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Results of direct numerical simulation of the turbulent convection in a bottom-heated cy-
lindrical container have been presented. The height-to-diameter ratio was equal to 1.0. The 
calculations were performed for two media: mercury (Pr = 0.025) and water (Pr = 6.4) at Ra = 
106 and 108 respectively. To suppress possible azimuthal movements of the global vortex (large-
scale circulation) developing in the container, its axis was tilted a small angle with respect to 
the gravity vector. Structure of the time-averaged flow pattern symmetrical with respect to the 
central vertical plane was analyzed. Peculiarities of vortex structures developing in the corner 
zones were revealed. Representative profiles of the Reynolds stresses and components of the 
turbulent heat flux vector were obtained for the central vertical plane.
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ПРЯМОЕ ЧИСЛЕННОЕ МОДЕЛИРОВАНИЕ 
ТУРБУЛЕНТНОЙ КОНВЕКЦИИ РЭЛЕЯ – БЕНАРА В СЛЕГКА 

НАКЛОНЕННОМ ЦИЛИНДРИЧЕСКОМ КОНТЕЙНЕРЕ

С.И. Смирнов, Е.М. Смирнов

Санкт-Петербургский политехнический университет Петра Великого, 
Санкт-Петербург, Российская Федерация

Представлены результаты прямого численного моделирования турбулентной 
конвекции в подогреваемом снизу цилиндрическом контейнере с высотой, равной 
диаметру. Расчеты проведены для двух сред: воды (Pr = 6,4) и ртути (Pr = 0,025), при 
числах Рэлея 108 и 106 соответственно. Ось контейнера наклонена на небольшой угол 
по отношению к вектору гравитационного ускорения с целью подавления возможных 
азимутальных перемещений глобального вихря, развивающегося в контейнере. 
Анализируется структура осредненного конвективного движения, симметричного 
относительно центрального вертикального сечения. Выявлены особенности вихревого 
течения в угловых областях, присущие двум рассмотренным случаям. Получены 
представительные профили всех ненулевых составляющих тензора рейнольдсовых 
напряжений и вектора турбулентного теплового потока в центральном сечении.

Ключевые слова: конвекция Рэлея – Бенара, наклоненный контейнер, турбулентность, 
прямое численное моделирование, крупномасштабная циркуляция
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Introduction
There is much interest in study of natural 

convection, as it is a phenomenon widely found 
in nature and technologies. Rayleigh–Bénard 
convection of fluid in a vertically oriented cir-
cular cylindrical container is one of the most 
attractive model problems in this field.

Diverse experimental and numerical studies 
found that large-scale circulation (LSC) is a 
characteristic feature of natural convective flow 
in a cylindrical container heated from below 
(see, for example, review [1]). If the height of 
the container is equal to its diameter or close 
to it, the LSC is a large-scale vortex covering 
the entire region of convective flow [1–5]. If 
the container axis is strictly vertical and ax-
isymmetric boundary conditions are imposed, 
the problem does not have a preferential azi-
muthal position, and it is reasonable to assume 
that the global vortex can occasionally move in 
the azimuthal direction. Experimental studies 
on Rayleigh–Bénard convection in a circular 
cylindrical container confirm this, observing 
slow (ultra-low frequency) changes in LSC 
orientation, with irregular behavior (see, for 
example, [3–9]). Liquid metals [3, 4, 9] and 
water [5–8] are mainly used for experimental 
studies. Evidently, the azimuthal behavior of 
LSC is governed in each case by very small, 
difficult-to-control deviations from axial sym-
metry, typical for laboratory models. This fea-
ture of LSC was also observed in multiple nu-
merical experiments on transitional and turbu-
lent regimes of Rayleigh–Bénard convection in 
cylindrical containers at Prandtl numbers (Pr) 
characteristic for liquid metals [10–13], water 
[11] and air [14–16].

Random changes in azimuthal orientation of 
LSC are not the only feature of a global vortex 
structure of this type. It was found that LSC 
exhibits two more types of oscillations, sloshing 
and torsional. In addition, LSC can disappear 
for relatively short periods of time and reappear 
with a pronounced reorientation (this is known 
as cessation). These features of LSC were stud-
ied experimentally in [16–20]. Sloshing and tor-
sional oscillations are also reproduced in numer-
ical solutions (see, for example, the recent study 
[21] and references therein).

