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Introduction

The classic theory of thermal stability of
wall structures developed by Seliverstov [1] uses
the methods of Fourier series theory and, in a
certain sense, originates from these methods.
This is hardly accidental, as the author of the
study was an expert in Fourier series theory. The
methods of trigonometric series are sufficient
if the boundary temperature distributions
of external sources belong to L (p > 1) on
a set of times £ Fourier series converge
almost everywhere on such a set. However,
the above condition is redundant for applied
problems. While the temperature distribution
of the sources is typically continuous at best,
according to Titchmarsh [2], it was impossible
to prove similar statements for convergence of
Fourier series almost everywhere [2, pp. 420—
421]. The methods for expanding Fourier series
are inconvenient for mixed boundary problems,
especially if the external heat source depends
on parameter 7 (time).

This study focuses on the methods for
solving boundary problems for the Fourier
equation in the form of equalities containing
functions of differential operators, comparing
the distributions obtained with the known exact
solutions.

The significance of our study is in offering
potential solutions for solving problems related
to thermal stability of construction barriers.

Key approaches to obtaining the solutions

We have formulated and proved the follow-
ing statements.

1. The solutions for the second and third
boundary problems for the Fourier equa-
tion are obtained by solving the first bound-
ary problem inverting the differentiation
operator.

2. Support measures for the distribution of
the primitive x(7,s), 8 _and the primitive deriv-
ative y:=—0x/0s, 5, satlsfy the inequality & y/8 >
1 in the first-kind boundary problem.

3. Increasing the dimension of the domain
does not increase the support measures of the
distribution.

Statement 3 implies that the thermal re-
sistance of a half-space does not exceed the
thermal resistance of a half-plane. In turn, the
thermal resistance of a half-plane does not ex-
ceed the thermal resistance of a half-line.

As an auxiliary technique, we use the fol-
lowing representation of the Taylor series
(shift) for functions f{7), analytic on half-line #
>0, fe C=0,0):
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f(t+s) = exp(s@t)f(t),

and its inversion
f(t) = exp(—s@t)f(t + S),

containing integer powers of the differential
operator 0,.

Simple expressions for measures of the
supports &

Using “the operator norms of fractional
powers of the operator 0, allows to obtain simple
expressions for measures of the supports o, .

Preliminary  considerations. Fractional
differentiation is related to the solution of the
Cauchy problem for an ordinary differential
equation of arbitrary positive integer (natural)
order s > 0.

Let

te@(x)c@(s)( ) ye§(x

S"(loc (Rl)
then the Cauchy problem
d)x=y,0,x(0)=0,

(1)
r=0()s—1,0,:=d/dt

has the following solution [3]:
t

x(t)=ﬁj( -7 ek, @

"0

or, in symbolic form,

x(t)=0."y(1). (2a)
Given non-integer s, Eq. (2) can be
extended:
1 t
o 'y(t)= t— 7)dr,
10 FSQ( 95

[(s)=
If s =0 + ip, o > 0, Eq. (2b) takes the form

(o4 1

P (c+ip) f) =
() I'(c+ip) *

t

xJ.(t—
0

(s—l) s> 0.

1) B (cos(pln (1— r)) +
+i sin(pln (1— r)))y (t)dr.

Let s=1/2. Then, by virtue of expression
(2b), we obtain Abel’s formula:
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The formula obtained (2c) can be used to
calculate the derivatives of the powers of 7, for
instance,

o7 1=2t/m, 5”21=1/\ﬁ5;

W
Wn

furthermore, for any n > 0:

n o__ tn+1/2 F(n + 1)

at—l/2t 81/2

J}

671/2t — ,
' F(n+3/2)
V2 _ iz (n+1/2)C(n+ 1)'
f T(n+3/2)

Clearly, the kernel of the operator 07,
N(0,), contains only one element, y = 0, for
any 0 < s < 1.

