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LLEMOYKU ®YHAAMEHTAJIbHbIX
B3AMMHO-O4HOPOAHbIX ®YHKLUN C OBLULUM
BELLECTBEHHbIM COBCTBEHHbIM YUCJIOM

A.C. bepdHukoB8', K.B. ConoBveB>', H.K. KpacHoBa?

INHCTUTYT aHaNMTMYECKOro NpMB0opPOCTPOEHNS POCCUIACKOM aKageMmmK Hayk,
CaHkT-lNeTepbypr, Poccuiickas denepauus;

2 CaHkT-lNeTepbyprckuii NONUTEXHUYECKUI YHUBEPCUTET lMeTpa Benukoro,
CaHkT-lMeTepbypr, Poccuiickas deaepauus

HanHasg paboTa TIpoAOJDKAeT WM3YyUYEHHWE CBOWCTB B3aMMHO-OTHOPOIHBIX (DYHKIIMI
(BO®D), koTophle SBIsIIOTCs 00001LIeHreM (GYHKLMI, OOHOPOAHBIX 110 Ditiepy; BO® moryt
HCIIOJIb30BAThCS MPU CUHTE3€ IEKTPUUYECKUMX MU MATHUTHBIX IMOJIEH 3JeKTPOHHO- U MOHHO-
OINTUYECKUX CHUCTEM CO CIIeLMaJIbHBIMU CBOMCTBamMU. PaccmaTpuBaeTcs liernouyka (hyHKIIMA,
COOTBETCTBYIOIIAsl KPAaTHBIM BEIIECTBEHHBIM COOCTBEHHBIM 3HAYEHUSIM MAaTpUIIbl 0a30BbIX
¢dyBEKIMOHANBHBIX ypaBHeHUI 11g BO®. BriBemeHBl (QYHKIIMOHAIBHBIC COOTHOIICHMUS,
XapaKTepU3yIOIINe Taknue (QYHKINHU, a TaKkKe o0wme hOopMyIbl IIsT QYHKINIA, SBISIONINXCS
peLICHUSIMU TIOJYYCHHBIX (DYHKIIMOHAJBHBIX COOTHOIIeHMIU. [loka3zaHo, 4TO IMOJy4eHHBIN
Kjacc (PYHKILMWI MpeacTaBisieT cO00il yTOUHEHME TMPUCOEIMHEHHBIX OTHOPOIHBIX (PYHKIIMIA
T'enbanma. MccnemoBaHbl TUMNMYHbIE Aup@epeHlMalbHble W MHTerpajbHble CBOMCTBA
MOJIy4eHHOIo Kjacca yHKLUUHR, a 1 aupdepeHuupyeMbix QYHKLMA 10Ka3aHO 0000I1IeHue
TeopeMbl Ditnepa (Kputepuii Ditsepa).
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Introduction

This paper continues a series of studies [1—
4] considering the properties of homogeneous
harmonic functions and their applications for
synthesis of electric and magnetic fields for electron
and ion-optical systems with special properties [5—
8]. Carrying on where [9] left off, our work heavily
relies on the results presented therein.

A function fix,, x,, ..., x) is called Euler-
homogeneous with the degree of homogeneity
equal to p if the identity

SOx, Ay, oL hx)) =W AX L X, ., x). (1)

holds true for any real values of A.

The main properties and theorems on
Euler-homogeneous functions are described
in monograph [10]. In particular, any
homogeneous function of degree p can be
represented as

S, x,,

= p
x P h(x,/x, x/x,,

BX )=

X /X)),

(2)

where A(t,, f,, ..., t) is a certain function of
(n—1) Vanables, while any function taking the
form (2) is homogeneous with the degree p.
The function f{x,, x,, ..., x) is called positive-
Iy homogeneous in Euler terms with the degree
p if identity (1) holds true for any positive real
values of A, while the identity is not guaranteed
to hold for negative real values of A (for example,
function f{x) # x). Imposing a constraint that A >
0, in particular, allows to safely operate random
real degrees of homogeneity in Eq. (1): addi-
tional steps need to be taken for a random real
degree p to determine the power function ? at
negative values of A to satisfy the condition

M= (LY.

Positively homogeneous function fix,, x,, ...,
x ) of degree p can be represented in the form:

ifx >0fx,x,...,x)=
3)
=X h(x/x, x/x, ..., x /x);
ifx <0flx,x,..,x)=
“4)
= (=% Y gx,/x, x,/x, ..., X /X)),

where A(z,, t,, ..., t ) and g(¢,, £, ..., t ) are func-
tions of (n — 1) variables independent of each
other (in general).

Egs. (3) and (4) are obtained from relation
(1) by substituting into it the values A = +1/x,
for x, > 0 and —1/x, for x, < 0, if the functions

h(t, t, ..., t) and g( ), L, ..., 1) are defined as
follows:
h(t, t, ...t )=f(+1, 0, ¢, ...,1),
glt,ty, .. t)=f=1,~t,~t, ..., ).

If x, = 0, the function A0, x,, x,, ..., x) is
positively Euler-homogeneous of degree p with
less variables, so parametrization of the form
(3), (4) can be applied to it. A recursive pro-
cess of constructing complete parametrization
for a positively homogeneous function fix,, x

., X ) stops when a set of variables x, x,, ...,
x is exhausted.
Consider the functions taking the form

ifx > 0: f (X5 X,
= (I/kY) x/ (g Inx,)* x (5)

X h(X,/X X%, oy X X)),
ifx <0: f (X X
= (/kY) (=, (g In (=x,))" * (6)

X g(x,/x, x,/x ..y X /X)),
where p, g are real constants; k is an integer
index (k= 0, 1, 2, .); Aty 1y oy 1), 8(t,, £,
., 1) are certain functlons of (n— 1) variables;
the values of the variable x, satisfy the condi—
tion x, # 0.
Given the functional relations

SOx, A, o, M) =
= Zaij(k)f(xl, Xy oies X ),

where i, j =1, 2, ..., k, and the functions a, (k)
are unknown in advance then, in a partlcular
case when all elgenvalues of the matrix la, (Wl
are real numbers p equal to each other (see f9]),
functions taking the form (5), (6) may qualify
as possible solutions to functional equations of
the form (7).

X )=

e X)) =

(7
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Using direct substitution, we can confirm
that for vA > 0, functions (5), (6) satisfy the
functional relations

S (Xxl,kxz,...,kxn):
Zak J xl,xz, ,Xn), (8)
j=0.k

where a(A) = (1/j1) ¥ (¢ In &) .

The objectlves of this study are, firstly, de-
veloping general formulae for the functlons sat-
isfying functional equations (8) provided that
functions aj(k) take the form

a () = (Uj!) ¥(g In )/,

and, secondly, proving certain important
theorems on the obtained class of real functions
of multiple variables.

Relationship of functions (5) with associated
homogeneous Gel’fand functions

Functions (5) and (6) satisfying function-
al relations (8) are a refinement of associated
homogeneous Gel’fand functions as defined in
[11, 12]. However, these studies falsely assume
that the system of functional relations (8) is a
bidiagonal matrix with functions a()) for the
main diagonal and b()) for the auxiliary one,
unknown in advance. Unfortunately, while this
insignificant mistake in the formal definition
did not affect the other fundamental results ob-
tained in [11, 12], was further uncritically dis-
seminated in subsequent publications by other
authors [13—20]. We could only find mentions
of this inaccuracy in [21, 22] but even in these
instances the authors omitted the factor 1/k!
in the respective formulae from consideration.
This shortcoming is absent in earlier formu-
lae presented in [23]. Moreover, no analysis of
the general solution was performed in [21—23]
for the obtained functional equations after ver-
ifying the required functional relations for the
given functions (i.e., after obtaining a particu-
lar solution).

