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In the paper, the authors present a method for determining the distribution class to which a
selected random vector with medical parameters as components belongs. The method is based
on the statistical significance test. The optimal selection problem for the significance level
where the probability of the vector identification error is minimal has been solved. In order
to tackle the problem, the authors used the prior information on belonging the vector compo-
nents to the definite distribution class in which the statistical relationship between the medical
parameters was taken into account. The developed mathematical model of patient condition
should serve as support of decision-making on further treatment tactics.
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ONMPEAENIEHUE KJTACCA PACINPEAENEHUA
BEKTOPA MEAMLIMHCKUX MOKA3ATEJIEU

B.U. AHmoHoB', O.A. boeomonoB?, B.B. lapbapyk?, B.H. ®omeHko?
ICaHkT-MeTepbyprckuii nonuTexHUYecknin yHusepeuteT MNeTpa Benukoro,
CaHkT-MeTepbypr, Poccuitickas ®eaepauus;
2POCCUMNCKMI HayYHbIN LEHTP PaAMONOrnM U XMPYPrUYECKUX TEXHONOIUI
nMeHn akapgemmka A.M. F'paHoBa, CaHkT-lNeTepbypr, Poccuiickas denepaums;
3MeTepbyprckuii rocyAapCTBEHHLIN YHUBEPCUTET NyTein coobLieHus
MmnepaTopa AnekcaHapa I, CaHkT-MeTepbypr, Poccuiickas ®enepauns

Bcrarbse ipeacraBieH pa3paboTaHHBIN aBTOPAMU METOI OTIpeACICHU KJTacca pacIipeeICHUS,
K KOTOPOMY MPUHAIJICKUT BEIOPAHHBIN CIIyIalHBIN BEKTOP ¢ MEAMIIMHCKIMU MTOKa3aTeISIMU B
KauecTBe KOMIIOHEHT. MeToJ OCHOBaH Ha CTaTUCTUYECKOM KPUTEPUM 3HAUMMOCTHU. Pernaercs
3a7aya 00 ONTUMAaJbHOM BbIOOpPE YPOBHS 3HAUYMMOCTU, IIPU KOTOPOM BEPOSITHOCTb OLIMOKU
NICHTUOUKAIINN BeKTOpa MUHMMAaJbHA. [IJIT 3TOTO MCITOJB3yeTcsT alpuopHas WHQOpMaIns
0 TIPUHAIICXKHOCTH KOMIIOHEHT BEKTOpa K ONpPEACICHHOMY KJIAcCy paclpeicicHus, B
KOTOPOM YYUTHIBACTCSI CTATUCTHYECKAS 3aBUCHUMOCTh MEXKIY MEIMIMHCKAMU ITOKA3aTeIISIMMU.
Pa3paborannas MaTeMaTudeckast MOJIeJIb COCTOSIHUS MalleHTa TOJIKHA CIYKUTh MOAIEPKKOM
MPUHSATUIO PEllIeHUsI O BbIOOpEe AajbHelllIeil TAKTUKHY JeYeHUs.
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Introduction

The goal of this study consisted in con-
structing a probabilistic model for forecasting
medical outcomes of diseases for patients who
underwent radical prostatectomy. The model
should allow to estimate whether recurrence of
the tumor is likely. A database composed of
several medical indicators was accumulated for
this purpose for groups of patientswho did not
suffer recurrence of the tumors, and for those
who did. These indicators vary from patient
to patient within each group, filling a certain
domain in the space of indicators with some
density different for the two groups. The system
of indicators is combined into a vector, which
is regarded as the implementation of a random
vector with a distribution law derived from the
observed data. This random vector generalizes
the experimental data and characterizes the
group as a whole. The next step is determining
(with a sufficient degree of reliability) whether
a vector with the indicators of a particular pa-
tient is the implementation of one of the two
given random vectors, or, in other words, to
which of the two groups the patient most likely
belongs to.