Commutation. By definition, the following
expression holds true:

or

(atﬁt_l/z _ a;l/zﬁt)y(t) = ﬁ 3)

If y(0) = 0, then the operator 0, com-
mutes with its negative fractional power,
e.g., —1/2:

(0.0, -0,"8,)y(t)=0, (3a)

or, in symmetric form,

a 172 a la 1/28 a a 1/26 81/2.

It follows then that the operator o, and its
fractional powers are self-similar in case of
commutation.

It
y(txt)-y(t)=

in the Cauchy problem (1) is a primitive period,
and a periodic solution is sought, so that

x(tx1,)—x(r)=0,V]i|>0,

the periodic condition can be replaced by the
homogeneous condition [3]:

O/ x(—0)=0, r=0(1)s -1,

0,V|i|>0,4,>0

and then the solution to the periodic Cauchy
problem takes the form

(t—r)s_1 y(t)dr=

)1
AN p—
8 o]
~
é!_.~

®)do.

TT(s)1

Let s =1/2, and then the previous formula
takes the form

(2d)

Thus, the commutator in the periodic
boundary problem equals zero, and the
fractional power of the operator 0, is permutable
with its inverse power.

Relations (2)—(2d) are known as the
Abel—Liouville identities [13]. Applications
to different mechanics problems are presented
in Caputo’s study (unfortunately, the original
text was unavailable to us but it is cited in
many later studies, for example, in [5—17] and
references therein).

Extension 1. For any s > 0, inversion of the
fractional differential operator has the form

6t x:m}[y(t—zl/ )dZ

for a non-periodic problem and
-5 1 K 1/s
6t X—m}[y(t—Z )dZ

for a periodic one.
Indeed, if

y(t£1)-y(¢)=0,v[{>0,

then the Cauchy condition for all derivatives
takes the Lyapunov form:
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97 x(—0)=0.

Extension 2. Let us consider an equation
depending on the parameter A:

(0,-1)x(t)=y(1).

Evidently, the kernel N(0—A) of the opera-
tor 0—A consists of the exponents x(7)=exp(1r?).
Therefore, the solution to the equation is

=(0,-1) " y+2z,2e9(d,-1).
The equation
(0, -2)" x(t)= (1)

has the solution

x(1)=(2,-1)" y(1)+(2).
(z)eo((2,-2)'):

evidently,
(8, - 2) 9 (d, - A) c...c (s, -A)".

Integral representation of the solution to the
homogeneous Cauchy problem has the form

j o) exp(A(1-7)) (1)

Here the kernel consists of functions
P_ (t)exp(rt)=z(r) c 91(2, 1),

where P(7) is a polynomial of degree s.
Let us continue solving the homogenous
Cauchy problem for fractional values of z:

x(t)=(0,=2) "»(1) =

:;j(t— )" exp( (t- )) (t)d.

T (n)y
Let n=1/2; then

() (0, - 7»)”2 ()=

k(t 1) (’C)d’CZ

o'—-.a

y

:%Iexp(kf)y(t—f)dz.

0

It is sufficient for integrals to converge that
the following condition hold true for the real
part of the number A: Rei < 0.

40
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Similarly, the periodic solution takes the form

x(1)=(2,-2) " y(r)=
:%!exp(kzz)y(t—zz)dz.

Extension 3. Given arbitrary n > 0, the
inversion equations for the fractional powers of

the operator take the form:
1 . "
X(l):mi[exp(le/ )y(t—Zl/ )dZ,

for a non-periodic problem and
x (1) =

———|exp(Az"") y(t—2"")dz
F(n+1)'([ p( )y( ) >
for a periodic problem, while Rex < 0.

This extension is thoroughly explored in
monograph [13] but the authors but apparently
did not use the trivial substitution V¢ = z. This
substitution is convenient because it allows to
represent the fractional differential operator as
a probability integral. Indeed, the integrand in
Eq. (2d) can be expanded in a Taylor series:

x(t —22) = exp(—zzﬁt)x(t),

then the left-hand side of Eq. (2d) is obtained
immediately.

