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OLLEHKA BO3MO>XHOCTEW RANS-MO/EJIEA
TYPBYJIEHTHOCTM MO PE3YJ/IbTATAM PACYETOB
CBOBOHOW KOHBEKLIUU, PA3BUBAIOLLLEMCSA BBJIU3U
BHE3AMNMHO HATPETOM BEPTUKAJIbHOM NMJIACTUHDI

A.M. JleBueHs, C.H. TpyHoBa, E.B. KonecHuk
CaHkT-MNeTepbyprckuii NONUTEXHUYECKUI yHUBEpCUTET MeTpa Benukoro,
CaHkT-lNeTepbypr, Poccuiickas ®eaepauus

B pabore mpencrtaBieHbl pe3ylbTaThl TeCTUpPOBaHUS HecKoJbkuX RANS-mopeneit
TypOYJEHTHOCTM Ha TIpUMepe PpelIeHWs 3amadyd pa3BUTUSL BO BpPEeMEHU CBOOOIHOI
KOHBEKIIMM BO3IyXa Vy IIOBEPXHOCTH BHE3AITHO HArpeToil Oe3rpaHWYHON BepTUKAILHOMN
IUTACTUHEI. Pe3yabTaTel pellleHWsT ¢ MCITOJIb30BAaHMEM PAa3IMIHBIX MOJEJICl COMOCTABIICHEI C
JIMTEPATypHBIMU TaHHBIMH, TTOJYYCeHHBIMM METOAOM IIPSIMOTO UMCJICHHOTO MOMIEIMPOBAHMSI.
YucieHHble PEIICHMS IIOJIY4YeHbI C MPUMEHEHMEM 4YeThIpeX MoOIeJeil, OB M3 KOTOPBIX
OCHOBaHbI Ha KOHIIECTILIMU U30TPOITHOI TypOYJICHTHOI BSI3KOCTH, a OCTaJbHBIC IIPEAIOIaraloT
pellleHre YpaBHEHMI ITepeHOca KOMIIOHEHT TeH30pa PEHOIbICOBBIX HaNpsLKeHU. TTomydeHb
XapaKTEePUCTUKN TEUCHUST M TEINIOOOMEHA Ha Pa3HBIX CTAAWSIX Pa3BUTUS MMOTPAHUYHOIO CJIOS
— OT JJaMMHApHOTO pexXuma A0 TypOyiaeHTHoro. Ha ocHOBe comocTaBIeHUS TOJYYEHHBIX
pe3ylnbTaTOB C HAHHBIMUA TIPSIMOTO YHCJICHHOTO MOICIUPOBAHUS CHEJIaHBl BBIBOIBI O
MpeacKa3aTeIbHbIX BO3MOXHOCTSX paccMOTpeHHbIX RANS-Mopeneil TypOyaeHTHOCTH.
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Introduction

Free-convection flow near the surface of
a vertical heated plate has long been the fo-
cus of attention because correctly predicting
heat transfer in boundary layers is important
for many practical applications. The Time-
Developing approach considering the tempo-
ral evolution of the flow is an efficient com-
putational method for analysis of developing
boundary layers.

The approach basically consists in describ-
ing the temporal evolution of a boundary layer
instead of the spatial evolution (the Spatial ap-
proach), which is usually observed in practice.
Thus, time serves as a sort of coordinate axis
along which the flow evolves. In contrast with
other methods simulating flow evolution along
the longitudinal (spatial) axis, this approach
allows to significantly reduce the size of the
computational domain and consequently the
total computation time.

The Time-Developing approach is very
popular for simulations of dynamic turbulent
boundary layers on plates in axial flow [1, 2].
In particular, Ref. [1] discussed a laminar-tur-
bulent transition in a boundary layer at high
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turbulence. For this purpose, Time-Developing
Direct Numerical Simulation (TDDNS) was
used to solve a model problem of a bound-
ary layer evolving on an infinite plate in isoy
tropic turbulent fluid of zero mean velocity,
with the plate suddenly set in motion in its
plane. The method was used in [3] to solve
problems of free convection for the first time,
while [4] presented promising and detailed
computational results based on this method.

