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The results of testing several RANS turbulence models in solving a problem of free air 
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concept and the rest ones involved solving the transport equations of the Reynolds stress tensor 
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ОЦЕНКА ВОЗМОЖНОСТЕЙ RANS-МОДЕЛЕЙ 
ТУРБУЛЕНТНОСТИ ПО РЕЗУЛЬТАТАМ РАСЧЕТОВ 

СВОБОДНОЙ КОНВЕКЦИИ, РАЗВИВАЮЩЕЙСЯ ВБЛИЗИ 
ВНЕЗАПНО НАГРЕТОЙ ВЕРТИКАЛЬНОЙ ПЛАСТИНЫ

А.М. Левченя, С.Н. Трунова, Е.В. Колесник 
 Санкт-Петербургский политехнический университет Петра Великого, 

Санкт-Петербург, Российская Федерация

В работе представлены результаты тестирования нескольких RANS-моделей 
турбулентности на примере решения задачи развития во времени свободной 
конвекции воздуха у поверхности внезапно нагретой безграничной вертикальной 
пластины. Результаты решения с использованием различных моделей сопоставлены с 
литературными данными, полученными методом прямого численного моделирования. 
Численные решения получены с применением четырех моделей, две из которых 
основаны на концепции изотропной турбулентной вязкости, а остальные предполагают 
решение уравнений переноса компонент тензора рейнольдсовых напряжений. Получены 
характеристики течения и теплообмена на разных стадиях развития пограничного слоя 
– от ламинарного режима до турбулентного. На основе сопоставления полученных 
результатов с данными прямого численного моделирования сделаны выводы о 
предсказательных возможностях рассмотренных RANS-моделей турбулентности.
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Introduction
Free-convection flow near the surface of 

a vertical heated plate has long been the fo-
cus of attention because correctly predicting 
heat transfer in boundary layers is important 
for many practical applications. The Time-
Developing approach considering the tempo-
ral evolution of the flow is an efficient com-
putational method for analysis of developing 
boundary layers.

The approach basically consists in describ-
ing the temporal evolution of a boundary layer 
instead of the spatial evolution (the Spatial ap-
proach), which is usually observed in practice. 
Thus, time serves as a sort of coordinate axis 
along which the flow evolves. In contrast with 
other methods simulating flow evolution along 
the longitudinal (spatial) axis, this approach 
allows to significantly reduce the size of the 
computational domain and consequently the 
total computation time.

The Time-Developing approach is very 
popular for simulations of dynamic turbulent 
boundary layers on plates in axial flow [1, 2]. 
In particular, Ref. [1] discussed a laminar-tur-
bulent transition in a boundary layer at high 

turbulence. For this purpose, Time-Developing 
Direct Numerical Simulation (TDDNS) was 
used to solve a model problem of a bound-
ary layer evolving on an infinite plate in iso�-
tropic turbulent fluid of zero mean velocity, 
with the plate suddenly set in motion in its 
plane. The method was used in [3] to solve 
problems of free convection for the first time, 
while [4] presented promising and detailed 
computational results based on this method.

Although only DNS methods can yield the 
most complete data on the laminar-turbulent 
transition, whether semi-empirical RANS 
turbulence models can provide a satisfactory 
description of the transition is still open to 
question [5]. Furthermore, it is undoubtedly 
interesting to assess the efficiency of different 
turbulence models for simulations of the flow 
in fully developed turbulent free-convection 
boundary layers, both for the models based 
on isotropic turbulent viscosity [6] and for 
Reynolds stress models [7].

Notably, the choice of suitable turbulence 
models is especially critical for simulation 
of complex free-convection flows, including 
free-convection layers perturbed by different 

Fig. 1. Schematic for problem statement of turbulent free-convection boundary layer 
developing along an infinite heated vertical plate: a corresponds to the plate (shaded) 

with the surrounding ambient (cube); b to velocity (1) and temperature (2) distributions 
of the ambient air depending on the distance from the plate
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kinds of obstacles. For example, [8] reports on 
RANS simulations (using the SST k-ω model) 
for flow around a cylinder of finite height 
mounted on a vertical heated plate, while a re-
cent paper [9] presents simulations and experi-
ments the same configuration.

