determined by different methods. A 
historical review of these methods can be found, 
for example, in [20], while [17] presents analysis 
of the current situation. All analytical methods are 
approximate solutions, while the exact solution 
can be obtained only numerically for specific 
materials with a known microstructure. The best-
known analytical methods include:

non-interaction approximation, 
effective media schemes, 
differential scheme, 
effective field methods (including both 

Mori–Tanaka and Kanaun–Levin methods), 
Maxwell scheme.
These methods differ in their approaches to 

accounting for the mutual influence of multiple 
inhomogeneities, while their applicability 
is limited by material symmetry, shape and 
orientation of inclusions. The Maxwell scheme 
seems to be an optimal method to describe the 
contributions of inhomogeneities of different 
shape and orientation [21].

Let us find an effective compliance 
tensor using the Maxwell scheme in terms of 
contribution tensors: 

11
0 1 ,eff

i i
i

V
V

−−

Ω
Ω

   = + −  
   

∑S S H Q (10)

where QΩ is the second Hill’s tensor determined 
for a homogenized region Ω which contains 
isolated inhomogeneities and possesses the 
required effective properties.

In the absence of QΩ, the effective compli-
ance tensor coincides with the value determined 
neglecting the interaction of inhomogeneities.

Let us determine the total contribution of 
isolated inhomogeneities to compliance. If the 
inhomogeneities have the same shape and size 
but different orientation, then their total con-
tribution can be determined as the product of 
the averaged contribution by volume fraction 
of inhomogeneities [17]. The averaged value 
of the contribution tensor for spheroidal inclu-
sions coincides with the contribution tensor of 
a separate spheroidal pore Hp due to symmetry. 
If spheroidal microcracks and spherical pores 
are present in the material, their total contri-
bution is determined as

1

V
Vi

i
i mc mc p p� � �H H H� � , (11)
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where φmc and φp are the volume fractions of 
oblate spheroids and spheres, respectively, 
<Hmc> is the value of the averaged total tensor 
describing the contribution of microcracks to 
compliance.

It is sufficient to average the elements of the 
tensor basis to determine <Hmc>, i.e., 

( )

6

1
.mc kmc k

k
h

=

= ∑H T

If there is a preferential orientation m, the 
symmetry axes n of spheroidal microcracks 
tend to coincide with m with a certain devia-
tion depending on the scatter parameter λ.

Let us introduce a probability density func-
tion for the orientation distribution of spheroid 
axes of symmetry over a semisphere (0 ≤ θ ≤ π/2) 
in accordance with [22]:
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If λ = 0, the microcracks have a random 
orientation in the representative volume and 
the material is isotropic. If λ → ∞, the symme-
try axes of the microcracks are oriented strictly 
along the preferential direction and the mate-
rial is transversely isotropic with the symmetry 
axis coinciding with m. To average the elements 
of the tensor basis, let us integrate them with 
respect to the surface of a semisphere 1/2Ω  of 
unit radius:

T Ti id� �
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If the spheroid axes of symmetry n are ran-
domly oriented in a certain plane normal to m, 
the material is transversely isotropic and its axis 
of symmetry is co-directional to m. To average 
the tensor basis elements, let us integrate them 
with respect to a unit circle l1 lying in a plane 
normal to m:

T Ti i
l

dl� �
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2
1

1

�
. (14)

The averaged values of the elements of 
transversely isotropic basis are given in the 
Appendix. 

The choice of homogenized domain Ω used 
in the Maxwell scheme to account for the in-
teractions of inhomogeneities is discussed in 
detail in [22].

In case of spheroidal inhomogeneities, this 
domain is also a spheroid with the aspect ratio 
of semiaxes expressed as
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where Qijkl, Pijkl are Hill’s tensor components Q 
and P, respectively.