We solved this problem using the statistical
significance test [1]. One of the two distribu-
tions is regarded as the null hypothesis, and the
other as the alternative hypothesis. If a random
vector falls into the so-called acceptance region,
the null hypothesis is accepted. Otherwise, the
alternative hypothesis is assumed to hold true.
Errors in attributing a vector (classifying it as
belonging to a certain probability distribution)
by this algorithm can be made in two cases:
either the true null hypothesis is erroneously
rejected (type 1 error), or, conversely, the false
null hypothesis is erroneously accepted (type
II error). Any value (between 0 and 1) can be
obtained for the probability of type I errors
by choosing an acceptance region. However,
changing the probability of type I error also
leads to a change in the probability of type 11
error. Extending the acceptance region obvi-
ously reduces the probability of type I errors
and increases the probability of type II errors.
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Thus, it seems a natural step to choose an
acceptance region so as to minimize the prob-
ability of type II errors for a given level of
significance, that is, the probability of type I
error [2, 3].

The problem of choosing an optimal ac-
ceptance region in the above sense was solved
by introducing the Neyman—Pearson criterion
[3]. However, this criterion is used as part of a
more general interpretation of the significance
test by introducing a certain degree of random-
ization. As a result, the answer to the question
whether the null hypothesis is accepted or re-
jected is probabilistic.

Practically speaking, the total error of vec-
tor attribution by the distribution law is most
important. This characteristic consists of two
sources: type I and type II errors. If the a priori
probabilities of the hypotheses about the distri-
bution law are known, then the probability of
the total error can be minimized by choosing
an optimal significance level. The above opti-
mization problem is solved in this paper.

The second section of the paper describes
a probabilistic model within which we con-
structed an optimized criterion for attributing
a random vector by the distribution law. In
the third section, we consider a practical ap-
plication of this criterion to medical research.
Finally, the last section discusses the results
obtained and potential options for developing
the given method.

Probabilistic model

We consider three-dimensional random
vectors with a distribution 4 or B: W“ and
W® in this model. The first two components
of the vector are continuous random variables,
and the last component takes only the values 0
or 1. The quantities m, ¢, (I =1, 2, 3) are,
respectively, the mathematical expectations
and standard deviations of the components of
the vector W, Notations are similar for W®.

Let m®[n] be the conditional expec-
tation W, (i= 1, 2), when W“W, = n. We
introduce the same notations for condi-
tional standard deviations and covariance of
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continuous components. The distribution of
the discrete component is given by the quan-
tity p = P{W, = n}.

Conditional and unconditional characteris-
tics of continuous components are related by

the formulas
m; = Z m, [I’l] D,

n=0,1

o’ = X (o, [n]) +(m[n])') p, —m

n=0,1

Cov,, = Z m, [n]m2 [n]pn —mm,.
n=0,1
The problem solved in this paper is to deter-
mine most reliably to which of the distributions
(A or B) the given vector W belongs. The sig-
nificance test is used for this purpose.
Let us call the set
D= D,N{W,i=12,3

n=0,1

m:n}’

D, ={W ,i=1,23]x" <W, < (1)

(n) (n) ()
<x Ay SVV2Sy2"}

the acceptance region.

Each of the two values of W, has its
own range of acceptable values W, and W,.
Starting from Eq. (1), we use the symbols U
and (N for the operations of union and inter-
section on sets, the symbol A for conjunction
of conditions.

The situation when the vector has the distri-
bution A is taken as the null hypothesis H,. If
the vector has the distribution B, the alternative
hypothesis H, is accepted. According to the sig-
nificance test, if

(W,,w,)eD,
then hypothesis H, is accepted in this and only
in this case.
Type I error (erroneously rejecting the null
hypothesis) occurs with a probability

R=P((W,,W,) e D|H,).

The probability of type II error (erroneously
accepting the null hypothesis) is

P, =P((W,, ,)eD|H,).

From a practical standpoint, it is preferable
to choose the acceptance region so as to obtain
the minimum value of P, for the given prob-
ability P, close to zero. Mathematically, the
problem is formulated as follows:

min P((W,, W,, W) € D|H, ) =
=min ¥ p,”’P((W,, W,)eD,
n=0,1

H,)=
- pn(B) minP((Wp Wz) €D, |H1)
n=0,1
Therefore,

[n] [n] [n]] _
n’ylnayzn}_

= argmin P((Wl, W,)eD,

xl[n] ,Xz[”];h[”]sh[”]

{Xl["], X,

H,), )

where arg min(f) denotes a function yielding
the argument values of f{x) at the minimum
point.

