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Results of direct numerical simulation of the turbulent convection in a bottom-heated cy-
lindrical container have been presented. The height-to-diameter ratio was equal to 1.0. The
calculations were performed for two media: mercury (Pr = 0.025) and water (Pr = 6.4) at Ra =
10¢ and 10® respectively. To suppress possible azimuthal movements of the global vortex (large-
scale circulation) developing in the container, its axis was tilted a small angle with respect to
the gravity vector. Structure of the time-averaged flow pattern symmetrical with respect to the
central vertical plane was analyzed. Peculiarities of vortex structures developing in the corner
zones were revealed. Representative profiles of the Reynolds stresses and components of the
turbulent heat flux vector were obtained for the central vertical plane.
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NnPAMOE YNC/IEHHOE MOAEJIUPOBAHMUE
TYPBYJIEHTHOW KOHBEKLLUMU PIJIEA - BEHAPA B CJIETKA
HAK/IOHEHHOM UWHW/TIUHAPUYECKOM KOHTEUHEPE

C.U. CmupHoB, E.M. CmupHOB

CaHkT-MNeTepbyprckuii NONUTEXHUYECKUI YHUBEpCUTET MNeTpa Benukoro,
CankT-lMNeTepbypr, Poccuiickas ®eaepauus

IMpencraBieHbl pe3yiabTaTbl TPSIMOrO YMCICHHOTO MOIEIMPOBAHUS  TYypOyJEeHTHOM
KOHBEKIIMM B TIOJOTPEeBAEMOM CHU3Y IMJIWHIPUYECKOM KOHTEHEpe C BBICOTON, pPaBHOMU
nurametpy. Pacuersl mpoBeneHbI s ABYx cpea: Bonbl (Pr = 6,4) u prytu (Pr = 0,025), nipu
yuciaax Panes 10% u 10° coorBeTcTBeHHO. OCh KOHTEiiHEpa HakKJIOHEHA HAa HEOOJIbIION yro
MO OTHOUICHWIO K BEKTOPY TPaBUTALIMOHHOTO YCKOPEHUS C 1IeJbI0 TOJABICHUS] BO3MOXHBIX
a3UMYTaJIbHBIX TEpeMEIIEHUI TJI00aJbHOTO BUXPsI, pa3BUBAIOIIETOCSI B  KOHTEWHepe.
AHanmM3MpyeTcsl CTPYKTypa OCPEIHEHHOIO0 KOHBEKTMBHOTO JBWXEHMSI, CUMMETPUYHOTO
OTHOCHTEJIBHO IIEHTPAJIbHOTO BEPTUKAIBHOTO CeYeHMSs. BBIIBICHBI OCOOEHHOCTH BUXPEBOTO
TEUEHUSI B YIJOBBIX OOJIACTSIX, TIPUCYIIME JBYM PACCMOTPEHHBIM ciydasm. [lomxydeHbr
MpeACTaBUTEbHbIE TPOGMUIN BCEX HEHYJIEBBIX COCTaBJSIONIMX TEH30pa PEWHOJbIACOBBIX
HaMpsIKeHUI 1 BEKTOpa TypOYJIEHTHOTO TeTUIOBOTO MOTOKA B LIEHTPAJbHOM CEUECHUMU.

KimoueBbie cioBa: konBekinsi Pajes — beHapa, HakJIOHEHHBIN KOHTeiHep, TypOyJeHTHOCTb,
MpSIMOE YUCJICHHOE MOJETMPOBAHUE, KPYITHOMACIITAOHAST LIUPKYJISIIIUS
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Introduction

There is much interest in study of natural
convection, as it is a phenomenon widely found
in nature and technologies. Rayleigh—Bénard
convection of fluid in a vertically oriented cir-
cular cylindrical container is one of the most
attractive model problems in this field.