Azimuthal instability of LSC makes it dif-
ficult to obtain the statistical characteristics 
of turbulent convection in cylindrical con-
tainers heated from below, including averaged 
three-dimensional fields of physical quantities 
describing relatively small-scale background 
turbulence. LSC can be locked in a certain 
azimuthal position by introducing a stabilizing 
external factor that does not considerably alter 
the intensity and structure of the flow. For ex-
ample, slightly tilting the container may act as 
such a factor. This approach has been repeat-
edly used in experimental studies conducted 
at different Rayleigh numbers (Ra) for media 
with Pr = 0.025 [3, 4], 0.7–0.8 [17, 18] and Pr 
= 4–6 [17, 19, 20, 22–24]. The effects from 
slight tilt of a container filled with a medium 
with Pr = 0.025, from non-uniform heating 
of the horizontal wall and the structure of the 
computational grid in the central plane were 
numerically studied in [25].

One of the most popular numerical ap-
proaches used for describing turbulent natural 
convection in relatively simple geometrical re-
gions is Direct Numerical Simulation (DNS), 
resolving all components of turbulent motion 
(see, for example, [26–34 ] carried out for me-
dia with different Prandtl numbers: Pr = 0.005 
[30], 0.02 [26, 30], 0.1–1.0 [26, 27, 29, 32–34] 
and 6.4 [28, 31]). A notable recent work [32] 
presented DNS for turbulent Rayleigh–Bénard 
convection at Pr = 1, Ra = 108 in regions with 
different geometric configurations (including 
cylindrical), focusing on comparing the pre-
dictions of integral heat transfer provided by 
different software packages.

Our study is dedicated to direct numerical 
simulation of turbulent convection in a slightly 
tilted cylindrical container, whose height is 
equal to its diameter, heated from below. 
Results were obtained for the Rayleigh number 
Ra = 106 at the Prandtl number Pr = 0.025 and 
Ra = 108 at Pr = 6.4.

Problem statement

We considered turbulent convection of a 
fluid with constant physical properties in the 
Boussinesq approximation for a circular cylin-
drical container heated from below with a 1:1 
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height-to-diameter ratio of the cylinder (Г = 
D/H = 1). The container was tilted by a small 
angle, φ = 2º, with respect to the gravity vector 
(Fig. 1, a). 

Unsteady fluid motion is described by the 
following system of equations (1)–(3), includ-
ing the continuity equation, the Navier–Stokes 
equations and the convection-diffusion equa-
tion.

0,∇⋅ =V (1)
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Here V = (Vx,Vy,Vz) is the velocity vector 
in the x′y′z coordinate system; t is the time; 
p, T, and ρ are the pressure, temperature, and 
density of the fluid; β, ν, and χ are the coeffi-
cients of its thermal expansion, kinematic vis-
cosity, and thermal diffusivity; g is the gravity 
vector pointing in the opposite direction from 
the axis y′ and making an angle of 2º with it; 
T0 is the fluid temperature under hydrostatic 
equilibrium.

The solution to system (1)–(3) is obtained 
in the x′y′z coordinate system, whose axis y′ 
coincides with the axis of the container (see 
Fig. 1, a).

No-flow and no-slip conditions are imposed 
on all boundaries. Constant temperatures are 
given for the horizontal walls; it is assumed that 
the temperature of the top wall (Tc) is lower 

than the bottom (Th). The side wall is assumed 
to be adiabatic.

The dimensionless governing parameters of 
the problem are the Prandtl number Pr = ν/χ 
and the Rayleigh number, related as 

Ra = Pr∙(VbH/ν)2,

where Vb is the characteristic (large-scale) flow 
velocity (buoyant velocity), 

Vb= (gβΔTH)0.5

(ΔT is the characteristic temperature difference 
between the hot (Th) and the cold (Tc) wall),

ΔT=Th – Tc.

Let us also introduce the Grashof number 
Gr = Ra/Pr, whose square root acts as the 
equivalent of the Reynolds number in natural 
convection problems. 