In general, the shape of homogenized domain 
depends on concentration, orientation and shapes 
of inhomogeneities. If the inhomogeneities have 
isotropic orientation distribution, the shape is 
spherical. Otherwise, if the material contains 
spherical pores of the same size and spheroidal 
microcracks of the same size and shape, we 
need to define the quantity

1
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After we find the components of the effective 
compliance tensor, Seff

ijkl, we can determine 
effective Young’s moduli. To be definite, let us 
assume that the symmetry axis of the material 
coincides with the direction e3 of the Cartesian 
basis (e1, e2, e3).

Then the effective Young’s moduli of the 
transversely isotropic material Eeff

11 = Eeff
22, E

eff
33 

can be calculated as follows:

11 22 33
1111 3333

1 1,  .eff eff eff
eff effE E E

S S
= = = (17)

Results and discussion

In this study, we found the effective elas-
tic properties of steel with shear modulus μ0 = 
80 GPa and Poisson’s ratio ν0 = 0.3. Young’s 
modulus of steel E0 follows the expression

E0 = 2 μ0(1 + ν0).

If the inhomogeneities have random 
orientation distribution, the material is 
isotropic, i.e., 

1ì ,
3

eff eff effK  = + − 
 

S II J II (18)

where Keff and μeff are the effective values of the 
coefficient of compressibility and shear modu-
lus respectively.
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Fig. 1, а shows the dependencies of moduli 
Keff/K0, μeff/μ0 on porosity of the material φ for 
a spherical pore (γ = 1) and a spheroidal mi-
crocrack (at γ = 0.1). Evidently, the porosity 
of the material with spherical inhomogeneities 
may theoretically reach 100% (the material 
disappears). In case of microcracks of oblate 
spheroidal shape, the elastic moduli approach 
zero at porosities less than 100% (around 26% 
at γ = 0.1). Negative values of elastic mod-
uli at high concentrations of inhomogeneities 
indicate that the problem of homogenization 
cannot be solved correctly for this material.

Thus, the acceptable porosity of the mate-
rial is defined by a relation between the as-
pect ratio of the microcrack semiaxes. To take 
this correlation into account, we can introduce 
crack density into the model

ρ = (4/3)πa3N/V

(N is the number of microcracks) [17], related 
to porosity φ as φ = ργ. 

Fig. 1, b shows the dependences of moduli 
Keff/K0 and μeff/μ0 on crack density. 

To find a possible explanation for the limited 
acceptable porosity, we studied the dependence 
of effective shear modulus μeff

12/μ
0 on porosity 

for different scatter parameters λ. We consid-
ered spheroidal microcracks with γ = 0.10 and 
0.05. The results are shown in Fig. 2.

The results indicate that given the same as-
pect ratio of spheroid semiaxes γ, the porosity 
of the material may theoretically reach 100% 
if it contains parallel oriented microcracks (λ 
→ ∞), or, if the microcracks deviate from the 
preferential orientation, the acceptable poros-
ity decreases, reaching the minimum with an 
isotropic distribution (λ = 0). As evident from 
comparing Figs. 2, a and b, spheroids with a 
high value of γ have a higher value of acceptable 

Fig. 1. Dependences of moduli Keff/K0 (solid lines) and μeff/μ0 (dashed lines) 
on porosity of material (a) and density of cracks (b).

Pores are modeled by spheres (1, 2), microcracks by spheroids 
with aspect ratio of semiaxes γ = 0.1 (3, 4)

a) b)

Fig. 2. Dependence of effective shear modulus μeff
12/μ

0 on porosity of material 
at aspect ratio of spheroid semiaxes γ = 0.10 (a) and γ = 0,05 (b).

Scatter parameter λ = 0 (dashed lines), λ = 10 (solid lines)  and λ→∞ (dotted lines)

a) b)
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porosity. Apparently, when porosity reaches a 
certain value depending on the degree of devi-
ation of spheroid microcracks from the prefer-
ential orientation, as well as on their degree of 
oblateness, multiple narrow microcracks cannot 
be regarded as isolated. Since this assumption 
is actually adopted for self-consistent schemes 
(which also include the Maxwell method), more 
accurate methods need to be found to account 
for the mutual influence of inhomogeneities.