Diverse experimental and numerical studies
found that large-scale circulation (LSC) is a
characteristic feature of natural convective flow
in a cylindrical container heated from below
(see, for example, review [1]). If the height of
the container is equal to its diameter or close
to it, the LSC is a large-scale vortex covering
the entire region of convective flow [1—5]. If
the container axis is strictly vertical and ax-
isymmetric boundary conditions are imposed,
the problem does not have a preferential azi-
muthal position, and it is reasonable to assume
that the global vortex can occasionally move in
the azimuthal direction. Experimental studies
on Rayleigh—Bénard convection in a circular
cylindrical container confirm this, observing
slow (ultra-low frequency) changes in LSC
orientation, with irregular behavior (see, for
example, [3—9]). Liquid metals [3, 4, 9] and
water [5—8] are mainly used for experimental
studies. Evidently, the azimuthal behavior of
LSC is governed in each case by very small,
difficult-to-control deviations from axial sym-
metry, typical for laboratory models. This fea-
ture of LSC was also observed in multiple nu-
merical experiments on transitional and turbu-
lent regimes of Rayleigh—Bénard convection in
cylindrical containers at Prandtl numbers (Pr)
characteristic for liquid metals [10—13], water
[11] and air [14—16].

Random changes in azimuthal orientation of
LSC are not the only feature of a global vortex
structure of this type. It was found that LSC
exhibits two more types of oscillations, sloshing
and forsional. In addition, LSC can disappear
for relatively short periods of time and reappear
with a pronounced reorientation (this is known
as cessation). These features of LSC were stud-
ied experimentally in [16—20]. Sloshing and tor-
sional oscillations are also reproduced in numer-
ical solutions (see, for example, the recent study
[21] and references therein).

Azimuthal instability of LSC makes it dif-
ficult to obtain the statistical characteristics
of turbulent convection in cylindrical con-
tainers heated from below, including averaged
three-dimensional fields of physical quantities
describing relatively small-scale background
turbulence. LSC can be locked in a certain
azimuthal position by introducing a stabilizing
external factor that does not considerably alter
the intensity and structure of the flow. For ex-
ample, slightly tilting the container may act as
such a factor. This approach has been repeat-
edly used in experimental studies conducted
at different Rayleigh numbers (Ra) for media
with Pr = 0.025 [3, 4], 0.7—0.8 [17, 18] and Pr
= 4—6 [17, 19, 20, 22—24]. The effects from
slight tilt of a container filled with a medium
with Pr = 0.025, from non-uniform heating
of the horizontal wall and the structure of the
computational grid in the central plane were
numerically studied in [25].

One of the most popular numerical ap-
proaches used for describing turbulent natural
convection in relatively simple geometrical re-
gions is Direct Numerical Simulation (DNS),
resolving all components of turbulent motion
(see, for example, [26—34 | carried out for me-
dia with different Prandtl numbers: Pr = 0.005
[30], 0.02 [26, 30], 0.1—1.0 [26, 27, 29, 32—34]
and 6.4 |28, 31]). A notable recent work [32]
presented DNS for turbulent Rayleigh—Bénard
convection at Pr = 1, Ra = 108 in regions with
different geometric configurations (including
cylindrical), focusing on comparing the pre-
dictions of integral heat transfer provided by
different software packages.

Our study is dedicated to direct numerical
simulation of turbulent convection in a slightly
tilted cylindrical container, whose height is
equal to its diameter, heated from below.
Results were obtained for the Rayleigh number
Ra = 10° at the Prandtl number Pr = 0.025 and
Ra = 10% at Pr = 6.4.

Problem statement

We considered turbulent convection of a
fluid with constant physical properties in the
Boussinesq approximation for a circular cylin-
drical container heated from below with a 1:1
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height-to-diameter ratio of the cylinder (I' =
D/H = 1). The container was tilted by a small
angle, ¢ = 2¢, with respect to the gravity vector
(Fig. 1, a).

Unsteady fluid motion is described by the
following system of equations (1)—(3), includ-
ing the continuity equation, the Navier—Stokes
equations and the convection-diffusion equa-
tion.