It is easy to prove at least for differentiable
functions' that a bidiagonal system of functional
equations (8) can have nondegenerate solutions
different from the null equation only when a(})
= » and b(L) = M(q In X). At the same time,
these solutions (if they exist) must have a form
of linear combinations with constant factors
composed of functions (7) [21]. Unfortunately,

! For this conclusion, it is actually sufficient to impose that
each of the functions a(A) and b(A) is continuous in at least
one point of A > 0. Rigorous proof of this statement is not
complicated but lies beyond the scope of our study.
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even when k = 3, functions (7) do not satisfy
the system of bidiagonal relations (8), and we
can prove that these functional relations have
essentially no solutions for k > 3 [21].

One of the goals of this work is to reintroduce
mathematical rigor to associated homogeneous
Gel’fand functions, as well as to study some in-
teresting properties of the obtained functions.

We should stress that we consider a rather
narrow subclass of functions that is the closest
to associated homogeneous Gel’fand functions.
The general solution for functional equations
(8) with the functions a(x) unknown in ad-
vance is far more extenswe and we are in fact
planning another pubhcatlon on this subject.

General formulae

So as not to confuse the constructions we
consider with the associated homogeneous
functions in terms of Gel’fand definitions [11,
12], let us add the following definition.

Definition. A semi-infinite chain of functions

(X, X, x) where k =0, 1, 2, ..., and the
f nctlons f k(x ..., X,) satisfy the functional
relations

ﬁﬁh@kx SAx) =
=3, (UGk)) W (g In W) x

X.];’j(xla xza"'a xn)a
for all . > 0 is called fundamental associated
homogeneous functions of degree p and order k.
Changing the order of summation, relations
(9) can be written in an equivalent form as

1,00, A, 0) =
=3, ()W (gIn Ry x

j;k](xl,x o X))

Parameter ¢ is responsible for normalization
of the fundamental associated homogeneous
functions and does not affect the rest of their
properties. After substituting

j‘I)J(xl, Xyy oens X )=

= q/ Fp’](xli ‘x b xn)7

the parameter ¢ is reduced in functional relations (9),
and functions F (x,, x,, ..., x ) take the meaning of
normalized func ental associated homogeneous
functions corresponding to the choice g = 1.

We need to find the general formulae for
the functions satisfying functional relations (9),
similar to formulae (3) and (4). The solution is
provided by the following theorem.

)



\

Theorem 1. Chain of fundamental associated
homogeneous functions f, (x,, X, ..., x,) of degree
p and order k, obeying jfinctional relations (9) for
all va > 0, has the following one-to-one repre-
sentation for x, # 0:

ifx >0 fp’k(x], Xyperey X)) =

=X o (k)Y x 7 (g Inx )< > (10)
‘>< hj(xz/xl, XX s X /X);
ifx, <0 f;,k(xv Xpperry X ) =

=X, (1(=)Y (=)
7 (g In (=x)))" x

X gj(xz/xl, XX s X /X)),

where gj(tz, Ly ooy 1), hj(tz, t, ..., 1) are re-
al functions of (n — 1) variables, which have
a one-to-one correspondence with functions
j;)k(xl, Xy5 ey X))

The reverse is also true: a chain of functions
given by FEgs. (10) and (11) obeys functional
relations (9) for x, # 0 with randomly chosen
Jfunctions gj(tz, Ly ..., t) and h(t, t, ..., 1).

When x, = 0 and x, # d, parametrization
for fundamental associated homogeneous
functions j; ,k(O, X,, X,, ..., x) of degree p and
order k is constructed similar to Egs. (10), (11).
Complete parametrization for functions ]; (X

(1D

X,, ..., X ) is repeated recursively until the set of
variables x,, x,, ..., x_is exhausted.
Proof. Let us confine ourselves to

considering only the case when x, > 0, since the
case when x, <0 is derived from it by substituting
x, = —x,, with relations (9) remaining unchanged.
When k£ = 0, relations (9) transform into
homogeneity relation (1), while the function
j; )O(xl, X,, ..., X ) turns out to be a positively
homogeneous function of degree p which is
defined at x, > 0. Consequently, Eq. (10) holds
true with £ = 0, as it coincides with Eq. (3) for
positively homogeneous functions, while the
function A(z, t, ..., t) is mapped one-to-one
using the obtained function fp oXp Xy X).
Let us employ tmathematical induction.
Suppose Egs. (10) are proved for all values
of k satisfying the inequality 0 < k < m. Let us
write the function j; )m(xl, X,, ..., x ) for x, > 0 as

fl‘J,m(xlg x2" cey xn) = x]p
+
H(xly xz,...,xn) (12)
3, (Vo)) x7 (g In )

X
hj(xz/xl, XX s X /X)),

Mathematical Physics
IEISNG

where the functions A (1, £, ..., t) for j =0, 1,
m—1 have been alreac{y defined at the previous
steps of the proof. It is required to find the
form that the function H(x, x,, ..., x ), which
has a meaning at x, > 0, should take for the
identity

fnm(kxl, Ay, Ax) —

—/lpfp’m(xl, Xypery X,) —

=X o (W(m=k)!) 77 (¢ In L)k x

><fp’k(x1, X, . X,) = 0.

to hold true for vA > 0.

After simplifying expression (13) given that
the functions f ,(x,, x,, ..., x,) can be replaced
by relations (16) for 0 < k < m, we obtain the

condition:

(13)

if V2> 0,x,>0

Hx, M, ..., hx)) = H(x, x,, ..., X).

Consequently, the function H(x,, x,, ..., X))
must be a positively homogeneous function of
zero degree, defined for x, > 0. This condition
is necessary and sufficient to fulfil equality
(13), because all algebraic transformations
simplifying expression (13) are reversible.

According to Eq. (3), when x, > 0, the
function H(x,, x,, ..., x ) can be represented as

H(x,x, ...,x )=

=h (X,/x, X/x, ..., X /X)),

where A (2, t,, ..., 1) is a certain new function
of (n — 1) variables.

Next, if we substitute the values x, = 1 into
equality (12), we obtain the condition

j;’m (Lxy .o x)=h (x,, X, ..., X),

which implies a one-to-one correspondence
between the functions f and &, .

Thus, with x, > 0, Eq. (10) holds true for
k = m as well.

Theorem 1 is proved.

The chain of associated homogeneous functions
can be also represented in parameterized form by
other means. For example, a method for construct-
ing the most generalized type of parametrization
can be formulated as the following theorem.

Theorem 2. Suppose (op(xl, X, .y X) IS a
positively homogeneous function of degree p,
v,(X, X, .., x) is a positively homogeneous
Junction of degree q # 0, and vy,(x,, x,, ..., X ),
V(X Xy ey X)), ooy V(X Xy, ..., X)) are posi-
tively homogeneous functions of zero degree.

51



4St. Petersburg State Polytechnical University Journal. Physics and Mathematics 13 (2) 2020

Let these functions be defined at any point
of the domain Q. Additionally, suppose that the
Jfunction ®, does not become zero in the domain
Q, the function vy, is strictly positive, the functions
Yy, Vs, ...y, are functionally independent.

Then the fundamental associated homoge-
neous functions f (x,, X,, ..., X), which obey
the functional relations (9) for vh > 0, can be
mapped one-to-one as follows in the domain Q:

1) =
=X, =)) o (x) (Iny (x)~ < (14)
X h(y,(x), yy(x), ..., ¥, (%)),

where x = (x, Xx,,..., x ), and h(1,, t,, ..., t) are
certain real functions of (n — 1) variables.

Proof. When k = 0, the functionj;’o(xl, X,
..., X ) is a positively homogeneous function of
degree p, while the function

];’O(xl, Xy vees xn)/(up(xl, Xy oves X,)

is a well-defined positively homogeneous func-
tion of zero degree. It can be represented as
hy(y,, v, ..., ), as it is functionally dependent
on the functionally independent functions v,
V,, ..., y,. Indeed, if we can find such a posi-
tively homogeneous function y(x, x,, ..., x ) of
zero degree, which forms a functionally inde-
pendent set with the functions

\'Ilz(xl, xz’ M ‘xn),

WX X s X )y s W (X, X oy X)),

then the free variables x, x,, ..., x can be ex-
pressed in terms of functionally independent
positively homogeneous functions v, y,, ..., v,
of zero degree. Then any function of the vari-
ables x,, x,, ..., x, would be a positively homo-
geneous functions of zero degree. This cannot
be true, so the corresponding function 4, (y,, v,,
..., y,) must exist, and thus, Eq. (14) is fulfilled
for k = 0. Further proof by induction repeats
the proof of Theorem 1 practically verbatim.