The computations below were performed for 
Pr = 0.025, Ra = 106 and Pr = 6.4, Ra = 108. 
The Grashof numbers for these two cases are of 
the same order and equal 4.0·107 and 1.6·107, 
respectively.

Computational aspects

The computations were carried out using 
one of the latest versions of the in-house fi-
nite-volume code SINF/Flag-S developed at 
Peter the Great Polytechnic University (the 
computational algorithms implemented in the 
code run on unstructured grids). We used a 
variation of the fractional step method de-
scribed in [35]. The Crank–Nicolson scheme 
with second-order accuracy was used for ad-
vancing in time. A central difference scheme 
was used to approximate the convection and 
diffusion terms in the continuity equations. The 
computational grid consisted of approximately 

Fig. 1. Geometry of computational domain for tilted container (a), 
grid structure in central horizontal (b) and vertical (c) planes



16

Simulation of Physical Processes

1.5·107 hexagonal elements; the grid structure 
in horizontal and vertical planes is shown in 
Fig. 1, b, c. The grid is refined near the walls, 
while the size of the first near-wall cell was 
about 10–4 H. A characteristic feature of the 
computational grid was a central unstructured 
(asymmetric) region with a diameter of about 
0.8D (see Fig. 1, b).

The finite-volume computations of 
Rayleigh–Bénard convection on this grid can 
be interpreted as direct numerical simulation 
of turbulence if the local cell size is sufficiently 
small compared to the size of the smallest vor-
tices in the given region. It is well known the 

Kolmogorov scale is the smallest scale of tur-
bulent flow if the temperature layers are thicker 
than the velocity layers (Pr < 1): 

δK= (ν3/ε)0.25,

where ε is the dissipation rate of turbulent ki-
netic energy, 

V ' V 'i i
x xj j

∂ ∂
ε = ν ⋅

∂ ∂

(Vi′ is the fluctuation of the ith velocity compo-
nent, xj are the Cartesian coordinates). 

Fig. 2. Distributions of instantaneous (a) and averaged (b, c) vertical velocity components for mercury 
convection in cylindrical container (CC) heated from below at Pr = 0.025: isosurface components a, 

|Vy| = 0.14; distribution b in central plane perpendicular to СС axis, y′= 0.5; distribution c along 
a line lying in (x′Oy′) plane of CC at a height of y′= 0.5.

Blue structures correspond to downward flow, red to upward flow.

Fig. 3. Averaged temperature field in central vertical plane of container (coinciding with LSC midplane) 
with superimposed vectors of averaged velocity at Pr = 0.025: 

entire convection region of mercury b, regions a, c with corner vortices

a) b) c)
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If Pr > 1, the smallest scale is the Batchelor 
scale:

δB= δK/Pr0.5.

Accordingly, the quality of the computa-
tions can be assessed by comparing the charac-
teristic sizes of the grid elements with different 
smallest turbulence scales.

The computations started from the zero ve-
locity field and the uniform temperature field, 
assumed to be equal to (Th + Tc)/2. The time 
step did not exceed one thousandth of the 
characteristic time tb=H/Vb, guaranteeing that 
the local values of the Courant number were 
less than unity. The computed fields were aver-
aged over time starting after a transient process 
that lasted about 200tb. The samples for averag-
ing were 3000tb for convection of mercury and 
4000tb for water.

Computational results and discussion

The quantities V and T in the discussion 
below refer to the velocity and the temperature 
difference T – Tc, related to the corresponding 
scale (Vb and ΔT), and (x′, y′, z) refer to the co-
ordinates related to the height of the container.

The quality of grid resolution was assessed 
after the computations, using the statistics ac-
cumulated for the TKE dissipation field. We 
actually analyzed the fields of the smallest 
turbulence scales δK and δB, computed by the 
above relations and taken relative to the cubic 

root of the computational cell volume (V1/3). 
It was found that the ratios δK/V

1/3 and δB/V
1/3 

took values exceeding unity in almost the en-
tire region of the flow. The exceptions were a 
small area near the side wall, in the layer with 
the average height, and also the region with the 
corner vortices, where the smallest values of 
the ratios δK/V

1/3 and δB/V
1/3 were 0.6–0.7.