The goal of this study consisted in assessing 
the performance of several RANS turbulence 
models by comparing the numerical solutions 
that we obtained with the test (reference) data 
from literature [4] for a model problem on 
the time evolution of  free convection along 
an infinite vertical plate. We used the ANSYS 
Fluent 18.2 package for the computations.

TDDNS method as a source of test data

We consider a model problem of free con-
vection developing along an infinite suddenly 
heated vertical plate. The flow diagram is 
shown in Fig. 1. The parameters of the prob-
lem in this section (described identically to [4]) 
correspond to the conditions of earlier well-
known experiments [10] on a free-convection 
layer developing along a vertical plate (along 
the spatial coordinate). The parameters are 
given in Table.

The mathematical model taken for describ-
ing turbulent free convection of incompress-
ible Newtonian fluid with constant physical 
properties is based on a system of unsteady 3D 
Navier–Stokes equations complemented with 
an energy balance equation, taking into ac-
count buoyancy effects in the gravity field in 
the Boussinesq approximation:
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Here ui are the components of the veloc-
ity vector V  in Cartesian coordinates (x ≡ x1, 
y ≡ x2); p (Pa) is the pressure, T (K) is the 
temperature, ρ (kg/m3) is the density and cp 
(J/(kg⋅K)) is the heat capacity of the air.

The components of the viscous stress ten-
sor τ and the heat flux density vector q due 
to molecular thermal conductivity are found, 
respectively, using Fourier’s law and Newton’s 
law of viscosity:
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The space shaped as a rectangular paral-
lelepiped adjacent to the plate acts as the com-
putational domain in TDDNS computations 
(Fig. 1,a). The outer boundary parallel to the 
wall is assumed to be permeable, with constant 
pressure p and temperature Ta given. Periodic 

Tab l e
Problem parameters

Parameter Notation Unit Value
Plate temperature Tw K 333.15

Ambient temperature Ta K 289.15
Ambient density ρ kg/m3 1.135

Ambient viscosity μ Pa·s 1.906·10–5 
Ambient thermal conductivity λ W/(m·K) 0.0274

Heat capacity at constant pressure cр J/(kg⋅K) 1006
Coefficient of thermal expansion β 1/K 3,458·10–3 

Prandtl number Pr – 0.71

Note s . 1. Physical properties of the air were assumed to be constant, computed at the 
average temperature Tf = (Tw + Ta)/2.
2. Coefficient β was computed at the temperature T = Ta. 
3. Prandtl number Pr = cрμ/λ. 
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conditions are imposed in homogeneous coor-
dinates (vertical (x) and transverse (z)). After 
the flow fields are computed, they averaged 
along the homogeneous coordinates (along the 
x and z axes) at the next time step, so that 
the unsteady problem can be considered sta-
tistically one-dimensional, where the averaged 
parameters of the flow change only along the y 
axis (Fig. 1, b).

The notion of integral thickness of the ve-
locity boundary layer is introduced to construct 
the dimensionless parameters characterizing 
the given flow at different instants in time. This 
quantity can be found by the following formula 
(integration with respect to y is performed over 
the entire ambient):

0

.
m

u dy
U

∞

δ = ∫ (4)

Dimensionless temperature is also introduced: 

( ) ( ).a w aT T T Tθ = − − (5)

The thickness of the temperature boundary 
layer δT is defined as the coordinate y, where 
θ = 0.01.

The Grashof number, the Nusselt num-
ber, and the dimensionless friction constructed 
based on the boundary layer thickness are de-
fined as follows:

3 2Gr ,g Tδ = β∆ δ ν (6)

Nu ( ) ,wq Tδ = δ λ∆ (7)

( ).w g Tτ = τ ρ β∆ δ (8)

where ∆Т = Тw − Тa is the temperature differ-
ence between the plate and the ambient. 