Theorem 2 is proved.

Using Egs. (14), the entire space R" is di-
vided into non-intersecting conic> domains Q,
for each of which the selected functions (op(xl,

X,, ..., X,) and \yq(xl,_ X,, ..., X ) do not become
zero®, and the functions
\Ilz(xla xza LR xn)a

2 The domain Q is called a hypercone, if it follows from the
condition x € Q that the condition Ax € Q is also satisfied for
any points Ax at random values A > 0.

3 If the function v, is negative in the given domain, it is
replaced by v,
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WX, X ey X )y s W (X, Xy s X))
form a functionally independent set of posi-
tively homogeneous functions of zero degree.
Generally speaking, we construct parametriza-
tion (14) for each of the domains Q using a
separate set of functions hj(tz, t,, ..., t) unrelated
to the functions hj(tz, f, ..., 1) used for other
domains. The boundaries between the conic do-
mains are conic surfaces of smaller dimensions,
along which the given functions fp ,k(xl, Xy ey
x ) act as fundamental associated homogeneous
functions of smaller dimensions, with parame-
trization constructed by a similar algorithm.
Importantly, parametrization of fun-
damental associated homogeneous func-
tions j; )k(xl, X,, ..., X,) is partitioned into several
independent branches as a result; moreover,
such a partition depends on the selected aux-
iliary functions (op(xl, X,, ..., X)) and q;q(xl, X,
..., X)), and, to a lesser degree, on the functions

Wz(xlaxza e rxn)a

V(X Xy oes X )y ey W (X, X oy X)),

and does not reflect the inner structure of the
chain of functions parameterized.

Partitioning the space R" into several inde-
pendent branches can be avoided as the follow-
ing theorem implies.

Theorem 3. A chain of fundamental associ-
ated homogeneous functions j; (X X, o, X)),
which adheres to functional relations (9) for all
VA > 0 can be mapped one-to-one as follows:

L0 =2, (k)Y r (g Inr)* x 0

X hj(xl/r, xX,/r, .., x /1),

where x = (X, X,,..., X ), V' = \/xl2 + x22 +e 4 x,f
and h,—(fp t,, ..., 1) are arbitrary real functions
given on the surface of a unit hypersphere

1P+t =1,

with a one-to-one correspondence to the functions
j;,k(xl, Xyy ey X))

Proof. If £k = 0, we can establish that Eq.
(15) holds true for a positively homogeneous
function j; )O(xl, X,, ..., x ) after substituting A
= 1/r into homogeneity relation (1) and using
the function h(¢, 1, ..., 1) =fp‘0(tl, by ooy 1)
(recall that each of the functions hj(tl, by o
t) is defined only for the surface of a unit
hypersphere 72+ 2+ ... + t>= 1). Further
proof by induction repeats the proof of Theorem
1 practically verbatim.
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Theorem 3 is proved.

Relations (9) imply that the linear
combination with  constant coefficients
comprised from several chains of fundamental
associated homogeneous functions of degree
p and order k is also a chain of fundamental
associated homogeneous functions of degree p
and order k. Besides, if f AX X, e, x) is a
chain of fundamental associated homogeneous
functions of degree p and order k, then a new
chain of functions

gp k(xls 29 o x,,) :j;,k-l(xl’ xza * Xn)

with an 1ndex shift, supplemented by a leading
zero g (X, ..., x) = 0, is also a chain of
fundamental ass001ated homogeneous functions
of degree p and order k.

Egs. (10), (11) (as well as (14) or (15))
illustrate the validity of Gel’fand’s hypothesis
that any chains of associated homogeneous
functions of degree p and order k are obtained
from the main chains with a nonzero first
term by shifting the index k£ and subsequent
summation. At the same time, all elements of
the main chain of functions are reconstructed
one-to-one by to its first term according to
a certain rule; the accurate formulation of
this rule reflects the researcher’s preferences
and, generally speaking, can be different
for the same initial function. In case of the
theorems proved above, the respective chains
of fundamental associated homogeneous
functions have the form

a) for Egs. (10), (11):

ifx >0 f(")p’k x)=

= (x,”/k!) (g Inx ) x
X hj(xz/xl, XX 5 s X /X))
(x)=
= ((=x)? /k!) (g In (=x)))* x
o X /X))

i . £0)
ifx, <0: /0

X gj(xz/xl, x,/x,,
b) for Eq. (14):
1) =0, (x) /& (In v, () x
< h(y,(x), y5(x), ..., W, ()
c) for Eq. (15):
f (i)p,k(x) =

=/ k) (qInr) h(x/r,x[r, ..., x /).

Remark. As follows from Egs. (14), the
fundamental associated homogeneous functions
are actually linear combinations of chains of
functions taking the form

(1/k)) Rp(xl, Xy oeey X,) X
X (In S, (X5 Xy oo x ),
where R (x ..., X ) are random positively

homogeneous functlons of degree p, and § (x
X,, ..., x) are fixed positively homogeneous
functions of degree g, for which we also shift
the index k and supplement the shifted chains
with leading zeros.

The situation will not change and no new
functions can be obtained if we demand that
the functions § (x ..., x) are random
positively homogeneous functions of degree
q.

In particular, this approach allows to
formulate  the  fundamental  associated
homogeneous functions more elegantly without
using artificially derived variables x,. Changing
the selected function § (x , X ) makes the
current main chains secondary, and vice versa,
the chains that were previously secondary the
main ones. Because of this, the definition of
the main chains of fundamental associated
homogeneous functions is fairly arbitrary
and depends on the selected parametrization
of fundamental associated homogeneous
functions.

Differentiation and integration of
associated homogeneous functions

If an  Euler-homogeneous  function
fx,, x,, ..., x) of degree p is differentiable,
then its derivatives with respect to the variables
X,, X,,..., X are homogeneous functions of de-
gree (p - 1) [10]. A similar statement is valid
for the associated homogeneous functions. Let
us formulate and prove the following theorem.

Theorem 4 (on differentiation). If
];k(xl, X, ..., X) is a chain of fundamental as-
sociated homogeneous Sfunctions of degree p and
order k, and the functions f (X, X, .y X,) are
differentiable, then their fi st partlal derlvatlves
of, /0, with respect to the variables x,, oy X,
form chains of fundamental assoczatea’ homoge—
neous functions of degree (p — 1) and order k.

Proof. The statement of the theorem fol-
lows from a term-by-term differentiation of the
right and the left-hand sides of Eq. (9) with
respect to the variable x.

Theorem 4 is proved.

A similar statement is valid for integration.
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Theorem 5 (on integration). Iff k(x X)) F,, (xlaxz ...,xn) =
is a chain of fundamental associated homoge— g
neous functions of degree p and order k, then - J‘ m al
integrals represented as F x4

F o(x,x,...x )=
i (215X, ,) X p’k(xl,xz. X, 1ol X,1se s X, ) dE,
= If Pk (prz,- Xi sl Xipyseees ,,)df form a chain of fundamental associated
0

(if they exist) form a chain of fundamental
associated homogeneous functions of degree (p ~+
1) and order k.

Significantly, the initial point of integration
is zero.

Proof. The proof follows from term-
by-term differentiation with respect to the
variable 7 in the interval 7 € [0, x] of relation
(8) after substituting x,— 7 in it in view of the
equality

Ax,)dt =

JESERERY

Jifp’k (kxl,kxz,...,kxl.fl,?ut,kx
0

A, )d.