Although only DNS methods can yield the
most complete data on the laminar-turbulent
transition, whether semi-empirical RANS
turbulence models can provide a satisfactory
description of the transition is still open to
question [5]. Furthermore, it is undoubtedly
interesting to assess the efficiency of different
turbulence models for simulations of the flow
in fully developed turbulent free-convection
boundary layers, both for the models based
on isotropic turbulent viscosity [6] and for
Reynolds stress models [7].

Notably, the choice of suitable turbulence
models is especially critical for simulation
of complex free-convection flows, including
free-convection layers perturbed by different

Fig. 1. Schematic for problem statement of turbulent free-convection boundary layer
developing along an infinite heated vertical plate: a corresponds to the plate (shaded)
with the surrounding ambient (cube); b to velocity (/) and temperature (2) distributions
of the ambient air depending on the distance from the plate
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kinds of obstacles. For example, [8] reports on
RANS simulations (using the SST k- model)
for flow around a cylinder of finite height
mounted on a vertical heated plate, while a re-
cent paper [9] presents simulations and experi-
ments the same configuration.

The goal of this study consisted in assessing
the performance of several RANS turbulence
models by comparing the numerical solutions
that we obtained with the test (reference) data
from literature [4] for a model problem on
the time evolution of free convection along
an infinite vertical plate. We used the ANSYS
Fluent 18.2 package for the computations.

TDDNS method as a source of test data

We consider a model problem of free con-
vection developing along an infinite suddenly
heated vertical plate. The flow diagram is
shown in Fig. 1. The parameters of the prob-
lem in this section (described identically to [4])
correspond to the conditions of earlier well-
known experiments [10] on a free-convection
layer developing along a vertical plate (along
the spatial coordinate). The parameters are
given in Table.

The mathematical model taken for describ-
ing turbulent free convection of incompress-
ible Newtonian fluid with constant physical
properties is based on a system of unsteady 3D
Navier—Stokes equations complemented with
an energy balance equation, taking into ac-
count buoyancy effects in the gravity field in
the Boussinesq approximation:

ou,
p%+puj%=—g—i+%i—pBT(T—7;)gi,
i=1,2,3; (1)
pc a—T+pc u@_T:%
P ot " ox;  ox,

Here u, are the components of the veloc-
ity vector V in Cartesian coordinates (x = x,,
Yy =x,); p (Pa) is the pressure, T (K) is the
temperature, p (kg/m?) is the density and c,
(J/(kg-K)) is the heat capacity of the air.

The components of the viscous stress ten-
sor t and the heat flux density vector q due
to molecular thermal conductivity are found,
respectively, using Fourier’s law and Newton’s
law of viscosity:

q,=—M0T/ox,), j=123, ()
= _‘+ J , ', ':1,2,3.
Ty M[axj axl.] a ¥

The space shaped as a rectangular paral-
lelepiped adjacent to the plate acts as the com-
putational domain in TDDNS computations
(Fig. 1,a). The outer boundary parallel to the
wall is assumed to be permeable, with constant
pressure p and temperature 7, given. Periodic

Table
Problem parameters
Parameter Notation Unit Value
Plate temperature T, K 333.15
Ambient temperature T, K 289.15
Ambient density p kg/m? 1.135
Ambient viscosity n Pa-s 1.906-107°
Ambient thermal conductivity A W/(m-K) 0.0274
Heat capacity at constant pressure C J/(kg-K) 1006
Coefficient of thermal expansion B 1/K 3,458-10°
Prandtl number Pr — 0.71

Notes. 1. Physical properties of the air were assumed to be constant, computed at the

average temperature Tf =(T,+T)/2.

2. Coefficient p was computed at the temperature 7= T .

3. Prandtl number Pr = ¢ p/.
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conditions are imposed in homogeneous coor-
dinates (vertical (x) and transverse (z)). After
the flow fields are computed, they averaged
along the homogeneous coordinates (along the
x and z axes) at the next time step, so that
the unsteady problem can be considered sta-
tistically one-dimensional, where the averaged
parameters of the flow change only along the y
axis (Fig. 1, b).

The notion of integral thickness of the ve-
locity boundary layer is introduced to construct
the dimensionless parameters characterizing
the given flow at different instants in time. This
quantity can be found by the following formula
(integration with respect to y is performed over
the entire ambient):

T u
o= |—dy. 4
Jo@ 4
Dimensionless temperature is also introduced:

0=(T-T,)/(T,-T.). )

The thickness of the temperature boundary
layer &, is defined as the coordinate y, where
0 =0.01.