V-V=0, (1)
6—V+(V-V)V=
ot
1 5 (2)
=——Vp+B(T,-T)g+VV-V,
p
oT 2
E+(V-V)T:xv T. (3)

Here V. = (V, Vy, V) is the velocity vector
in the x'y'z coordinate system; ¢ is the time;
p, T, and p are the pressure, temperature, and
density of the fluid; B, v, and y are the coeffi-
cients of its thermal expansion, kinematic vis-
cosity, and thermal diffusivity; g is the gravity
vector pointing in the opposite direction from
the axis y' and making an angle of 2° with it;
T, is the fluid temperature under hydrostatic
equilibrium.

The solution to system (1)—(3) is obtained
in the x'y'z coordinate system, whose axis )’
coincides with the axis of the container (see
Fig. 1, a).

No-flow and no-slip conditions are imposed
on all boundaries. Constant temperatures are
given for the horizontal walls; it is assumed that
the temperature of the top wall (7)) is lower

>

than the bottom (7). The side wall is assumed
to be adiabatic.

The dimensionless governing parameters of
the problem are the Prandtl number Pr = v/y
and the Rayleigh number, related as

Ra = Pr(V,H/v)?,

where V), is the characteristic (large-scale) flow
velocity (buoyant velocity),

V= @ATH)

(AT is the characteristic temperature difference
between the hot (7)) and the cold (7)) wall),

AT=T, - T.

Let us also introduce the Grashof number
Gr = Ra/Pr, whose square root acts as the
equivalent of the Reynolds number in natural
convection problems.

The computations below were performed for
Pr = 0.025, Ra = 10°and Pr = 6.4, Ra = 108
The Grashof numbers for these two cases are of
the same order and equal 4.0-107 and 1.6-107,
respectively.

Computational aspects

The computations were carried out using
one of the latest versions of the in-house fi-
nite-volume code SINF/Flag-S developed at
Peter the Great Polytechnic University (the
computational algorithms implemented in the
code run on unstructured grids). We used a
variation of the fractional step method de-
scribed in [35]. The Crank—Nicolson scheme
with second-order accuracy was used for ad-
vancing in time. A central difference scheme
was used to approximate the convection and
diffusion terms in the continuity equations. The
computational grid consisted of approximately

Fig. 1. Geometry of computational domain for tilted container (a),
grid structure in central horizontal (b) and vertical (c) planes
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1.5-107 hexagonal elements; the grid structure
in horizontal and vertical planes is shown in
Fig. 1, b, c. The grid is refined near the walls,
while the size of the first near-wall cell was
about 10™* H. A characteristic feature of the
computational grid was a central unstructured
(asymmetric) region with a diameter of about
0.8D (see Fig. 1, b).

The finite-volume  computations  of
Rayleigh—Bénard convection on this grid can
be interpreted as direct numerical simulation
of turbulence if the local cell size is sufficiently
small compared to the size of the smallest vor-
tices in the given region. It is well known the

Kolmogorov scale is the smallest scale of tur-
bulent flow if the temperature layers are thicker
than the velocity layers (Pr < 1):

SK: (V3/8)0'25,
where ¢ is the dissipation rate of turbulent ki-
netic energy,
ov.! ov!
eE= V—l . _l
Ox . Ox.
J J

(V! is the fluctuation of the ith velocity compo-
nent, x; are the Cartesian coordinates).

Fig. 2. Distributions of instantaneous (a) and averaged (b, c) vertical velocity components for mercury
convection in cylindrical container (CC) heated from below at Pr = 0.025: isosurface components a,
|Vy| = (.14; distribution b in central plane perpendicular to CC axis, y'= 0.5; distribution ¢ along
a line lying in (x'0y’) plane of CC at a height of y’= 0.5.

Blue structures correspond to downward flow, red to upward flow.

a) b)
B

il iy

T

Fig. 3. Averaged temperature field in central vertical plane of container (coinciding with LSC midplane)
with superimposed vectors of averaged velocity at Pr = 0.025:
entire convection region of mercury b, regions a, ¢ with corner vortices
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If Pr > 1, the smallest scale is the Batchelor
scale:

5,= 8,/Pr's,

Accordingly, the quality of the computa-
tions can be assessed by comparing the charac-
teristic sizes of the grid elements with different
smallest turbulence scales.