We determined the dependences of effective 
Young’s moduli Eeff

ii/E
0 on porosity of material 

φ for three case of orientation distribution of 
inhomogeneities: 

isotropic distribution (I), 
preferential orientation with the scatter 

parameter λ (II), 
random distribution of symmetry axes of in-

homogeneities in a certain plane (III).

We assumed that the material contained two 
types of inhomogeneities: oblate spheroidal mi-
crocracks with γ = 0.1 and spherical pores. 

Total porosities φ of all inhomogeneities 
were taken in the range between 0 and 10%.

Materials with the following types of micro-
structure were considered: 

only oblate spheroids are present (φmc = φ, 
φp = 0); 

ratio of total volume of oblate spheroids 
to total volume of pores is 2 : 1 (φmc = 2φ/3, 
φp = φ/3); 

total volume of oblate spheroids equals total 
volume of pores (φmc = φ/2 = φp); 

only pores are present (φmc = 0, φp = φ). 
Fig. 3 shows the computational results tak-

ing into account the given conditions. As ex-
pected, an increase in porosity leads to a de-
crease in elastic moduli in all cases. Evidently, 

Fig. 3. Dependence of moduli Eeff
ii/E

0 on porosity of material 
for different orientation distributions of inhomogeneities

 (γ = 0.1): I (а), II (при λ = 10) (b, c) and III (d, e) (see explanations in the text). 
The following types of microstructures were considered: φmc = φ, φp = 0 (1); 

φmc = 2φ/3, φp = φ/3 (2); φmc = φ/2 = φp (3); φmc = 0, φp= φ (4) 

a)
 

b) c)

d) e)
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pores have less effect on Young’s modulus than 
microcracks at the same value of φ for an iso-
tropic distribution (Fig. 3, а). For example, if 
φ = 0.10, then the value of modulus Eeff

ii/E
0 ≈ 0.82 

at φmc = 0, φp = φ and Eeff
ii/E

0 ≈ 0.58 at φmc = φ, 
φp = 0. 

If microcracks have a preferential orienta-
tion in the material (Fig. 3, b, c), Young’s 
modulus along the material axis decreases 
more than Young’s modulus in the isotropic 
plane. Narrow cracks make a larger contribu-
tion to Eeff

33 compared to pores, and a smaller 
contribution to Eeff

11. Conversely, if the sym-
metry axes of microcracks are distributed in 
the isotropic plane (Fig. 3, d, e), Young’s 
modulus along the material axis decreases less 
than Young’s modulus in the isotropic plane. 
Narrow cracks make a larger contribution to 
Eeff

11 compared to pores, and a smaller contri-
bution to Eeff

33.
Next, we studied the dependence of effec-

tive Young’s moduli Eeff
ii/E

0 on the aspect ra-
tio of spheroid semiaxes γ. An increase in the 
parameter γ from 0 to 1 describes the change 
in the shape of the spheroid from a disk to a 
sphere. As established above, the total poros-
ity cannot be random in case of narrow mi-
crocracks, so the concentration of cracks was 
assumed to be constant and, thus, the total 
porosity varied due to varying γ.

Fig. 4. Dependences of moduli Eeff
ii/E

0 on parameter γ at different orientation distributions of 
inhomogeneities (crack density ρ = 0.1): I, II (a, b) and III (c) (see explanations in the text);

a, b correspond to the scatter parameters λ = 0 (dashed lines), λ = 10 (solid lines) and λ→∞ (dotted-dashed lines); 
c corresponds to the moduli Eeff

11/E0 (dashed lines) and Eeff
33/E0 (solid lines)

a) b)

с)

Fig. 5. Dependences of moduli Eeff
11/E0 

(dashed line) and Eeff
33/E0 (solid line) 

on scatter parameter; 
parameter values γ = 0.1, φ = 0.01 were taken
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It was assumed that crack density ρ = 0.1; 
in this case, if γ = 0.1, the total porosity of 
material amounts to 1%, which provides the 
best agreement with the experimental data. 