Nash’s and Kuiper’s studies (discussed in
Gromov’s monograph [18]) formulated the
so-called A-principle: differential operators R
connecting partial derivatives are regarded as
algebraic relations for partial derivatives.

The h-principle is substantiated in [18],
accompanied by a list of publications up to 1990.
Sobolev spaces of functions with (generalized)
derivatives of fractional order were considered
by Slobodetskii in a series of studies [19, 20],
developing Bakelman’s earlier ideas [21] on the
geometric theory of equations.

Va

Analysis of Fourier boundary problems
for half-line s > 0

First boundary problem. Let us consider
the first boundary problem in an unbounded
domain > 0, s > 0:

ot os*’

x(2,0)=x,(7). “4)

We find a formal solution to this boundary
problem by separation of variables.
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Let
x(,5) = exp(—sa)x,(t), 5

While the parameter o > 0, which guaran-
tees a decrease in x(,s), uniform with respect
to ¢. In this case, substituting equality (5) in the
equation of problem (4) leads to the condition

exp(—soc)(@t —~ az)xo (1)=0,

from which it follows that a = 62, and, by
virtue of equality (5), the solution of boundary
problem (4) has the form

x(t,5) :exp(—sﬁi/z)xo (¢). (6)

Verification of solution (6). Step 1. The
classical solution for boundary problem (4) has
the following form:

2 : 2
x(t,s):ﬁ I xo(t—%jexp(—z )dz. 7

2\/; 2
. S .
Let us expand the function x, (t - _2j into
z

2
N

a Taylor series in powers of F:
z

s 5%0,
Xo| =5 |[Zexp| Xy (2).

Solution (7) then takes the form [4]:

x(t,s)z% T exp[—zz —22;1 jdz(xo(t)). (7a)

However, it is known from the course on
analysis of infinitely small quantities, devel-
oped by de la Vallée Poussin [3], that

%Texp(—uz —a/uz)du = exp(—2\/a).

Therefore, if the lower limit in the integral in
(7a) equals zero, then Eq. (7a) coincides with
Eq. (6). Thus, Eq. (7a) takes the following form:

x(t,5) = exp(—s0)* ) x, (¢) -

S 7b
2 A , 870, 70
N J‘ exp| -z~ — = dz - x, (t).

Consequently, given that S <<1, Egs.
(7b) and (6) yield close results. 2V
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Step 2. 1If x,(7) is a periodic time function, i.e.,
x,(£1) = x,(1),
where 7, < 0 is a primitive period, then, instead

of solutions (7), (7a) and (7b), we obtain a
solution in the form

x(t,s)= %Txo (z — 4S—Zzzj exp(—z2 )dz, (7¢)

and solutions (7¢) and (6) are then identical.
To confirm this, it is sufficient to expand the
integrand in solution (7¢) in a Taylor series:

2 7 ’0
x(t,s)= ﬁfexp(—zz —%]dz-xo (1)=
0

= exp (50" ) x, (1),
which proves the identity.

Thus, Eq. (6) and its corollaries hold true
for a boundary value x(7,0) = x/(7), periodic
with respect to the parameter ¢, i.e., for the
solution of the quasi-steady boundary problem
of thermal conductivity.

The second boundary problem. Eq. (6)

0.
implies that the derivative y(t, s) = _6_x
A

calculated as follows:

y(t.s)=0)exp(-s0)%)x,(¢). (8
Let s=0. By virtue of expression (8),
y (t,O) =Y (t) =0"x, (t) ,

X0 (t) = 6;1/2)’0 (t)’
and by virtue of solution (6), the solution to the
second boundary problem takes the form

x(t,s): exp(— séyz)@;l/zyo(t). )

The third boundary problem. The given
problem is formulated as follows for the
Fourier equation:

where x, is the potential of an external source,
B is the transfer coefficient.
Equality (10) then takes the form

(8, +B)xo (1) =B,

which implies that

is

(10)
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% (1) =(8,+B) " (B.),
x(1,s) = exp(~s0))((2, +B) " (Bx,)).