Detailed data on the TDDNS model are 
given in [4] for the skin friction coefficient and 
the Nusselt number depending on the Grashof 
number, along with data on the mean velocity 
and temperature profiles and turbulence char-
acteristics at different Grδ; these data are used 
for comparison in our study.

Problem statement based on 
the RANS approach

The given time-developing flow is simulated 
based on Reynolds-averaged Navier–Stokes 
equations (RANS), initially introducing 
averaging along homogenous coordinates (x 
and z). As a result, we obtain unsteady one-
dimensional equations with respect to the 

mean axial component of velocity u and the 
mean temperature T:
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In this case, the transverse velocity v is taken 
to equal zero.

Considering the resulting unsteady one-di-
mensional problem, we can see that only two 
components of the turbulent stress tensor and 
the heat flux vector remain; these are τt,xy and 
qt,y, reflecting turbulent transfer along a normal 
to the wall:

, ,t xy u v′ ′τ = −ρ (10)

, ,t y pq c v T′ ′= −ρ (11)

(the prime denotes the fluctuating components, 
the overbar denotes averaging in homogenous 
coordinates).

System of equations (9) is open in order 
to find a method for computing the turbulent 
components of the stress tensor (10) and the 
heat flux density vector (11). To this end, we 
used semi-empirical turbulence models (de-
scribed below).

Notably, we obtained the solutions below us-
ing the ANSYS Fluent general-purpose code, 
where one-dimensional problems are solved as 
two-dimensional by introducing conditions for 
translation homogeneity. The no-slip condition 
and constant temperature Tw are imposed on the 
wall. The outer boundary parallel to the wall is 
assumed to be permeable with constant pressure 
and temperature given. Periodic conditions are 
imposed for the homogeneous coordinate x. It 
is assumed that the air has the temperature Ta 
at the initial time and is generally stationary. At 
the same time, there is initial turbulence in the 
region, characterized by the following parame-
ters: turbulence intensity I = 0.1%, turbulent to 
molecular viscosity ratio νt/ν = 0.1.

Turbulence models

Let us describe the general (three-dimen-
sional) formulation of the turbulence models 
available in the ANSYS Fluent code that we 
used for our computations. These are two mod-
els based on the Boussinesq hypothesis (SST k-ω 
and RNG k-ε), and two Reynolds stress models 
(DRSM Stress-omega and DRSM StressBSL).
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According to the Boussinesq hypothesis, the 
components of the turbulent stress tensor and 
the turbulent heat flux with averaged flow pa-
rameters are related as: 
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where k = 1/2u′iu′i is the turbulent kinetic en-
ergy, μt is the turbulent viscosity, λt is the tur-
bulent thermal conductivity;

.Prt p t tcλ = µ (14)

Expression (14) is based on the hypothesis 
that the processes of turbulent transfer of mo-
mentum and heat are similar, introducing the 
turbulent Prandtl number Prt whose value is 
taken to be constant in the computations. The 
system is closed by the semi-empirical turbu-
lence model to find the turbulent viscosity μt. 
The results below were obtained using the SST 
k-ω and RNG k-ε models described in [11, 12].

In case of differential Reynolds stress mod-
els, the following differential equation is solved 
for each of the six independent components of 
the Reynolds stress tensor:
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where Dm
ij, D

t
ij are the terms reflecting molecular 

and turbulent diffusive transfer, respectively; Pij 
is the generation term; φij is the term responsi-
ble for redistribution of energy between tensor 
components, εij is the dissipation term.

The equations for the terms related to mo-
lecular diffusion Dm

ij and generation Pij are writ-
ten as follows (no closure relations are neces-
sary in this case):
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As other terms of Eq. (15), Dt
ij, φij, εij, con-

tain higher-order moments, they are computed 
using closures relating these terms and the av-
eraged flow parameters.