The computations started from the zero ve-
locity field and the uniform temperature field,
assumed to be equal to (7, + T))/2. The time
step did not exceed one thousandth of the
characteristic time #,=H/V,, guaranteeing that
the local values of the Courant number were
less than unity. The computed fields were aver-
aged over time starting after a transient process
that lasted about 2007,. The samples for averag-
ing were 3000z, for convection of mercury and
40007, for water.

Computational results and discussion

The quantities V and T in the discussion
below refer to the velocity and the temperature
difference T'— T, related to the corresponding
scale (V, and AT), and (X', y', 7) refer to the co-
ordinates related to the height of the container.

The quality of grid resolution was assessed
after the computations, using the statistics ac-
cumulated for the TKE dissipation field. We
actually analyzed the fields of the smallest
turbulence scales 5, and 5,, computed by the
above relations and taken relative to the cubic

>

root of the computational cell volume (}'73).
It was found that the ratios 3,/V"*and 5,/ V"
took values exceeding unity in almost the en-
tire region of the flow. The exceptions were a
small area near the side wall, in the layer with
the average height, and also the region with the
corner vortices, where the smallest values of
the ratios 3,/V"*and &,/ V" were 0.6—0.7.

Results for mercury. Fig. 2, a shows an in-
stantaneous distribution for convection of mer-
cury in the cylindrical container heated from
below, with pronounced large-scale circulation.
Fig. 2, b, ¢ shows the distribution of the aver-
aged vertical velocity component in the central
plane perpendicular to the container axis; the
vertical velocity component here and below re-
fers to the velocity component along the axis of
a slightly tilted container. Evidently, this dis-
tribution has double symmetry, as expected for
the case of LSC ‘locked’ in a certain azimuthal
position.

It is of particular interest to explore the
characteristic features of convective flow in the
central vertical plane of the container, which
coincides with the midplane of the LSC (see
Fig. 2); this plane is also the x'Oy’ plane of the
container axis tilt.

ig. 3 shows the vortex structure of the flow
and the temperature field in this plane. Notably,
aside from LSC, the flow contains several
smaller vortices located in the corners of the
container. The region occupied by additional

I
U(ld

X0y

0.6 d

X0y’

02 0.4

Fig. 4. Distributions of normalized components of Reynolds stress tensor and turbulent heat flux vector
along AC (black curve) and BD (red curve) diagonals of container’s central plane
in case of mercury convection (see Fig. 3), coordinate dx,oy, = 0 at points A and B, respectively
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vortices is considerably larger in the corners A
and C (see Fig. 3, @) than in the corners B and
D (see Fig. 3, ¢); the intensity of the vortices
also differs: it is much higher in the corners
A and C. Gradient layers near the isothermal
walls are clearly visible in the temperature field.

We also obtained three-dimensional fields
of all components of the Reynolds stress ten-
sor and the turbulent heat flux vector. These
data are interesting, in particular, for assessing
the capabilities of different second-order turbu-
lence models (Reynolds stress models) used for
computations of convective flows based on the
Reynolds-averaged Navier—Stokes equations.
Data for the central vertical plane of the con-
tainer are given in this paper. Two of the six
components of the Reynolds stress tensor, as

b)

well as one of the three components of the tur-
bulent heat flux are equal to zero in this plane
due to statistical symmetry of convection.

The distributions of the components of the
Reynolds stress tensor and the turbulent heat
flux vector are given in Fig. 4 along the diag-
onals of the central vertical plane (the corre-
sponding coordinate, denoted as d_ oy is used).
Because the averaged flow is symmetric, distri-
butions are given only for half of the diagonal.
Moreover, the given distributions were obtained
by averaging over two halves of each of the
diagonals (evidently, this technique effectively
increases the initial sample for obtaining statis-
tics). Fig. 4 shows that almost all of the given
the correlations are close to zero in a small
corner region (conditionally, at dx,oy, < 0.02)

0.12 y
0.1 0
0.08
0.06
.04
0.02

-0.02
-0.04
-0.06
| -0.08

0.1 -0.1
-0.12

[P T R M|
-04 02 0 02 0.4x’