The Grashof number, the Nusselt num-
ber, and the dimensionless friction constructed
based on the boundary layer thickness are de-
fined as follows:

= gBAT63/v2 , (6)
=q,8/(\MAT), (7)
T=1,/(pgBATS). (8)

where AT = T — T is the temperature differ-
ence between the plate and the ambient.

Detailed data on the TDDNS model are
given in [4] for the skin friction coefficient and
the Nusselt number depending on the Grashof
number, along with data on the mean velocity
and temperature profiles and turbulence char-
acteristics at different Gr,; these data are used
for comparison in our study.

Problem statement based on
the RANS approach

The given time-developing flow is simulated
based on Reynolds-averaged Navier—Stokes
equations (RANS), initially introducing
averaging along homogenous coordinates (x
and 7). As a result, we obtain unsteady one-
dimensional equations with respect to the
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mean axial component of velocity u and the
mean temperature 7:

8u 0 (Txy + Tt,xy )
Ot oy

e, L2
P ot " op\ b

_pBT (T_Ta)ga

+4,,)-

In this case, the transverse velocity v is taken
to equal zero.

Considering the resulting unsteady one-di-
mensional problem, we can see that only two
components of the turbulent stress tensor and
the heat flux vector remain; these are t - and
q,, reflecting turbulent transfer along a normal
to the wall:

)

_ A
T, =—PUV,

(10)

q,,=—pc, VT, (11)
(the prime denotes the fluctuating components,
the overbar denotes averaging in homogenous
coordinates).

System of equations (9) is open in order
to find a method for computing the turbulent
components of the stress tensor (10) and the
heat flux density vector (11). To this end, we
used semi-empirical turbulence models (de-
scribed below).

Notably, we obtained the solutions below us-
ing the ANSYS Fluent general-purpose code,
where one-dimensional problems are solved as
two-dimensional by introducing conditions for
translation homogeneity. The no-slip condition
and constant temperature 7, are imposed on the
wall. The outer boundary parallel to the wall is
assumed to be permeable with constant pressure
and temperature given. Periodic conditions are
imposed for the homogeneous coordinate x. It
is assumed that the air has the temperature 7,
at the initial time and is generally stationary. At
the same time, there is initial turbulence in the
region, characterized by the following parame-
ters: turbulence intensity / = 0.1%, turbulent to
molecular viscosity ratio v/v = 0.1.

Turbulence models

Let us describe the general (three-dimen-
sional) formulation of the turbulence models
available in the ANSYS Fluent code that we
used for our computations. These are two mod-
els based on the Boussinesq hypothesis (SST k-
and RNG £-¢), and two Reynolds stress models
(DRSM Stress-omega and DRSM StressBSL).
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According to the Boussinesq hypothesis, the
components of the turbulent stress tensor and
the turbulent heat flux with averaged flow pa-
rameters are related as:

Ou, Ou,

i = +—= |+2k3,,

T (8)@ ox, j 3 (12)
ou, Ou,) 2

1 = k8

Tt ij M’[@x,—i_@x ]+3 (13)

where k£ = 1 /ZE;’L{; is the turbulent kinetic en-
ergy, W, is the turbulent viscosity, A, is the tur-
bulent thermal conductivity;

A =c,u, /Pr,. (14)

Expression (14) is based on the hypothesis
that the processes of turbulent transfer of mo-
mentum and heat are similar, introducing the
turbulent Prandtl number Pr, whose value is
taken to be constant in the computations. The
system is closed by the semi-empirical turbu-
lence model to find the turbulent viscosity p.
The results below were obtained using the SST
k- and RNG k-¢ models described in [11, 12].

In case of differential Reynolds stress mod-
els, the following differential equation is solved
for each of the six independent components of
the Reynolds stress tensor:

0 —— =
P uu; +puy —uu; =

ot "’ ox,
(D"’ +D; )+P +Q, —

where D’" D’ are the terms reflecting molecular
and turbulent diffusive transfer, respectively; P,-,-
is the generation term; ¢, is the term responsi-
ble for redistribution of energy between tensor
components, ¢, is the dissipation term.