Results for mercury. Fig. 2, a shows an in-
stantaneous distribution for convection of mer-
cury in the cylindrical container heated from 
below, with pronounced large-scale circulation. 
Fig. 2, b, c shows the distribution of the aver-
aged vertical velocity component in the central 
plane perpendicular to the container axis; the 
vertical velocity component here and below re-
fers to the velocity component along the axis of 
a slightly tilted container. Evidently, this dis-
tribution has double symmetry, as expected for 
the case of LSC ‘locked’ in a certain azimuthal 
position.

It is of particular interest to explore the 
characteristic features of convective flow in the 
central vertical plane of the container, which 
coincides with the midplane of the LSC (see 
Fig. 2); this plane is also the x′Oy′ plane of the 
container axis tilt. 

ig. 3 shows the vortex structure of the flow 
and the temperature field in this plane. Notably, 
aside from LSC, the flow contains several 
smaller vortices located in the corners of the 
container. The region occupied by additional 

Fig. 4. Distributions of normalized components of Reynolds stress tensor and turbulent heat flux vector 
along AC (black curve) and BD (red curve) diagonals of container’s central plane

in case of mercury convection (see Fig. 3), coordinate dx′Oy′ = 0 at points A and B, respectively
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vortices is considerably larger in the corners A 
and C (see Fig. 3, a) than in the corners B and 
D (see Fig. 3, c); the intensity of the vortices 
also differs: it is much higher in the corners 
A and C. Gradient layers near the isothermal 
walls are clearly visible in the temperature field.

We also obtained three-dimensional fields 
of all components of the Reynolds stress ten-
sor and the turbulent heat flux vector. These 
data are interesting, in particular, for assessing 
the capabilities of different second-order turbu-
lence models (Reynolds stress models) used for 
computations of convective flows based on the 
Reynolds-averaged Navier–Stokes equations. 
Data for the central vertical plane of the con-
tainer are given in this paper. Two of the six 
components of the Reynolds stress tensor, as 

well as one of the three components of the tur-
bulent heat flux are equal to zero in this plane 
due to statistical symmetry of convection.

The distributions of the components of the 
Reynolds stress tensor and the turbulent heat 
flux vector are given in Fig. 4 along the diag-
onals of the central vertical plane (the corre-
sponding coordinate, denoted as dx′Oy′, is used). 
Because the averaged flow is symmetric, distri-
butions are given only for half of the diagonal. 
Moreover, the given distributions were obtained 
by averaging over two halves of each of the 
diagonals (evidently, this technique effectively 
increases the initial sample for obtaining statis-
tics). Fig. 4 shows that almost all of the given 
the correlations are close to zero in a small 
corner region (conditionally, at dx′Oy′ < 0.02) 

Fig. 5. Distributions of instantaneous (a) and averaged (b, c) vertical velocity components for convection 
of water in cylindrical container heated from below at Pr = 6.4 

The distributions are similar to those shown in Fig. 2 for mercury 

Fig. 6. Averaged temperature field with superimposed vectors of averaged velocity 
in central vertical plane of container at Pr = 6.4

The distributions are similar to those shown in Fig. 3 for mercury

a) b) c)
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where there is practically no flow in the me-
dium, with the exception of the Reynolds stress 
due to fluctuations of the velocity component 
normal to this plane (see Fig. 4, c). With dx′Oy′ > 
0.02, all correlations increase in absolute value 
to a certain degree, and their variation is essen-
tially nonmonotonic with a further increase in 
the distance from the corner. This is generally 
consistent with the picture of the vector veloc-
ity field shown in Fig. 3: here, the stable region 
in the corner is followed by the region where 
two vortex structures coexist; their presence 
and interaction determine the nonmonotonic 
behavior of the distributions shown in Fig. 
4. The spans of nonmonotonic segments are 
somewhat different depending on the choice of 
the diagonal (AC or BD). The region covered 
by LSC follows the zones occupied by corner 
vortices (dx′Oy′ > 0.15…0.2); the correlations 
change relatively smoothly within this region.

The integral value of the Nusselt number 
for convection of mercury, obtained as a re-
sult of these computations with Ra = 106, was 
Nu = 5.64, which is in good agreement with 
the results of previous studies carried out in 
the framework of the implicit LES (ILES) ap-
proach: Nu = 5.70 [25], Nu = 5.58 [35], and 
also with the DNS results, Nu = 5.43 [30].