Fig. 4 shows the computational results for 
the considered cases of orientation distribution 
of inhomogeneities. Evidently (see Figs. 4, а, 
b), if λ > 0, the presence of oblate spheroids 
leads to a larger decrease in Young’s modu-
lus along the material axis and to a smaller 
decrease in the isotropic plane. For example, 
the values of the moduli are Eeff

33/E0 ≈ 0.86, 
Eeff

11/E0 ≈ 0.92 at λ = 10, γ = 0.5. If the symme-
try axes of microcracks have random orienta-
tions in a certain plane (see Fig. 4,с), Young’s 
modulus in the isotropic plane of the material 
is more sensitive to the decrease of the as-
pect ratio γ of spheroid semiaxes than Young’s 
modulus along the material axis. For example, 
we obtained Eeff

11/E0 ≈ 0.89, Eeff
33/E0 ≈ 0.92 at γ 

= 0.5. A decrease in Young’s moduli was ob-
served with an increase in γ for all orientation 
distributions of inhomogeneities, because the 
total porosity of material depends linearly on 
the parameter γ.

We considered a separate case of prefer-
ential orientation of spheroids and studied 
the dependence of effective properties of the 
material on the scatter parameter λ, taking γ 
= 0.1, φ = 0.01. Fig. 5 shows the computa-
tional results. The material is isotropic at λ 
= 0, characterized by effective Young’s mod-
ulus Eeff

ii/E
0 ≈ 0.95. As seen from Fig. 5, the 

more the symmetry axis of inhomogeneities 
deviate from the preferential orientation (with 
decreasing λ), the more significantly the ef-
fective moduli change. Different patterns are 
observed in the changes in Young’s moduli 
along the material axis and in the isotropic 
plane: Young’s modulus along the material 
axis decreases if inhomogeneities smooth out 
(λ → ∞), while Young’s modulus in the isotro-
pic plane conversely decreases with increasing 
scatter (λ → 0).

Conclusion

We have analyzed the variation in effective 
Young’s moduli of metals with microstructures 
typical for hydrogen-enhanced degradation, 
specifically, for the microstructures 
containing intergranular microcracks and 
pores. Microcracks were modeled by oblate 
spheroids, and pores were modeled by spheres. 
The homogenization problem was solved using 
the Maxwell problem in terms of contribution 
tensors. We have studied the dependences of 

effective elastic properties on porosity, degree 
of oblateness of spheroids and orientation 
distribution of inhomogeneities. We have 
established that effective Young’s moduli 
heavily depend on the aspect ratio of semiaxes 
of spheroidal microcracks and porosity of 
the material. Effective Young’s moduli along 
different directions can change to a greater or 
lesser degree depending on the orientation of 
microcracks in the material. This proves that 
it is essential to account for the structure of 
metal products (for example, layered structure 
of metal) and, consequently, the method by 
which they were produced (for example, rolling) 
when determining the characteristics of metals 
charged with hydrogen. Moreover, depending 
on orientation, microcracks can make smaller 
or greater contributions compared to pores, 
with the same concentration of microcracks 
and pores. In addition, we have found that the 
correlation between the porosity of material 
and the shape of microcracks should be taken 
into account in solving the homogenization 
problem.

Appendix

Averaged values of transversely 
isotropic basis elements

If inhomogeneities have isotropic orienta-
tion distribution, the averaged values of the 
transversely isotropic basis elements have the 
following form [16]:
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If the symmetry axes of inhomogeneities have 
a preferential orientation along the axis m with the 
scatter parameter λ, the averaged values of trans-
versely isotropic basis elements are expressed as
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If the symmetry axes of inhomogeneities 
have a random orientation along the plane nor-
mal to the axis m, the averaged values of trans-
versely isotropic basis elements are expressed as 
follows [16]:
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