The equations for the terms related to mo-
lecular diffusion D’" and generation P are writ-
ten as follows (no "closure relations are neces-
sary in this case):

o
Dy - ai[u_]
x, | Ox,

B - pt—a +—6J )
i ik T~ ik A |*
! ox, 7 "ox,

As other terms of Eq. (15), I Vs @y € CON-
tain higher-order moments, they are computed
using closures relating these terms and the av-
eraged flow parameters.

Let us describe the specific form of the re-
lations for the two models used in this study:

(15)

lj,

(16)

Stress-omega (referred to as DRSM SO,
i.e., Differential Reynolds Stress Model
Stress-Omega),

StressBSL (referred to as DRSM BSL,
i.e., Differential Reynolds Stress Model
Stress-BSL).

These models differ by certain closure rela-
tions and constant values.

Similar to molecular diffusion, we introduce
the coefficient of turbulent diffusion propor-
tional to turbulent viscosity for the term re-
flecting turbulent transfer:

o
Yoox, | o, Ox,
According to the DRSM SO model, the co-
efficient 6, = 2.
The coefficient 6, un the DRSM BSL model
is defined by the relation

o, =Fo., +(1-F)o,,.

(18)

(19)

where ¢, = 2.0, 5, = 1.0, and function F, is
defined using the formulas
F = tanh(CDf), (20)
. Jk
@, = min| max ,
0.090y
(21)
500u 4pk
p'o)oc,,Dp" |
D! =ma 2p118_k8_03 0'°
® Ox; OX, (22)
G, =1.168,

where y is the distance to the wall.

The term responsible for redistribution of
energy between tensor components has the fol-
lowing form:

0, ==CPBi, |l ~2/38,k |-
—i,[ B -1/3R,3, |-
DIJ _1/3 Pkk6[ :I k'YO [

(23)
~1/38,8, |,

Bo[

—0u, ——0u
D. =—p|luu —*+u'u, —~|, 24
i pl:ul”k axj uu, axi:l (24)
ou ou,
S. = 25
v {8}6 Ox . } (25)

29



4St. Petersburg State Polytechnical University Journal. Physics and Mathematics 13 (2) 2020

The coefficient p*,,, is defined as follows for
the DRSM SO model:

Bas =B /5, B =0.09, (26)
L %, <0
* — 2

Sy 1+640x§’ v >0 (27)
14400y,

1 ok oo ’

X o’ dx, dxj' (28)

The coefficient p*,,,, = p° for the DRSM
BSL model.

The rest of the constants are given using the
following formulas (identical for both models):

. 8+N ~  8N,-2
a BO fl 9
2
. 60N2—4 (29)
Yo 55
where C, = 1.80, C,= 0.52. (30)

The dissipation term is calculated by intro-
ducing an additional scalar variable, the spe-
cific dissipation :

£, =2/38,pBrsy k. (1)

The value of the constant f°,, is found in
the same manner as for the term ®; (see Eqgs.
(26)—(28)).

The turbulent kinetic energy is calculated as
follows:

k=1/2uu. (32)

Turbulent viscosity is calculated by the fol-
lowing formula:
H’ - a‘* % )
0]
We need to define specific dissipation o to
close the system. For this purpose, the differen-
tial transport equation for o is solved together
with the equations for the components of the
Reynolds stress tensor (15). According to the
DRSM SO model, this equation is written as

a =1. (33)

P P e
(34)
=i[l“ aco}LG -Y +S,,
ox, ox,
I =pt+pfo,o =2. (35)
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The terms G, Y, S, are found in accor-
dance with the k—o) turbulence model [13].

According to the DRSM BSL model, an
additional (cross-diffusion) term is added to
Eq. (34) with respect to w:

1 0Ok oo

D =2(1-F ,
o =2 1)90)0%2 ox; Ox, (36)

where the values of the function F, are calcu-
lated by Egs. (20)—(22).

The remaining terms are calculated in ac-
cordance with the BSL k-0 turbulence model.

The gradient hypothesis (13), (14) is used to
calculate the turbulent heat flux components
required to close the averaged energy equation;
the turbulent Prandtl number is taken equal
to 0.85.