[ASERER

17
_x_'.fl’”‘ (kxl,kx SAX, LT AX
0

Theorem 5 is proved.
It is also possible to consider the integrals

Fp’k(xl,...,xn):
X
- pr,k (Xpsee s Xl X X, ) dE +
L
+gk(xl,...,xl.fl,xm,...,xn),
where the functions g(x,, x,, ..., X_,, X,

..., X)) are such that the obtained functions
f k(xl, X,, ..., x,) form a chain of fundamental
associated homogeneous functions of degree
(p + 1) and order k. We can prove that such
functionsg, doindeed existand canbe expressed
in terms of the functions f X Xy ey X))
with a one-to-one correspondence up to the
additive elements in the form of fundamental
associated homogeneous functions of degree
(p + 1) and order k£ depending on the variables
X, Xyy ey X5 X, (s -y X,. The proof of this
statement is given in the following section.

Theorem 6 (on fractional differentiation).
]ff (X, X, ..., X ) Iis a chain of fundamental
assoczatea’ homogeneous functions of degree p
ano’ order k, then their fractional derivatives

k(x,, X, ..., x ) of order a€(0, 1) (Riemann—
Liouville mtegrals of order o [24—26]), ex-
pressed as
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homogeneous functions of degree (p — o) and
order k (if such integrals exist, in particular, if
m —a > 0).

Significantly, the initial point of integration
is zero.

Proof. The proof follows from term-by-
term application of the linear convolution
operator L[f] to relation (8):

L[f(xl,xz...,xn)]z
=J£(xf_t)mfon71 %
0
Xf (X125 e X 0 X, X, )

where we should also take into account the
equality

't m—o— 1
J. X, —t
0
Xfp,k (}\'xl’}\’xz }\"xz 1’7\‘t }\’x1+la :kxn)dt =
1
= km—a _[ (}\'xz - T)m_q_l X
Xf o (MI,MZ JAX, S TAX ,Mn)dt,

As a result, we obtain a chain of fundamental
associated homogeneous functions of degree
(m + p — o) and order k, which, after m-fold
differentiation with respect to the variable x,
becomes a chain of fundamental associated
homogeneous functions of degree (p — a) and
order k.

Theorem 6 is proved.

Theorem 7 (on convolution with a generalized
Abel kernel). If f (X, , X ) Iis a chain of
Jfundamental assoczated homogeneous Sfunctions of
degree p and order k, then provided that there the
corresponding integrals exist, their convolution
with the generalized Abel kernel expressed as

Fp’k(xl,xz...,xn)=
o5 B Ky
:J,,,I(xlkl_tlzﬁ)‘kl (b=l ) &
0 0
< (8 )dt,...dt



\

where Y. > 0, forms a chain of fundamental as-
sociated homogeneous functions of degree p + |,
+ ... + u, and order k. The result for partial
convolution with respect to the variables x,, x,,
.., XIS a chain of fundamental associated ho-
mogeneous functions of degree p + p + ... +
and order k.

Significantly, the initial point of integration
is zero.

Proof. The proof follows from term-by-
term application of convolution with the Abel
kernel to relation (8) in view of the equality

XX, w1 u, =1
kl_ ky k... kn_ ky k,
frf (et -t
0 0

< foo (MM, . At )t dt, =
1 A A,
:}\,Hl ,,}\l”n J‘j ((M
0 0
w,—1
(2, ) -

ko \ K,
T ) Lo (11T
Theorem 7 is proved.

‘ w-l
)I_Tfl) ky eee X

t,)dt,...dt,.

Euler’s criterion

Let wus recall FEuler’s theorem on
homogeneous functions [10]:

Euler’s theorem (Euler’s criterion for
homogeneous functions). [f the function
fx,, x,,..., x) is continuously differentiable in
any point of space R", then for it to be FEuler-
homogeneous of degree p, it is necessary and
sufficient that in any point of space R' the
Jfollowing condition is satisfied

x, Oflox, +x,0flox, + ... +

(16)
+x oflox = pf.
Relation (13) is obtained through
differentiation of identical equation
SOx, Ay, o A ) =W AX L X, X))

for a homogeneous function of degree p with re-
spect to parameter A in point L = 1, therefore, its
necessity is obvious. However, it is highly non-
trivial that condition (16) is not only necessary
but sufficient for the function fix,, x,,..., x ) dif-
ferentiable everywhere to be Euler-homogeneous
of degree p. The proof of this theorem can be
found, for example, in monograph [10].

Euler’s criterion (16) works for continuously
differentiable positively homogeneous functions
of degree p as well. The only difference is that
in this case the function f{x, x,,..., x,) can have
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no derivative at point x, = x, = ... = x =0
and, consequently, condmon (16) is violated
at thlS point.

Theorem 8 (generalization of Euler’s
criterion). For the functions f, (x, X,,..., x,)
continuously differentiable everywhere to form
a chain of fundamental associated homogeneous
Jfunctions of degree p and order k, it is necessary
and sufficient that the following equations are
fulfilled at all points of space R", possibly except
Jor point x, = x,= .. =x = 0:

X, 6];,/(/6)61 +x, @;Jc/&x2 + ...+
+x an,k/axn Zpﬁ)’k + qf;;,k—l'

Proof. The necessity of relation (17)
follows from differentiation of relation (9)
as a composite function of A at point A = 1
(continuous differentiability is required here so
that we could safely differentiate relation (9) as
a composite function). The remaining task is to
prove the sufficiency of relation (17).

When k = 0, the sufficiency of criterion (17)
follows from Euler’s theorem on homogeneous
functions. Next, we apply the method of
mathematical induction.

Suppose the statement is proved for all values
of the index k in the interval 0 < k < m — 1.
Consider the function

®, M) =1, 0x, A

(17)

2 )/ —

2 onSom s Xy s X,) (g In D)KL,

with summation carried out with respect to the
index 1 < k< m.

This expression coincides with identity (9),
whose right and left-hand sides were divided by
M, up to the substitution of the summation in-
dex. The derivative of the function ® (1) with
respect to the parameter A is transformed to

do, ()/dh = (1) [Ax, of, (x)/ox, +
+ 0, 0, (L), + ..+
+ 0, O, (W)/ex, —
ol 00~ af,,, (0x) +
+qf,, O ~q T, f ()W
x (g In M) /(k— 1)1 =

because relation (17) for the func-
tion f X0 ..., xn) is fulfilled, including
at p01nt (Ax ..., Ax)), and the function
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, x,) satisfies condition (9) by in-
éuctlve assumptlon Therefore, ® (1) = const
and, in particular, ® (A) = @ (1)

However, as it is easy to verify, the con-
dition ® (1) = @ (1) means that relation (9)
is fulfilled for the functions f (X Xy e, X)),
Consequently, if condition (17) is satlsﬁed for
vk >0 at all points of space R", except possibly
the origin of coordinates, then relation (9) is
satisfied for vk > 0.

Theorem 8 is proved.

Note. To provide the condition ® (1) = @ (1)
= const, the derivative @’ (A) must exist and be-
come zero at any point of the segment connect-
ing the points (Ax,, Ax,, ..., Ax)) and (x,, X, ...,
x ). If equality (14) is violated for at least one in-
termediate point, or at least the derivative @ (1)
exhibits discontinuities at one intermediate point,
then the function @ (A) can be decomposed in-
to piecewise constant steps. This is exactly why
violation of continuous differentiability of the
function at zero provides only positive Euler ho-
mogeneity for the function f{x,, x,,..., x ), and not
the general Euler homogeneity.