Let us describe the specific form of the re-
lations for the two models used in this study:

Stress-omega (referred to as DRSM SO, 
i.e., Differential Reynolds Stress Model 
Stress-Omega),

StressBSL (referred to as DRSM BSL, 
i.e., Differential Reynolds Stress Model 
Stress-BSL).

These models differ by certain closure rela-
tions and constant values.

Similar to molecular diffusion, we introduce 
the coefficient of turbulent diffusion propor-
tional to turbulent viscosity for the term re-
flecting turbulent transfer:

.i jt t
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According to the DRSM SO model, the co-
efficient σk = 2. 

The coefficient σk un the DRSM BSL model 
is defined by the relation

1 ,1 1 ,2(1 ) .k k kF Fσ = σ + − σ (19)

where σk,1 = 2.0, σk,2 = 1.0, and function F1 is 
defined using the formulas:
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where y is the distance to the wall.
The term responsible for redistribution of 

energy between tensor components has the fol-
lowing form:
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The coefficient β*
RSM is defined as follows for 

the DRSM SO model:
* * * *, 0.09,RSM fββ = β β = (26)

* 2

2

1, 0
,1 640 , 0

1 400

k

k
k

k

fβ

χ ≤
= + χ χ > + χ

(27)

3

1 .k
j j

k
x x
∂ ∂ω

χ =
ω ∂ ∂

(28)

The coefficient β*
RSM = β* for the DRSM 

BSL model.
The rest of the constants are given using the 

following formulas (identical for both models):
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where C1 = 1.80, C2 = 0.52.	 (30)
The dissipation term is calculated by intro-

ducing an additional scalar variable, the spe-
cific dissipation ω:

*2 3 .ij ij RSM kε = δ ρβ ω (31)

The value of the constant β*
RSM is found in 

the same manner as for the term φij (see Eqs. 
(26)–(28)).

The turbulent kinetic energy is calculated as 
follows:

1 2 .i ik u u′ ′= (32)

Turbulent viscosity is calculated by the fol-
lowing formula:

* *, 1.t
kρ

µ = α α =
ω

(33)

We need to define specific dissipation ω to 
close the system. For this purpose, the differen-
tial transport equation for ω is solved together 
with the equations for the components of the 
Reynolds stress tensor (15). According to the 
DRSM SO model, this equation is written as

,
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Γω = μ + μt/σω, σω = 2. (35)

The terms Gω, Yω, Sω are found in accor-
dance with the k-ω turbulence model [13].

According to the DRSM BSL model, an 
additional (cross-diffusion) term is added to 
Eq. (34) with respect to ω:

( )1
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j j

kD F
x xω

ω
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where the values of the function F1 are calcu-
lated by Eqs. (20)–(22). 

The remaining terms are calculated in ac-
cordance with the BSL k-ω turbulence model.

The gradient hypothesis (13), (14) is used to 
calculate the turbulent heat flux components 
required to close the averaged energy equation; 
the turbulent Prandtl number is taken equal 
to 0.85.

Computational aspects

The computational domain is a rectangle on 
the xy plane. Its outer boundary is located 0.5 
m away from the plate. The computational grid 
contained 200 cells along the y axis and 5 cells 
along the homogenous coordinate x. The grid 
was refined towards the plate surface to provide 
values less than unity for the dimensionless 
distance y+ from the center of the first near-wall 
cell to the wall for the entire computational 
time. The time step dt was taken equal to 0.005 
s. To analyze the influence of the time step on 
the computational results, we also performed 
computations where the time step was twice 
as short.

The computations were run in the ANSYS 
Fluent 18.2 package. We used the non-iterative 
fractional step method to advance in time. 