So, if the boundary parameters y,, x,, p are
periodic time functions, then solutions (9)
and (11) coincide with the classical solutions.

Measure of distribution supports
for half-line s > 0

We define the support supp(x(z,s)) of the
distribution x(z,s) as a set of values of the
coordinate s on which the distribution x(z,s)
is concentrated. If the distribution x(z,s) has
continuous density, we can define the support
as the thickness of the x-layer with respect to
the density limit, x(7):

5, (1):=— [ x(1.5)ds.

X0

By virtue of solution (6), the thickness of
the x-layer is expressed as

8_1/2 x. (1
)
x, (1)
If the distribution x,(?) is periodic, the given
thickness follows the expression

8. (¢) =ﬁ(t)jxo (t—zz)dz.

0

Similarly, the thickness

expressed as

of y-layer is

where the dot denotes the derivative with
respect to the entire argument 7 — Z2.

Lemma 1. The ratio between the layer
thicknesses (form parameter), expressed by the
SJormula
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has a value of at least unity for any bounded
distribution x(1).

Proof. Indeed, the above expression can

be written as -
5y/6x=£—6’1x° S22,
2 ( o, xo) 2

Here we use the Cauchy inequality to
estimate the integrals.

To illustrate that the lemma proved holds
true, let us provide an example which allows
to calculate the support lengths directly. The
distribution x(z,s) for a straight line (ray) s>0
takes the form

x(t,5)= erfc[z%/;j,

x(t,O) X, (t)—l =x(0,s) =0.

where

Then we obtain the following equations:

N

(65) = =2 Lo =5
S = T Tm o T a )

The lemma is proved.
Lemma 2. Let

f(x)= Texp(—at’” )dt,f(O) = Texp(—at”’ )dt,

x 0

where a, m are positive constants, and
—f(x)=0(x)= exp(—ax’”),—f(O) =1.
Then the ratio between the support lengths

of function f(x) and its derivative f(x) = ¢(x)
(8¢ and 5, respectively) has a value no less

than unity:
2
i(l“(l/m)) o
m F(2/m) B

Proof. Indeed, the following equations hold
true:

H=8,/8, =



and it remains to rewrite the integrals in Euler
form.

The Lemma is proved.

The results of Lemma 2 can be rewritten
differently, if we use a duplication formula for
the function I'(z) [2, 3]:

_om I(1/m)
2" D(1/m+1/2)

Let m =1, then 3( = 1; if m =2, then ¥ =
nn/2. It is easy to use the asymptotic form of the
I'-function to prove that 9% — .

m—»0

Thus, the measure (length) of the distribu-
tion support for decreasing integer distributions
of the order m > 1, the measure (length) of the
distribution support does not exceed the mea-
sure of the distribution support derivative.

The quantity & /SX in problems of thermal
conductivity of wall structures is the ratio
of absolute to effective thermal resistance of
one-dimensional heat conducting medium (of
the half-line s > 0)[22].

Fourier boundary problems

for half-plane s > 0, |u| < «
Let

D(x) = (t,5,u: £>0,5>0,|u|< ),

where u is the second coordinate.
The Fourier equation
ox
_ 2
—= Vs,ux

ot
and the first-kind boundary condition

x(2,0,u) = x,(t,u)

are satisfied.
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We define the transformation

A A

x(t,s,u), x:x(t,s)

that is integral with respect to the argument u as

A

x(t,5)= on(t,s, v)exp (iov)dv,

where the circumflex ~ denotes the Fourier
transform of the function x(z,s,u) with respect
to the argument u.

The Fourier transform of the function

x(t,5,u) satisfies the partial differential
equation:
A 2 "
(Lafjx:a—x. (12)
ot s*

Eq. (11) can be obtained from Eq. (4) by
replacing the operator 0, with the operator
8t,w=8,+u)2,

where o is the spectral number.
The first-kind boundary
formulated as

condition is

x(£,0) = xo (0).