Theorem 9 (on integrating fundamental as-
sociated homogeneous functions). If f (X x

, X,) is a chain of fundamental associated ho—
mogeneous functions of degree p and order k,
then there exist such functions g,(x, X, ..., X )
Jfor which the functions

FP,k (xl"xza---,xn) =

x,)

form a chain of fundamental associated
homogeneous functions of degree p + 1 and order k.
Naturally, any coordinate x, can be used
instead of the coordinate x,.
Proof. According to Theorem 6, it is
necessary and sufficient that relations (17) are

X
= J.fp,k (t,%y,%;5,...,x, ) dt + g, (X5, %;,...,
A

fulfilled for the functions F (x5 x,, ..., x ). This
leads to the equation
0=x,f,, (X,%,,..05x, ) +
0
+I pk+---xnﬁ dt —
s 8t 8x2 Oox,

(p+1)ffp,k (£,%y,%,,...) di -

A

—Jlt—p”‘dt—
> o
—q{j i (6,30 x,,.. ) di +

k-1
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h 0g, agk
+J.fp’,{l(t,xz,)c},...)dt}+x2a—xz+x3 o, +

a

0
nggk—(p+1)gk (x,,x5,..

n
x,)=

48,1 (%, %50,
x1 af
=X/ i (xl,xz,...,xn)—J‘[ta—”t’k+fp’kjdt

A

+...x .’xn)_

_(]J. fp,kfl(t,xz,x3,...,xn)dz+
+x2dﬁ+ %_
ox, ox,
(p+1)gk(x2a ’xn)_
48 1(x29~ ,xn)

_x % %+- og,
2 5x2 ax3 n axn
_(p+1)gk_qgk_1_
_qj fp,k—l(taxz,x3,...,xn)dt+

A1

+akfp’k (ak,xz,x3...,

x,).

The variable x, is absent in the obtained
equations. Moreover, the function g_ (x,, x
., X)) is already known. The remaining task is
to find the solution to the equation

x,0g,/0x,+ x,0g,/0x,+ ... +
+x O0g/ox —(p+ 1)g, (18)
=G (X, Xy o005 X)),

where the function G (x,, x;, ...,x,) is already
known at the k™ step of integration:

G, (xy,X5,..0s%, ) = g8, (%, X550, ) +

L3
+q _[ fp,,ﬁ1 (t,xz,x3,...,xn)dt—
A1

—a, [ (@%5,%5,..,x,).

It is convenient to use the following
substitution to find this solution

gk(x25 REIRRRS]

= xZ”+1 h (x

x)=

2o X3/ XX, s

X /x,).
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Then Eq. (18) takes the form
x,720h,(x,, t t)/0x,=

2’ 39 4’ M

0 X LX0s o oiy

=G (x

A particular solution of this equation is
found by transferring the multiplier x,”** into
the right-hand side and integrating the result
with respect to the variable x, with ‘frozen’
variables z,, 7, ..., ¢ . Furthermore, we need to
add the general solution of homogeneous Eq.
(18) with a zero right-hand side to the obtained
particular solution of the inhomogeneous equa-
tion, that is, an Euler-homogeneous function
of degree (p + 1) depending on the variables
X,y Xy ooy X,

Theorem 9 is proved.

As a result, we managed to not only prove
that the required function g (x,, x;, ..., x,) exists
but also to define its explicit quadratic form.
The final solution is the sum of a particular
case of the chain of functions g (x,, x, ..., X))
expressed recursively in quadratic form in terms
of the functions f A X, X5, .y X,), and a ran-
dom chain of fundamental assocrated homoge-
neous functions of degree (p + 1) and order k
of the variables x,, x,, ..., x , which can be given
explicitly using Eqs (10) (11) (14) or (15).

Problem. Suppose for all pornts of space R",
except possibly the point x, = x, = ... = x =0,
that the continuous drﬁ"erentrable functrons
g(x,, x,, ..., x) satisfy the equalities

tXx,).

x 0g/0x +x 0g/0x, + ..+

1 gk 1 2 gk 2 (1 9)
+x,08/0x,=p, g 4.8
where p,, g, are the given constants, and the
functions g,(x,, x,, ..., x,) with negative subscripts
are taken to equal zero. What can we say about
the form of the functions g (x,, x,, ..., x,)?

If vk, p, = p = const, and g, = g = const,
Euler’s criterion (17) provides an answer im-
mediately: the functions g (x, x,, ..., x,) are
fundamental associated homogeneous func-
tions f X5 X,, ..., x,) of degree p and order k.
In the general case, "additional calculations are
required. After substrtutmg

gx, X, X)) =
HX /X)),

the chain of conditions (19) is reduced to a
system of ordinary linear differential equations
with constant factors and a bidiagonal matrix
of factors, where 7 = In x, is a free variable, and

=h(Inx,x/x,x/x,

the variables 7, = x,/x
are ‘frozen’.

After solving the obtained system of differ-
ential equations and making the reverse tran-
sition to the variables x,, x,, ..., x, we obtain
the general form of the functions g (x,, x,, ...,
x ). At the same time, it should be borne in
mind that the free constants obtained after in-
tegrating a system of ordinary linear differential
equations with constant factors are in fact ran-
dom functions depending on temporary ‘fro-
zen’ variables £,= x,/x, £,= x,/x, ..., L = X /X,.
Depending on what the constants p, are equal
to and how many of them turn out to be equal
to each other, the structure of the solution can
be quite complicated.

In a particular case, let us take a chain of
relations (19), where all values of p, equal the
same number p, while Vg, # 0. Then, according
to condition (17), the functions g (x,, x,, ..., X,),
scaled up by ¢, times, turn out to be fundamen-
tal associated homogeneous functions f X, X

, X ) described by the general equatrons (10)
and (1 1) (or (14), or (15)), if the relations c,g,/
¢,_, = q are fulfilled (where the value of the
parameter g # 0 is chosen arbitrarily). In other
words, scaling factors ¢, should be chosen in
accordance with the recursive rule ¢, = qc,_,/
q,, where ¢,= 1, and the results coincide with a
certain chain of fundamental associated homo-
geneous functions f (x,, x , x) of degree p
and order k up to the multrphers

b EE XX, o, =X /X,

Differentiation with respect to
degree of homogeneity

An interesting technique allowing to generate
new fundamental associated homogeneous
functions is considered in [11, 12]. Specifically,
suppose f(x,, ..., X) is a one-parameter
family of Euler homogeneous functions with
the degree of homogeneity equal to p, where p
is a continuously changing parameter.

Repeatedly differentiating the homogeneity
relation

[0, 00, o Ax) = W (X, X, )

with respect to the parameter p, we obtain that
the functions

S Xy oo x,) = (1/ARY) 8k];(xl, X, ..., X )/Op

satisfy functional relations (9), are a
particular case of fundamental associated
homogeneous functions.

The homogeneous function f(x,,

vy X))
can be represented using Egs. (3p) and (4)

n
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ifx >0,/ (x,x,....,x)=
! (20)
=x7 hp(xz/xl, XX (5 s X /X))
ifx <0 f(xl, g ees X)) =
(21)
=(=xy gp(xz/xl, XX, e X /X)),
where h(z, s s 1), g(z, . ..., 1) are func-

tions of (n—1) varlables mdependent of each
other.

These functions are mapped one- to -one
with respect to the given function f (x,, s
x ) according to the formulae

h (tz, e b)) f(+1, o by s ),
8 (tza 39t tn) :fl‘,(_la _tza ] _tn)a
and depend on the continuous parameter p as well.
Repeatedly  differentiating  expressions

(20), (21) with respect to the parameter p,
we obtain the universal formulae (10), (11)
for fundamental associated homogeneous

functions, if the new functions hj(xl, Xyy ey X))
and g(x , x,) are defined as
h(z, e t) (17 G’h(z, 1 e £)/OD,
g(z’ R t) (10')81g(25 35"'5tn)/8pj'
Egs. (15) are obtained similarly by
differentiating the function f (x,, x,, ..., x,) with

respect to the parameter p The functlon is
written as

];(xl, Xppeors X, ) =17 hp(xl/r, xX,/r, .., x /1),

where r—\/x12+x22+ A+ sandh (1,1, ..., 1)
is a real function given on the surface of a umt
hypersphere

t12+ t22+...+ tn2= 1

and related to the function f (x,, x
h (tl, o eeen k) f(t1’ pr e )

where 12+ £ +.. .+ 2= 1.

It follows from the obtained formulae that the
process of differentiating the Euler-homogeneous
functions with the degree of homogeneity equal
to p with respect to the continuously changing
parameter p does not generally lead to a loss
of possible chains of fundamental associated
homogeneous functions.