At the stage of preliminary computations, 
we analyzed the influence of numerical factors 
on the quality of the solutions obtained. Fig. 
2,a shows the time dependence of y+ for all 
turbulence models. Evidently, y+ takes values 
less than unity throughout the computations. 
Fig. 2,b shows the time dependences for the 
boundary layer thickness δ (calculated as 
integral thickness using Eq. (4)) for the SST 
k-ω model, obtained with different time steps. 
The differences are apparently insignificant.

Computational results and discussion

Influence of turbulence model on the growth 
in boundary layer thickness. Fig. 3 shows the 
time dependences of integral thickness of the 
velocity boundary layer, as well as the relation-
ships between temperature and velocity layer 
thicknesses; these dependencies were obtained 
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using the given turbulence models. Fig. 3,a 
shows three pronounced phases in the evolu-
tion of the boundary layer: at first its thickness 
grows conforming to unsteady laminar layer 
patterns (until approximately 2 s in time), then 
we observe a short period with pseudo-pro-
cesses of laminar-turbulent transition, and af-
ter that the boundary layer follows the turbu-
lent flow regime (dependence of thickness δ on 
time is close to linear).

Comparing the results obtained using differ-
ent models, we can conclude that all models 
yield similar predictions for the phase of laminar 
boundary layer (as expected), while the transi-
tion point and the peculiarities in the growth of 
the boundary layer in the region with developed 
turbulence depend on the model applied.

The DRSM SO model yields the fastest thick-
ness growth of the turbulent velocity boundary 
layer, while the SST k-ω model yields the slowest 
growth. Apparently, the transition to turbulence 
(a point of characteristic change of dependences 
in Fig. 3) occurs simultaneously for all models 
except the RNG k-ε model, where this transition 
occurs much earlier. This model also differs by 
the behavior of the ratio between the temperature 
layer thickness and integral velocity layer thick-
ness: while this variable reaches a nearly constant 
value at t > 3 s in computations by other models, 
it decreases over time in this model.

Comparison with the data of direct numerical 
simulation. We compared the obtained 
computational results with the TDDNS results 
given in [4].

Fig. 2. Time dependences of dimensionless distance y+ (a) and boundary layer thickness (b). 
Comparison of computational results obtained with different models (a) and influence of time step (b).

SST k-ω (curve 1 and Fig. 2,b), RNG k-ε (curve 2), DRSM SO (3) and DRSM BSL (4) 
models were used; time steps dt = 0.0050 (5) and 0.0025 s (6) were taken

Fig. 3. Time dependences of integral thickness of velocity boundary layer (a) 
and ratios between temperature layer thickness and integral velocity layer thickness (b).

Results are given for different models: SST k-ω (1), RNG k-ε (2), DRSM SO (3), DRSM BSL (4)
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Fig. 4 shows the dependences for the 
Nusselt number and the dimensionless friction 
on the Grashof number constructed with re-
spect to the integral thickness of the boundary 
layer (see Eqs. (6)–(8)), as well as the TDDNS 
results. We should note that the obtained de-
pendences differ insignificantly and are in good 
agreement with the TDDNS data for the stages 
of laminar and fully turbulent flow. However, 
pronounced differences appear in the behavior 
of the curves at the stage of transition to tur-
bulence: direct numerical simulation predicts 
a local maximum for the dependence of Nuδ 
on Grδ, while RANS simulations indicate that 
Nuδ changes monotonically. Moreover, all the 
curves lie below the TDDNS points (a differ-
ence up to 50%). At the same time, all the 

dependences obtained with different models 
generally exhibit the same behavior in all cases, 
except for the earlier turbulence transition pre-
dicted by the RNG k-ε model (as mentioned 
above).

Analyzing the distributions of dimensionless 
friction over time, we found that the DRSM SO 
model yields the best agreement with the direct 
numerical simulation data, while the SST k-ω 
model predicts slightly overestimated values for 
developed turbulence.