Computational aspects

The computational domain is a rectangle on
the xy plane. Its outer boundary is located 0.5
m away from the plate. The computational grid
contained 200 cells along the y axis and 5 cells
along the homogenous coordinate x. The grid
was refined towards the plate surface to provide
values less than unity for the dimensionless
distance y* from the center of the first near-wall
cell to the wall for the entire computational
time. The time step df was taken equal to 0.005
s. To analyze the influence of the time step on
the computational results, we also performed
computations where the time step was twice
as short.

The computations were run in the ANSYS
Fluent 18.2 package. We used the non-iterative
fractional step method to advance in time.

At the stage of preliminary computations,
we analyzed the influence of numerical factors
on the quality of the solutions obtained. Fig.
2,a shows the time dependence of y* for all
turbulence models. Evidently, y* takes values
less than unity throughout the computations.
Fig. 2,b shows the time dependences for the
boundary layer thickness & (calculated as
integral thickness using Eq. (4)) for the SST
k- model, obtained with different time steps.
The differences are apparently insignificant.

Computational results and discussion

Influence of turbulence model on the growth
in boundary layer thickness. Fig. 3 shows the
time dependences of integral thickness of the
velocity boundary layer, as well as the relation-
ships between temperature and velocity layer
thicknesses; these dependencies were obtained
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Fig. 2. Time dependences of dimensionless distance y* (a) and boundary layer thickness (b).
Comparison of computational results obtained with different models («) and influence of time step (b).
SST k-0 (curve 7 and Fig. 2,b), RNG k-¢ (curve 2), DRSM SO (3) and DRSM BSL (4)
models were used; time steps df = 0.0050 (5) and 0.0025 s (6) were taken

using the given turbulence models. Fig. 3,a
shows three pronounced phases in the evolu-
tion of the boundary layer: at first its thickness
grows conforming to unsteady laminar layer
patterns (until approximately 2 s in time), then
we observe a short period with pseudo-pro-
cesses of laminar-turbulent transition, and af-
ter that the boundary layer follows the turbu-
lent flow regime (dependence of thickness & on
time is close to linear).

Comparing the results obtained using differ-
ent models, we can conclude that all models
yield similar predictions for the phase of laminar
boundary layer (as expected), while the transi-
tion point and the peculiarities in the growth of
the boundary layer in the region with developed
turbulence depend on the model applied.

The DRSM SO model yields the fastest thick-
ness growth of the turbulent velocity boundary
layer, while the SST k-o model yields the slowest
growth. Apparently, the transition to turbulence
(a point of characteristic change of dependences
in Fig. 3) occurs simultaneously for all models
except the RNG k-¢ model, where this transition
occurs much earlier. This model also differs by
the behavior of the ratio between the temperature
layer thickness and integral velocity layer thick-
ness: while this variable reaches a nearly constant
value at t > 3 s in computations by other models,
it decreases over time in this model.

Comparison with the data of direct numerical
simulation. We compared the obtained
computational results with the TDDNS results
given in [4].

a) b)
S,m 6'[‘/5 ' '
4 e :
0.16 284 , ’\ ,,,,,,,,,,,,
. 1 v !
0.12 4- NG |
1 2.4 4 " i 3
| ~ e
0.08 1 : L Y
- 2.0 H \ T~ el
0.04 - NG I
' ; % A
0.00 — 1.6 B —
2.0 4.0 6.0 Ls 0.0 2.0 4.0 6.0 s

Fig. 3. Time dependences of integral thickness of velocity boundary layer (a)
and ratios between temperature layer thickness and integral velocity layer thickness (b).
Results are given for different models: SST k-0 (/), RNG k-¢ (2), DRSM SO (3), DRSM BSL (4)
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Fig. 4. Comparison of computed dependences of Nusselt number (a) and dimensionless friction (b)
on Grashof number (lines) with TDDNS data (symbols);
Nu, and Gr, were constructed based on boundary layer thickness.
The curves are numbered the same as in Fig. 3
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Fig. 5. Comparison of computed profiles of normalized velocity (a)
and temperature () (lines) with TDDNS data (symbols); Gr, = 5.94-10°.