Importantly, if the functions f (x;, x5 ..o,
x ) are harmonic (or fulfil some other hnear
differential equation in partial derivatives with
constant coefficients), then all the fundamental
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>

associated homogeneous functions obtained
by differentiating the initial function f (x,,

, x ) with respect to the parameter p are also
harmomc

Conclusion

Analyzing mutually homogeneous functions
which correspond to a matrix of functional
equations with identical real -eigenvalues,
we obtained a refined class of associated
homogeneous Gel’fand functions [11, 12]. The
definitions and theorems formulated in the
study allow to correctly describe this important
class of functions and consider its properties in
detail. In particular, Theorem 2 on fundamental
associated homogeneous functions allows to
safely consider the following generalizations

f‘z‘],k(xl’ xza '5‘xn) =
=(l/k") R (xl, gp eees X)) X
X (In S (xl, e X))

and argue that such functions identically coincide
with the given class of functions, while fully
preserving their properties without producing
any fundamentally new mathematical objects.

The mathematical constructions we have
discussed may prove useful not only for theoretical
studies but also for practical applications.
The property of Euler homogeneity for scalar
potentials of electric and magnetic fields [5—8]
allows to synthesize efficient electron and ion-
optical systems, presented, for example, in a
series of works by Khursheed [27—43].

We hope that the obtained functional
constructions generalizing the relation of Euler
homogeneity can make it possible to transfer
the principle of trajectory similarity, introduced
by Golikov [5—8], to wider classes of electric
and magnetic fields.

The calculations in this paper were carried out
using the Wolfram Mathematica software [44].

Acknowledgements

We wish to express our sincere gratitude
to Anton Leonidovich Bulyanitsa, Doctor of
Physical and Mathematical Sciences, Professor of
Department of Higher Mathematics of Peter the
Great St. Petersburg Polytechnic University, for
active participation in discussions on the problem.

This study was partially supported by NIR
0074-2019-0009, part of State Task No. 075-
01073-20-00 of the Ministry of Science and
Higher Education of the Russian Federation.



Mathematical Physics
IEISNG

REFERENCES

1. Berdnikov A.S., Gall L.N., Gall N.R.,
Solovyev K.V., Generalization of the Thomson
formula for harmonic functions of a general type,
St. Petersburg Polytechnical State University
Journal. Physics and Mathematics. 12 (2) (2019)
32—48.

2. Berdnikov A.S., Gall L.N., Gall N.R.,
Solovyev K.V., Generalization of the Thomson
formula for homogeneous harmonic functions,
St. Petersburg Polytechnical State University
Journal. Physics and Mathematics. 12 (2) (2019)
49—62.

3. Berdnikov A.S., Gall L.N., Gall N.R.,
Solovyev K.V., Donkin’s differential operators
for homogeneous harmonic functions, St.
Petersburg  Polytechnical State  University
Journal. Physics and Mathematics. 12 (3) (2019)
45—62.

4. Berdnikov A.S., Gall L.N., Gall N.R.,
Solovyev K.V., Basic Donkin’s differential
operators for homogeneous harmonic functions,
St. Petersburg Polytechnical State University
Journal. Physics and Mathematics. 12 (3) (2019)
26—44.

5. Golikov Yu.K., Krasnova N.K., Teoriya
synteza elektrostaticheskikh energoanalizatorov
[Theory of designing of electrostatic energy
analyzers], Saint-Petersburg Polytechnic
University Publishing, Saint-Petersburg, 2010.

6. Golikov Yu.K., Krasnova N.K., Application
of electric fields uniform in the Euler sense in
electron spectrography, Technical Physics. 56
(2) (2011), 164—170.

7. Golikov Yu.K., Krasnova N.K., Generalized
similarity principle of similarity in electron
spectrography, Prikladnaya fizika (Applied
Physics). (2) (2007) 5—11.

8. Averin I.A., Berdnikov A.S., Gall N.R.,
The principle of similarity of trajectories for
the motion of charged particles with different
masses in electric and magnetic fields that are
homogeneous in Euler terms, Technical Physics
Letters. 43 (3) (2017) 156—158.

9. Berdnikov A.S., Solovyev K.V., Krasnova
N.K., Mutually homogeneous functions
with finite-sized matrices, St. Petersburg
Polytechnical State University Journal. Physics
and Mathematics. 13 (1) (2020) 42—53.

10. Fikhtengol’ts G.M., The fundamentals of
mathematical analysis, Vol. 1, Pergamon Press,
Oxford, New York, 1965.

11. Gel’fand 1.M., Shapiro Z.Ya., Generalized
functions and their applications, Uspekhi Mat.
Nauk. 10 (3) (1955) 3—70 (in Russian).

12. Gel’fand I.M., Shilov G.E., Generalized
functions, Vol. 1: Properties and Operations,
AMS Chelsea Publishing, 1964.

13. Ivanov V.K., On multiplication of
generalized homogeneous functions of several
variables, Soviet mathematics — Doklady. 237 (1)
(1981) 29—33 (in Russian).

14. Ivanov V.K., Asymptotic approximation
to the product of generalized functions, Soviet
Mathematics (Izvestia VUZ. Matematika). 25 (1)
(1981) 20—209.

15. Estrada R., Kanwal R.P., Asymptotic
analysis. A distributional approach, Birkhmuser,
Boston, 1994.

16. Estrada R., Kanwal R.P., A distributional
approach to asymptotic. Theory and applications,
Springer Science, New York, 2002.

17. Albeverio S., Khrennikov A.Yu., Shelkovich
V.M., Associated homogeneous p-adic
distributions, Doklady Mathematics. 68 (3)
(2003) 354—357.

18. Albeverio S., Khrennikov A.Yu., Shelkovich
V.M., Associated homogeneous p-adic
distributions, Journal of Mathematical Analysis
and Applications. 313 (1) (2006) 64—83.

19. Ivanov V.K., Selected scientific works.
Mathematics, Fizmatlit, Moscow, 2008 (in
Russian).

20. Khrennikov A.Yu., Shelkovich V.M., Modern
p-adic analysis and mathematical physics: Theory
and applications, Fizmatlit, Moscow, 2012 (in
Russian).

21. Shelkovich V.M., Associated and quasi-
associated homogeneous distributions (generalized
functions), Journal of Mathematical Analysis and
Applications. 338 (1) (2008) 48—70.

22. Albeverio S., Khrennikov A.Yu., Shelkovich
V.M., Theory of p-adic Distributions. Linear and
Nonlinear Models, Cambridge University Press,
Cambridge, 2010.

23. von Grudzinski O., Quasi-homogeneous
distributions, North-Holland, Amsterdam, 1991.

24. Miller K., Ross B., An Introduction to the
Fractional Calculus and Fractional Differential
Equations, Wiley, New York, 1993.

25. Samko S., Kilbas A.A., Marichev O.,
Fractional integrals and derivatives: theory and
applications, Taylor & Francis Books, 1993.

26. Kilbas A.A, Srivastava H. M., Trujillo J.J.,
Theory and applications of fractional differential
equations, Vol. 204, 1*t Ed., Elsevier, Amsterdam,
Netherlands, 2006.

27. Khursheed A., Dinnis A.R., Smart P.D.,
Micro-extraction fields to improve electron beam

59



4St. Petersburg State Polytechnical University Journal. Physics and Mathematics 13 (2) 2020

test measurements, Microelectronic Engineering.
14 (3—4) (1991) 197-205.

28.  Khursheed A., Multi-channel vs.
conventional retarding field spectrometers for
voltage contrast, Microelectronic Engineering. 16
(1—4) (1992) 43—50.

29. Khursheed A., Phang J.C., Thong J.T.L.,
A portable scanning electron microscope column
design based on the use of permanent magnets,
Scanning. 20 (2) (1998) 87—91.

30. Khursheed A., Magnetic axial field
measurements on a high resolution miniature
scanning electron microscope, Review of
Scientific Instruments. 71 (4) (2000) 1712—1715.

31. Khursheed A., A low voltage time of flight
electron emission microscope, Optik (Jena). 113
(11) (2002) 505—509.

32. Khursheed A., Aberration characteristics of
immersion lenses for LVSEM, Ultramicroscopy.
93 (3—4) (2002) 331—338.

33. Khursheed A., Karuppiah N., Osterberg M.,
Thong J.T.L., Add-on transmission attachments
for the scanning electron microscope, Review of
Scientific Instruments. 74 (1) (2003) 134—140.