Fig. 5 shows a comparison of the TDDNS 
data with the profiles of dimensionless velocity 
and temperature at Grδ = 5.94⋅106 (corresponds 
to the stage of developed turbulent flow). The 
results indicate that the velocity profiles obtained 
in all computations are in fairly good agreement 

Fig. 4. Comparison of computed dependences of Nusselt number (a) and dimensionless friction (b) 
on Grashof number (lines) with TDDNS data (symbols); 

Nuδ and Grδ were constructed based on boundary layer thickness.
The curves are numbered the same as in Fig. 3 

Fig. 5. Comparison of computed profiles of normalized velocity (a) 
and temperature (b) (lines) with TDDNS data (symbols); Grδ = 5.94⋅106. 

The curves are numbered the same as in Figs. 3 and 4
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with the TDDNS data. There is some diver-
gence with TDDNS only in the outer region of 
the boundary layer, where velocity decreases: the 
RNG k-ε yields underestimated results, while all 
the other models produce overestimated ones 
but these discrepancies do not exceed 5%. As for 
the temperature distribution, DRSM BSL and 
RNG k-ε produced the best agreement with the 
TDDNS data. Two other models yield significant 
differences in the outer region of the boundary 
layer: the SST k-ω model yields a 15–20% over-
estimation of temperature, and the DRSM SO 
model a 20–25% underestimation.

Fig. 6 shows a comparison of the predicted dis-
tributions of stress tensor components along the 
y coordinate with the direct numerical simulation 
results for the computations performed using the 
Reynolds stress models (DRSM SO and DRSM 
BSL). The fluctuation intensity of the axial ve-
locity component computed using both DRSM 
models appears to be significantly underestimated 
in the inner region of the boundary layer. The 
computed distributions of the remaining tensor 
components are in good agreement with the 
TDDNS data, with the DRSM SO model yield-
ing the best agreement.

Conclusion

We tested two semi-empirical RANS tur-
bulence models based on Boussinesq’s hypoth-
esis and two Reynolds stress models for the 
problem of free convection developing near a 
suddenly heated vertical plate. The results ob-
tained by Time-Developing Direct Numerical 
Simulation were used as test data [4].

Analyzing the results of the computations 
carried out with different models, we found 
that the rate with which the thickness of the 
boundary layer grows at the stage of lami-
nar-turbulent transition and in the developed 
turbulent layer phase largely depends on the 
model used. The DRSM SO model predicts the 
fastest growth in the thickness of the velocity 
turbulent boundary layer, while the SST k-ω 
model predicts the slowest growth rate.

The predictions for the dependences of the 
Nusselt number and the normalized friction on 
the Grashof number constructed based on the 
characteristic thickness of the growing layer are 
in good agreement with the TDDNS data for 
the stages of laminar and fully turbulent flow; 
the results obtained with different models dif-
fer insignificantly in this case. The DRSM SO 

Fig. 6. Comparison of computed fluctuation intensity profiles for axial (a) and transverse (b) 
velocity components, and turbulent shear stress profile (c) (lines) with TDDNS data (symbols). 

Results are given for different models: DRSM SO (1), DRSM BSL (2)
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model yields a slightly better agreement  with 
the TDDNS data for dimensionless friction.

The normalized velocity profiles computed 
for the turbulent layer phase are in a good 
agreement with the TDDNS data for all models 
considered. Analysis of the temperature profiles 
revealed that DRSM BSL and RNG k-ε are in 
best agreement with the test data. The DRSM 
SO and SST k-ω models give significant differ-
ences in the outer region of the boundary layer 
(around 20 %).

The DRSM models give fairly accurate 
predictions for the profiles of turbulent shear 
stress and fluctuation intensity of the transverse 

velocity component but the fluctuation intensity 
predicted for the axial velocity component 
turns out to be significantly underestimated in 
the inner region of the boundary layer.

The computations and analysis of the results 
allow to conclude that the DRSM SO model 
is capable of providing the best agreement with 
the test data [4] , obtained using the TDDNS 
method out of all the RANS turbulence models 
under consideration.

The study was sponsored by Russian Science 
Foundation Grant no. 18-19-00082.
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