Results for water. Similar distributions are 
shown in Figs. 5–7 for convection of water (Pr 
= 6.4) at Ra = 108.

We can conclude from the distributions of 
the averaged vertical velocity and tempera-
ture (Fig. 5) that the solution obtained is also 
symmetric with respect to the LSC midplane 
(central vertical plane) in this case. In case of 
long samples, symmetric statistical character-
istics of the flow can be obtained only if the 
LSC is ‘locked’ in a certain azimuthal position. 
Comparing the computational data shown in 
Figs. 2 and 5, we can establish that the maxi-
mum values of the normalized vertical velocity 
for convection of water are lower than for con-
vection of mercury by approximately five times. 

Fig. 6 shows the structure of convective flow 
of water in the central vertical plane. The same 
as in in the case of mercury convection consid-
ered above (Fig. 3), large-scale circulation of 
water is complemented by corner vortex struc-
tures. However, unlike convection of mercury, 
there is only one pronounced vortex in each 
of the corners A and C, and there are no in-
tense vortices at all in the corners B and D; the 
flow turns sharply here, and a small region with 
very slow motion evolves. These characteristics 
of water convection in a cylindrical container 
were earlier discussed in [15]. As expected, 
high-gradient layers form in the temperature 
field near the isothermal walls.

Fig. 7 shows the distributions of the non-
zero components of the Reynolds stress ten-
sor and the turbulent heat flux vector along 
the diagonals of the central vertical plane. In 

Fig. 7. Distributions of normalized components of Reynolds stress tensor and turbulent heat flux vector 
along AC (black curve) and BD (red curve) diagonals of central vertical plane of container 

for water convection (see Fig. 6), coordinate dx′Oy′ = 0 at points A and B, respectively
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contrast to convection of mercury, the correla-
tions given for Pr = 6.4 generally change more 
smoothly; evidently, this is because the corner 
vortex structures are underdeveloped in case 
of convection of a fluid with a large Prandtl 
number. However, segments where the effect 
of corner vortices can be observed are also 
visible in this case in the given distributions. 
Furthermore, compared with the previous case 
(see Fig. 4), the general level of normalized 
correlations characterizing the intensity of tur-
bulent transfer is less by about 1 to 1.5 orders 
of magnitude for convection of water than for 
a fluid with a small Prandtl number. 

The integral Nusselt number obtained 
for convection of water with Ra = 108 was 
Nu = 33.0, which coincides with the results 
of previous computations [28] performed using 
the DNS method up to three significant digits.

Conclusion

Direct numerical simulation helped accu-
mulate a large amount of statistical data for 
essentially three-dimensional turbulent con-
vection in a slightly tilted cylindrical container 
heated from below, whose height equals the 
diameter. Computations were carried out for 
Ra = 106 at Pr = 0.025 (mercury), and for 
Ra = 108 at Pr = 6.4 (water).

We have found that tilting the container axis 
by 2° relative to the gravity vector allows to 

reliably ‘lock’ the global vortex (large-scale cir-
culation (LSC)) in a certain azimuthal position.

The pattern of the averaged flow in the cen-
tral vertical plane of the container, coinciding 
with the midplane of the LSC, is characterized 
by a combination of LSC with corner vortex 
structures, which are most pronounced for 
convection of the medium with a small Prandtl 
number.

We have computed three-dimensional fields 
of all components of the Reynolds stress tensor 
and the turbulent heat flux vector. These data 
can serve, in particular, for assessing the ca-
pabilities of different second-order turbulence 
models (Reynolds stress models) used to com-
pute convective flows based on the Reynolds-
averaged Navier–Stokes equations.

The values obtained for the Nusselt inte-
gral number are in good agreement with the 
data given in literature for a container with a 
vertical axis.

This study was supported by the Russian 
Foundation for Basic Research (Grant for Vortex-
Resolving Numerical Modeling of Turbulent 
Natural Convection under Conjugate Heat 
Transfer Conditions no. 17-08-01543).

The computational data were obtained us-
ing the resources of the Supercomputer Center 
at Peter the Great Polytechnic University (www.
scc.spbstu.ru).
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