34. Khursheed A., Osterberg M., A spectroscopic
scanning electron microscope design, Scanning.
26 (6) (2004) 296—306.

35. Osterberg M., Khursheed A., Simulation
of magnetic sector deflector aberration properties
for low-energy electron microscopy, Nuclear
Instruments and Methods in Physics Research,
Section A. 555 (1—2) (2005) 20—30.

36. Khursheed A., Osterberg M., Developments
in the design of a spectroscopic scanning electron

Received 27.03.2020, accepted 17.04.2020.

>

microscope, Nuclear Instruments and Methods
in Physics Research, Section A. 556 (2) (2006)
437—444.

37. Luo T., Khursheed A., Imaging with
surface sensitive backscattered electrons, Journal
of Vacuum Science and Technology B. 25 (6)
(2007) 2017—2019.

38. Khursheed, A., Hoang, H.Q., A second-
order focusing electrostatic toroidal electron
spectrometer with 20 radian collection,
Ultramicroscopy. 109 (1) (2008) 104—110.

39. Khursheed A., Scanning electron
microscope optics and spectrometers, World
Scientific, Singapore, 2010.

40. Hoang H.Q., Khursheed A., A radial mirror
analyzer for scanning electron/ion microscopes,
Nuclear Instruments and Methods in Physics
Research, Section A. 635 (1) (2011) 64—68.

41. Hoang H.Q., Osterberg M., Khursheed
A., A high signal-to-noise ratio toroidal electron
spectrometer for the SEM, Ultramicroscopy. 111
(8) (2011) 1093—1100.

42. Khursheed A., Hoang H.Q., Srinivasan A.,
A wide-range Parallel Radial Mirror Analyzer for
scanning electron/ion microscopes, Journal of
Electron Spectroscopy and Related Phenomena.
184 (11—12) (2012) 525—532.

43. Shao X., Srinivasan A., Ang W.K,,
Khursheed A., A high-brightness large-diameter
graphene coated point cathode field emission
electron source, Nature Communications. 9 (1)
(2018) 1288.

44. Wolfram Mathematica,
wolfram.com/mathematica/

URL: http://

THE AUTHORS

BERDNIKOYV Alexander S.

Institute for Analytical Instrumentation of the Russian Academy of Sciences
26 Rizhsky Ave., St. Petersburg, 190103, Russian Federation

asberd@yandex.ru

SOLOVYEYV Konstantin V.

Peter the Great St. Petersburg Polytechnic University
29 Politechnicheskaya St., St. Petersburg, 195251, Russian Federation

k-solovyev@mail.ru

KRASNOVA Nadezhda K.

Peter the Great St. Petersburg Polytechnic University
29 Politechnicheskaya St., St. Petersburg, 195251, Russian Federation

n.k.krasnova@mail.ru

60



Mathematical Physics
IEISNG

CNMUCOK JIUTEPATYPbI

1. Bepanukos A.C., T'amas JI.H., Tamm P.H.,
Conosbes K.B. O6001eHune dpopmynsl TomcoHa
JUIST TApMOHWYECKUX (BYHKIIMI oOlero Buma //
HayuHo-texunuyeckue Bemomoctu CIIGITIY.
®Ddusuko-marematuueckue Hayku. 2019. T. 12 Ne
2. C. 32—48.

2. Bepauukos A.C., Taum JI.H., 'aum P.H.,
Conosbes K.B. O6001eHue dpopmynsl TomcoHa
JUIST TApPMOHWYECKUX OTHOPOMHBIX (BPYHKIIWMA //
HayuHo-texunuyeckue Bemomoctu CIIGITIY.
Ddusuko-mMarematuueckue Hayku. 2019. T. 12. Ne
2. C. 49—62.

3. Bepauukos A.C., T'aum JI.H., 'aumn H.P.,
Conosbes K.B. [luddepeHumanbHbie OrepaTopbl
HoHKWHA IS OZHOPOIHBIX TapPMOHMYECKMX
¢dyaxkumii // HaydyHO-TeXHMUYECKHE BEIOMOCTHU
CIIGITIY. ®usuko-MareMaTUUeCKuMe HayKH.
2019. T. 12. Ne 3. C. 45—62.

4. Bepaaukos A.C., T'amas JI.H., Tamm H.P.,
Conosbes K.B. basucHrple mmnddepeHmaibHbIe
omepaTopbl  JIoHKMHA IS OXHOPOIHBIX
rapMOHMYECKUX  GyHKUIU  // Hayuno-
texunyeckue BegomocTu CIIOGITIY. ®usuko-
Martematuueckue Hayku. 2019. T. 12. Ne 3. C.
26—44.

5. Tomkos I0.K.,
Teopusa CHHTE3a 3JIEKTPOCTATUYECKUX
SHEPTOAHAIU3ATOPOB. CII6.: H3n-Bo
IMonmurexnuueckoro yH-Ta, 2010. 409 c.

6. Tomkos I0.K., Kpacnosa H.K.
DeKTpuuecKue I0JIsI, OOHOPOAHEIE 110 Diiepy,
IUIST 3JIEKTPOHHOM criekTporpaduu // KypHan
texHuuyeckoit ¢dusuku. 2011. T. 81. Ne 2. C.
9—15.

7. I'omkos 10.K., Kpacuosa  H.K.
OOOOLIIEHHBIE OPUHLMI MOmAOOMS U €ro
MIpUMEHEeHUe B 3JICKTPOHHON criekTporpadun //
IMTpuknagHas ¢usuka. 2007. Ne 2. C. 5—11.

8. Asepun U.A., BepaoaukoB A.C., I'ammn H.P.
IMpuHUMIT TTOHO0UST TPAGKTOPUIA IIPU ABVKEHUU
3apsKEHHBIX  YacTUIl € pasHBIMM  MaccaMu
B ONHOPOAHBIX TIO DUJIEPy DIEKTPUICCKUX
n MarHuTHbIX monsix // ITlucema B KypHan
TexHuueckoi ¢usuku. 2017. T. 3 Ne 43. C.
43—309.

9. Bepanukos A.C., ConosbeB K.B., KpacHoBa
H.K. BzaumHo-omHOpomHble  (YHKLUUU C
MaTpuIlaMyd KOHEYHoro pasmepa // HayuHo-
texundyeckue BegomocTu CIIOGITIY. ®usuko-
Martematudeckue Hayku. 2020. T. 13. Ne 1. C.
42—53.

10. DUXTEHTOJIbIT .M. Kypc
nuddepeHIalTbHOTO "u WHTETPAIBHOTO
ncuncienusa. T. 1. M.: @usmaraur, 2001. 616 c.

Kpachosa  H.K.

11. Tembpanny W.M., Ilammpo 3.4.
OnpHoponHble (YHKIMM M WX TPWIOXeHUs //

Ycenexu mateMatudyeckux Hayk. 1955. T. 10.
Bom. 3. C. 3—70.
12. Ilemwpann U.M., Innos T.E.

O06oOuIeHHbIE (YHKUMU 1 OeHACTBUSI Hal HUMU.
Cepusa «O0001meHHble yHKuuM». Boin. 1. M.:
T'M®MIL, 1959. 470 c.

13. MiBanos B.K. O6 ymHOXeHUU 0000111€HHbIX
OMHOPOIHBIX (PYHKITNI HECKOIBKHX ITePEMEHHBIX
// Doxmager AH CCCP. 1981. T. 1 Ne .237. C.
33-29.

14. HNBanos B.K. AcuMnToTuyeckas
anImpoKCcUMalusl MPOU3BEAeHUSI O00OILEHHBIX
byaxkuuit  // WUsBectusi  BY30B. Cep.
«Matemaruka». 1 .Ne .1981. C. 26—19.