The curves are numbered the same as in Figs. 3 and 4

Fig. 4 shows the dependences for the
Nusselt number and the dimensionless friction
on the Grashof number constructed with re-
spect to the integral thickness of the boundary
layer (see Egs. (6)—(8)), as well as the TDDNS
results. We should note that the obtained de-
pendences differ insignificantly and are in good
agreement with the TDDNS data for the stages
of laminar and fully turbulent flow. However,
pronounced differences appear in the behavior
of the curves at the stage of transition to tur-
bulence: direct numerical simulation predicts
a local maximum for the dependence of Nu,
on Gr,, while RANS simulations indicate that
Nu, changes monotonically. Moreover, all the
curves lie below the TDDNS points (a differ-
ence up to 50%). At the same time, all the

32

dependences obtained with different models
generally exhibit the same behavior in all cases,
except for the earlier turbulence transition pre-
dicted by the RNG k-¢ model (as mentioned
above).

Analyzing the distributions of dimensionless
friction over time, we found that the DRSM SO
model yields the best agreement with the direct
numerical simulation data, while the SST k-o
model predicts slightly overestimated values for
developed turbulence.

Fig. 5 shows a comparison of the TDDNS
data with the profiles of dimensionless velocity
and temperature at Gr, = 5.94-10° (corresponds
to the stage of developed turbulent flow). The
results indicate that the velocity profiles obtained
in all computations are in fairly good agreement
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Fig. 6. Comparison of computed fluctuation intensity profiles for axial («) and transverse (b)
velocity components, and turbulent shear stress profile (¢) (lines) with TDDNS data (symbols).
Results are given for different models: DRSM SO (7), DRSM BSL (2)

with the TDDNS data. There is some diver-
gence with TDDNS only in the outer region of
the boundary layer, where velocity decreases: the
RNG k-¢ yields underestimated results, while all
the other models produce overestimated ones
but these discrepancies do not exceed 5%. As for
the temperature distribution, DRSM BSL and
RNG k-¢ produced the best agreement with the
TDDNS data. Two other models yield significant
differences in the outer region of the boundary
layer: the SST k- model yields a 15—20% over-
estimation of temperature, and the DRSM SO
model a 20—25% underestimation.

Fig. 6 shows a comparison of the predicted dis-
tributions of stress tensor components along the
y coordinate with the direct numerical simulation
results for the computations performed using the
Reynolds stress models (DRSM SO and DRSM
BSL). The fluctuation intensity of the axial ve-
locity component computed using both DRSM
models appears to be significantly underestimated
in the inner region of the boundary layer. The
computed distributions of the remaining tensor
components are in good agreement with the
TDDNS data, with the DRSM SO model yield-
ing the best agreement.

Conclusion

We tested two semi-empirical RANS tur-
bulence models based on Boussinesq’s hypoth-
esis and two Reynolds stress models for the
problem of free convection developing near a
suddenly heated vertical plate. The results ob-
tained by Time-Developing Direct Numerical
Simulation were used as test data [4].

Analyzing the results of the computations
carried out with different models, we found
that the rate with which the thickness of the
boundary layer grows at the stage of lami-
nar-turbulent transition and in the developed
turbulent layer phase largely depends on the
model used. The DRSM SO model predicts the
fastest growth in the thickness of the velocity
turbulent boundary layer, while the SST k-w
model predicts the slowest growth rate.

The predictions for the dependences of the
Nusselt number and the normalized friction on
the Grashof number constructed based on the
characteristic thickness of the growing layer are
in good agreement with the TDDNS data for
the stages of laminar and fully turbulent flow;
the results obtained with different models dif-
fer insignificantly in this case. The DRSM SO
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model yields a slightly better agreement with
the TDDNS data for dimensionless friction.

The normalized velocity profiles computed
for the turbulent layer phase are in a good
agreement with the TDDNS data for all models
considered. Analysis of the temperature profiles
revealed that DRSM BSL and RNG k-¢ are in
best agreement with the test data. The DRSM
SO and SST k-o models give significant differ-
ences in the outer region of the boundary layer
(around 20 %).

The DRSM models give fairly accurate
predictions for the profiles of turbulent shear
stress and fluctuation intensity of the transverse

>

velocity component but the fluctuation intensity
predicted for the axial velocity component
turns out to be significantly underestimated in
the inner region of the boundary layer.

The computations and analysis of the results
allow to conclude that the DRSM SO model
is capable of providing the best agreement with
the test data [4] , obtained using the TDDNS
method out of all the RANS turbulence models
under consideration.

The study was sponsored by Russian Science
Foundation Grant no. 18-19-00082.
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