Then, similar to solution (6), we obtain:

x(t,5) = exp(=502)x, (1).

Next, the solution to the second boundary
problem has the form

;c(t,s) = exp(—s@ifi)@tigz ;/0 (1),

: ox
yo(t) S g

s=0

Finally, the solution to the third boundary
problem follows the expression

A

x(t,5)= exp(—s&if}) X

(o))

As a result, Egs. (6a), (9a) and (11a) co-
incide with the exact solutions of the pe-
riodic boundary problems and are obtained
from the solutions to one-dimensional prob-
lems by replacing the operator o, with the
operator 61@.

(13)

(6a)

(9a)

(11a)
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Generalization of analysis. The Fourier equa-

tion with respect to the coordinates s, u, ..., u,_,

for the case d > 1 has the following form:

ox 0'x Eo'x
— =4 —_—,
ot os’ ,Z:I: ou’

Applying (d — 1)-fold Fourier transform,
the equation is written as

0 2 0’ x 2 < 2
—+ Q" |x= Q7= .
(at j Os’ ; '
The solution to the first boundary problem
in traditional notation has the form

;c(t,s) = exp(—s&}fé)on,

where we introduce the following notation for
(d — 1)-fold Fourier transform

" 1
X (£,0,,..0,_ ) = ——7 X

(27t)d_1

Xj.dvl...-[dvd_lxo (t903v17"'vd—1 ) X
0 0

d-1
xexp(z’Z(Divl).

i=1

(6b)

The inverse Fourier transform should be
represented as

X, (t,O,ul,...udfl) = J‘a’(x)l...J.a’(n[F1 X, ¥
0 0

d-1
x(t,@,,...0,, )exp(—iZmiuij.

i=1

If x,(2,0,u,,..., u, ) is a periodic function of
the argument 7, then Eq. (6b) coincides with
the exact solution to the first Fourier boundary
problem. Egs. (9a) and (11a) also hold true if
the subscript o is replaced with Q.

Let us return to the thermal conductivity
problem mentioned at the end of the section
“Measure of distribution supports for half-line
s > 07”. It can be proved that if the dimen-
sion of an infinite domain occupied by scalar

44

heat-conducting medium increases, its thermal
resistance does not increase with an increase in
the dimension of the domain d > 1.

Indeed, for any value d > 1,

o+ » o <|o;|<le.]"-
1<i<d-1
Conclusion
Using the algebra of unbounded

differentiation operators and reviewing the
results of the analysis carried out, we have
drawn the following conclusions.

1. The unbounded operator of fractional
differentiation over a ring of continuous
functions can be inverted (known as the Abel—
Liouville formula). The inverse operator is
bounded on functions from the set L (0,7,
where ¢ <. The solutions for the second and
third Fourier boundary problems are obtained
by inverting the differentiation operator of the
first boundary problem.

2. The operator 0, in a quasi-steady
(periodic) boundary problem commutes with
any fractional inverse power. There are no
operator powers in aperiodic commutation
problems.

3. In case of decreasing integer distributions
of order m > 1, the support measure (length)
of the distribution x(#,s) does not exceed the
support measure corresponding to the derivative
of the distribution y(z,s)=0x/0s. In other words,
the thickness of the heat flux boundary layer
(decreasing distribution of order m > 1) should
be no less than the thickness of the temperature
boundary layer.

4. Increasing the dimension of the domain
D(x) of the sought-for function x(z,s) does not
increase the measures of the supports supp(x)
and supp(y), where y = Vx| (|Vx||is the Euclidian
norm of the scalar function x(7,s)). The support
measure (length) of the distribution x(z,s) does
not exceed the support measure corresponding
to the derivative of the distribution for any
decreasing integer distributions of order m > 1.
Therefore, the thermal resistance of the domain
D(x) does not increase along with increasing
dimension: the heat flux vector y gains an
additional component (additional degree of
freedom).
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