15. Estrada R., Kanwal R.P. Asymtotic analysis:
A distributional approach. Boston: Birkhmuser,
1994. 253 p.

16. Estrada R., Kanwal R.P. A distributional
approach to asymptotics: Theory and applications.
New York: Springer Science, 2002. 454 p.

17. Anoesepmo C., Xpennukos A.IO.,
ITeakosuy B.M. IlpucoenrHeHHbIe OIHOPOIHBIE
p-amnueckue pacrupeneneHus // Joxmager PAH.
2003. T. 393. Ne 3. C. 300—303.

18. Albeverio S., Khrennikov A.Yu., Shelkovich
V.M. Assiciated homogeneous p-adic distributions
// Journal of Mathematical Analysis and
Applications. 2006. Vol. 313. No. 1. Pp. 64—83.

19. NiBanoB B.K. M306paHHble HAyYHbIE TPY/IbI.
Matremaruka. M.: ®usmariaut, 2008. 553 c.

20. XpennukoB A.IO., Illeakosmu B.M.
CoBpeMeHHBbII1 p-aquvecKu aHam3
U Matematuueckas  ¢uszuka: Teopus u
npuinoxeHus. M.: @usmartiaut, 2012. 452 c.

21. Shelkovich V.M. Associated and quasi
associated homogeneous distributions (generalized
functions) // Journal of Mathematical Analysis and
Applications. 2008. Vol. 338. No. 1. Pp. 48—70.

22. Albeverio S., Khrennikov A.Yu., Shelkovich
V.M. Theory of p-adic distributions: Linear
and nonlinear models. Cambridge: Cambridge
University Press, 2010. 351 p.

23. von Grudzinski O. Quasihomogeneous
distributions. Amsterdam, North-Holland, 1991.
469 p.

24. Miller K., Ross B. An Introduction to the
Fractional Calculus and Fractional Differential
Equations. New York, Wiley, 1993. 384 p.

25. Camko C.I'., Kun6ac A.A., Mapuues O.H.
MHTerpanbl U MpOU3BOAHBIE IPOOHOIO TMOpsiaKa
U HEKOTOpble uX npujoxeHus. MuHck: Hayka u
TexHuka, 1987. 687 c.

61



4St. Petersburg State Polytechnical University Journal. Physics and Mathematics 13 (2) 2020

26. Kilbas A.A, Srivastava H.M., Trujillo J.J.
Theory and applications of fractional differential
equations. Vol. 204. 1% Ed. Amsterdam,
Netherlands: Elsevier. 2006. 540 p.

27. Khursheed A., Dinnis A.R., Smart P.D.
Micro-extraction fields to improve electron
beam test measurements // Microelectronic
Engineering. 1991. Vol. 14. No. 3—4. Pp.
197—205.

28.  Khursheed A. Multi-channel vs.
conventional retarding field spectrometers for
voltage contrast // Microelectronic Engineering.
1992. Vol. 16. No. 1—4. Pp. 43—50.

29. Khursheed A., Phang J.C., Thong J.T.L.
A portable scanning electron microscope column
design based on the use of permanent magnets //
Scanning. 1998. Vol. 20. No. 2. Pp. 87-91.

30. Khursheed A. Magnetic axial field
measurements on a high resolution miniature
scanning electron microscope // Review of Scientific
Instruments. 2000. Vol. 71. No. 4. Pp. 1712—1715.

31. Khursheed A. A low voltage time of flight
electron emission microscope // Optik (Jena).
2002. Vol. 113. No. 11. Pp. 505—5009.

32. Khursheed A. Aberration characteristics of
immersion lenses for LVSEM // Ultramicroscopy.
2002. Vol. 93. No. 3—4. Pp. 331—338.

33. Khursheed A., Karuppiah N., Osterberg M.,
Thong J.T.L. Add-on transmission attachments
for the scanning electron microscope // Review
of Scientific Instruments. 2003. Vol. 74. No. 1.
Pp. 134—140.

34. Khursheed A., Osterberg M. A spectroscopic
scanning electron microscope design // Scanning.
2004. Vol. 26. No. 6. Pp. 296—306.

35. Osterberg M., Khursheed A. Simulation of
magnetic sector deflector aberration properties
for low-energy electron microscopy // Nuclear
Instruments and Methods in Physics Research,

>

Section A. 2005. Vol. 555. No. 1-2. Pp. 20—30.

36. Khursheed A., Osterberg M. Developments
in the design of a spectroscopic scanning
electron microscope // Nuclear Instruments and
Methods in Physics Research. Section A. 2006.
Vol. 556. No. 2. Pp. 437—444.

37. Luo T., Khursheed A. Imaging with surface
sensitive backscattered electrons // Journal of
Vacuum Science and Technology B. 2007. Vol.
25. No. 6. Pp. 2017—2019.

38. Khursheed A., Hoang H.Q. A second-
order focusing electrostatic toroidal electron
spectrometer with 2z radian collection //
Ultramicroscopy. 2008. Vol. 109. No. 1. Pp.
104—110.

39. Khursheed A. Scanning electron
microscope optics and spectrometers. Singapore:
World Scientific, 2010. 403 p.

40. Hoang H.Q., Khursheed A. A radial mirror
analyzer for scanning electron/ion microscopes
// Nuclear Instruments and Methods in Physics
Research. Section A. 2011. Vol. 635. No. 1. Pp.
64—68.

41. Hoang H.Q., Osterberg M., Khursheed
A. A high signal-to-noise ratio toroidal electron
spectrometer for the SEM // Ultramicroscopy.
2011. Vol. 111. No. 8. Pp. 1093—1100.

42. Khursheed A., Hoang H.Q., Srinivasan A.
A wide-range parallel radial mirror analyzer for
scanning electron/ion microscopes // Journal of
Electron Spectroscopy and Related Phenomena.
2012. Vol. 184. No. 11—12. Pp. 525—532.

43. Shao X., Srinivasan A., Ang W.K.,
Khursheed A. A high-brightness large-diameter
graphene coated point cathode field emission
electron source // Nature Communications.
2018. Vol. 9. No. 1. P. 1288.

44. Wolfram Mathematica // URL: http://
wolfram.com/mathematica/

Cmamos nocmynuaa é pedakyuro 27.03.2020, npunsma k nyoauxayuu 17.04.2020.

62



4 Mathematical Physics

CBEAEHUA Ob ABTOPAX

BEPJIHUKOB Anxekcanap CepreeBud — 0okmop Qusuxo-mamemamuvecKux HAyK, eedyujull Ha-
Vunoiii compyonux Hucmumyma anasumuueckoeo npubopocmpoenus Poccutickoll akademuu Hayk,
Canxm-Ilemepbype, Poccuiickas Pedepayus.

190103, Poccuiickas ®enepanus, r. Cankr-IletepOypr, Puxckuii mp., 26

asberd@yandex.ru

COJIOBBEB Koncrantun BsaecnaBoBuu — xandudam ¢pusuxo- mamemamu4eckux HAyK, 0OueHm
Boicuteir  unycenepro-ghuzuuecxoti wikonvt Canxm-Ilemepbypeckoeo noaumexHu4ecKoeo yYHueepcume-
ma Ilempa Beaukoeo, maadwiuil Hay4Hwili compyoHux Mucmumyma anaiumu4eckoco npubopocmpoeHus
PAH, Canxm-Ilemepbype, Poccuiickas Pedepayus.

195251, Poccuiickas @enepanus, r. Cankr-Iletepoypr, [loaurexuuveckas yi., 29

k-solovyev@mail.ru

KPACHOBA Hapexna KoHCTaHTHHOBHA — OJokmop (u3uKo-mMamemamu4eckux HAyK, npogheccop
Boicueir uncenepro-gpusuneckoi wrxonavt Cankm-Ilemepbypeckoeo noaumexnuveckoeo yHueepcumema
Ilempa Beaukoeo, Canxm-Ilemepbype, Poccuiickas Dedepayus.

195251, Poccuiickas @enepanus, r. Cankr-Iletepoypr, [loaurexuuyeckas yi., 29

n.k.krasnova@mail.ru

© Peter the Great St. Petersburg Polytechnic University, 2020

63