We write the expressions for the probabili-
ties of type I and type II errors:

ch(C)(n) = F(C)(xz(n)a yz(n))[n]_
_F(C)(xl(m’ yz(n))[n]a

©, ()= F'“(x,", y")[n]-
—F 9", 3")nl,

R=1-% p, @ (n)- @, (n)],

n=0,1

B= 3 p, (0" ()=, (n))

where FO(x,y)[n] (C = A or C = B) is the
conditional function for the distribution of the
vector (W, and W).

Knowing the probability that the vector is
attributed erroneously is important for deciding
which class, 4 or B, this random vector belongs
to. This probability can be determined if the a
priori probability P, of a vector belonging to
class A is known.

Let P,_be the probability of erroneous attri-
bution. Then,

3)

P _=PP+(1-P)P,. (4)
Let PO,(P)) be the probability of type 11

error, calculated by the optimized algorithm

at a significance level P,. It is natural to

set P, so that (4) takes the minimum value

PO e,

R =argmin| P,- B +(1-P,)-B"(R) |;

Rel0.1] (5)

P, =P -BY+(1-P)- P (R).

err A
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Example application of the attribution
algorithm to medical data

The above-described algorithm for attribut-
ing random vectors was applied to data for uro-
logic oncology patients who underwent tumor
removal surgery. Prostate cancer is considered
the most commonly diagnosed cancer in men
and the second (according to statistical data)
cause of death from cancer [12]. The level of
prostate-specific antigen p (PSA) in blood se-
rum [5, 6], measured in ng/ml, closely cor-
relates with the volume of the tumor. The tu-
mor’s growth rate is characterized by the PSA
doubling time [7, 8].

Initially, there were two groups of patients
with different outcomes of radical prostatec-
tomy. Each patient was characterized by indi-
vidual values of preoperative and postoperative
factors [9—12]. The array of patients was di-
vided into two groups: tumor recurrence was
detected in 33 patients, and no recurrence was
observed in 37. Predicting options for further
treatment after surgery is an important task,
since it affects the final result of radical prosta-
tectomy [9, 13—15].

We selected a total of three factors:

W, is the initial PSA, ng/ml;

W, is the PSA doubling time, months;

W, is the surgical margin of the tumor, i.e.,
whether any cancer cells are found in the re-
section line. We assumed that W, = 0 if these
cells were not found, and W, = I otherwise.

Group A4 included patients who did not have
recurrences for a certain period of time, and

>

group B included patients with recurrences.
Table 1 shows the number of patients in groups.

The quantities W, and W, in group B have
a noticeable correlation. Table 1 gives the es-
timates for the correlation coefficients with W,
=0and 1.

Table 2 gives the main characteristics of the
distributions 4 and B.

Let us explain how we constructed the
two-dimensional conditional (i.e., with a fixed
value of W)) distribution function of the ran-
dom vector W,, W, required to calculate the
probabilities of type I and type 1I errors

Let

X,y (k=1,N), (6)

be conditional samples of continuous compo-
nents W, and W,, respectively, arranged in as-
cending order. Next, let the points

(xi(j)ayk(j)); (J=1,N) (7)

represent the experimental data. Let us intro-
duce the notations
& =2x —x,;

€ =05(x,+x,,); (i=1,N-1);

Ey =2xy — Xy 45

(8)
Mo =2, = s>
N, =050y, + y,,), (=1, N =1);
Ny =2Vy = Yy

Table 1
Data set and incidence analysis by patient group
Coefficient False attributions
Number .
Group of patients of correlation for (number and
. W and W | total error)
of patients Relative
W=0 |WwW=1  W=0| wW=1 |W=1|W=1

error

A (no recurrence) 37 3 0.0058 | 0,0430 12 0 0.30
B (with recurrence) | 33 5 —0.2000 | —0.3600 6 1 0.18

Notations: W, is the initial PSA level, ng/ml; W, is the PSA doubling time, months; W, is the surgical
margin of the tumor; we assumed that W, = 0 if there were no abnormal cells, and W, = 1 otherwise.

Note. The correlation coefficients W, and W, were found by the formula R,, =
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Table 2

Conditional distributions of continuous components of random vector W,, W,

W, p.@ p.® m, A m,® o, c,@

0 0.925 | 0.868 | 12.2;2200 | 17.4:998 | 10.6; 2410 | 11.0; 2000

] 0.075 | 0.132 | 8.33; 1000 | 30.9;265 | 1.48;558 | 20.7; 152
Total . — | 11.9;2110 | 19.2:901 | 10.3;2350 | 13.5; 1870
value

Notations: p are the distributions of the discrete component; m, is the mathematical expectation; o, is
the standard deviation; the superscripts correspond to the data belonging to patient groups A and B.
Two values correspond to the components W, and W,

To construct the distribution function, let us
divide the rectangle

[E05ExMos My ] 9)

into N? rectangles of the form

(&8s (= LNk =LN). (10)

Next, let us select from all the rectangles
those containing the experimental points (7)
and combine them into a set S :

|:§i(j)—17&i(‘j);nk(j)—lank(j)}; (J=1,N);

N
S, = ﬂ[afo)—vaf(jﬁ”k(j)—vnku)] '
i=1

We assume that the random vector W,, W, is
evenly distributed inside each of the N rectan-
gles, and the probability of the random vector
falling into each of the rectangles is the same
and equal to 1/N. This probability is equal to
zero for all other rectangles. The distribution
density then has the form

1L B(A)

0,2 0.1 0.6 0.8 1P

Fig. 1. Probability of type II error as function
of probability of type I error

1
N-AE-An,”
if (x,y)e
€ [éfla@,-;mfpm] cS,;
0,
if (x,y)e8,,

p(x,y) = (12)

where AE, =& -&. ; An,=n, -1,

In accordance with Eq. (12), the condi-
tional distribution function is an inhomoge-
neous piecewise bilinear function:

F(x,y)= a,t bi,k(x -&)+ ci,k(y M)+
+di,k (x=&_)(y—m), (13)

if (v, ) €[& 15 &3 MM ]
where the parameters are obtained from continu-
ity condition F(x,y) and the boundary conditions

F(&o: y)=F(x, 1ﬂlo) =0
using recurrence relations
bi,k = bi,k—l + di,k—lAnk—] )
Cip =Ciy Tt d_ A8,
Ay =i, t bi—l,k—lAéi—l +
+C AN + di—l,k—lAai—lAnk—l 5
1 (14)
N-Ag;-An,
di,k =qif [&i_p E_vi;nk_la T]k] = Sg;
0,
if [, &3mrs e €S,

with a,, =a,, =b, =¢,, =0.
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Fig. 2. Optimal significance level as function
of a priori probability

oal PP

Fig. 3. Minimized attribution error

Fig. 1 shows the dependence of probability of
type Il error with the optimal acceptance region
(1) chosen by Eq. (2). Fig. 2 shows the depen-
dence for the optimal significance level for the

given a priori data on whether a patient belongs to
group A, and Fig. 3 shows the probability for the
total error of patient attribution (see Eq. (5).

We applied the attribution algorithm to groups
Aand B. Table 1 (right columns) gives the number
of errors in determining the group to which the
patient belongs. We assumed that a priori proba-
bility is P, = 0.5, since the number of patients in
both groups is approximately the same. We should
also note that the attribution error is close to the
maximum value of 0.25 in this case, which can be
seen from Fig. 3. The data in Table 1 (false attri-
butions) indicate that the actual total attribution
error is close to this estimate.

Conclusion

Example application of the proposed sig-
nificance test confirms that it can be used in
practice, in particular in medicine for predict-
ing complications. Evidently, the probability
of error in determining the class to which the
given object belongs decreases with increasing
number of patients with a known diagnosis.

We should note that the algorithm con-
structed in this paper is optimal only in the
class of significance tests with a connected ac-
ceptance region (see Eq. (1)). However, if the
distribution has a more complex shape, for ex-
ample, with a multimodal distribution density,
choosing a disconnected acceptance region
could produce a more powerful test.

Including a greater number of continuous
variables in the test would increase the reli-
ability of the algorithm. However, expand-
ing the number of variables would also make
finding the optimal acceptance region more
difficult.
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