Fig. 5. Distributions of instantaneous (@) and averaged (b, c) vertical velocity components for convection
of water in cylindrical container heated from below at Pr = 6.4
The distributions are similar to those shown in Fig. 2 for mercury

a) b)
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Fig. 6. Averaged temperature field with superimposed vectors of averaged velocity
in central vertical plane of container at Pr = 6.4
The distributions are similar to those shown in Fig. 3 for mercury

18



4St. Petersburg State Polytechnical University Journal. Physics and Mathematics 13 (1) 2020

where there is practically no flow in the me-
dium, with the exception of the Reynolds stress
due to fluctuations of the velocity component
normal to this plane (see Fig. 4, ¢). With d >
0.02, all correlations increase in absolute value
to a certain degree, and their variation is essen-
tially nonmonotonic with a further increase in
the distance from the corner. This is generally
consistent with the picture of the vector veloc-
ity field shown in Fig. 3: here, the stable region
in the corner is followed by the region where
two vortex structures coexist; their presence
and interaction determine the nonmonotonic
behavior of the distributions shown in Fig.
4. The spans of nonmonotonic segments are
somewhat different depending on the choice of
the diagonal (AC or BD). The region covered
by LSC follows the zones occupied by corner
vortices (d oy 0.15...0.2); the correlations
change relatively smoothly within this region.

The integral value of the Nusselt number
for convection of mercury, obtained as a re-
sult of these computations with Ra = 10°, was
Nu = 5.64, which is in good agreement with
the results of previous studies carried out in
the framework of the implicit LES (ILES) ap-
proach: Nu = 5.70 [25], Nu = 5.58 [35], and
also with the DNS results, Nu = 5.43 [30].

Results for water. Similar distributions are
shown in Figs. 5—7 for convection of water (Pr
= 6.4) at Ra = 108

>

We can conclude from the distributions of
the averaged vertical velocity and tempera-
ture (Fig. 5) that the solution obtained is also
symmetric with respect to the LSC midplane
(central vertical plane) in this case. In case of
long samples, symmetric statistical character-
istics of the flow can be obtained only if the
LSC is ‘locked’ in a certain azimuthal position.
Comparing the computational data shown in
Figs. 2 and 5, we can establish that the maxi-
mum values of the normalized vertical velocity
for convection of water are lower than for con-
vection of mercury by approximately five times.

Fig. 6 shows the structure of convective flow
of water in the central vertical plane. The same
as in in the case of mercury convection consid-
ered above (Fig. 3), large-scale circulation of
water is complemented by corner vortex struc-
tures. However, unlike convection of mercury,
there is only one pronounced vortex in each
of the corners A and C, and there are no in-
tense vortices at all in the corners B and D; the
flow turns sharply here, and a small region with
very slow motion evolves. These characteristics
of water convection in a cylindrical container
were earlier discussed in [15]. As expected,
high-gradient layers form in the temperature
field near the isothermal walls.

Fig. 7 shows the distributions of the non-
zero components of the Reynolds stress ten-
sor and the turbulent heat flux vector along
the diagonals of the central vertical plane. In

c)

0.6 d -
i

02 04 0.6 4 0 0.2

x'Oy'

04 0Sq, 0 02 0.4
X'ty

1
0.6
d L!.\"Qr'

Fig. 7. Distributions of normalized components of Reynolds stress tensor and turbulent heat flux vector
along AC (black curve) and BD (red curve) diagonals of central vertical plane of container
for water convection (see Fig. 6), coordinate d, o= 0 at points 4 and B, respectively
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contrast to convection of mercury, the correla-
tions given for Pr = 6.4 generally change more
smoothly; evidently, this is because the corner
vortex structures are underdeveloped in case
of convection of a fluid with a large Prandtl
number. However, segments where the effect
of corner vortices can be observed are also
visible in this case in the given distributions.
Furthermore, compared with the previous case
(see Fig. 4), the general level of normalized
correlations characterizing the intensity of tur-
bulent transfer is less by about 1 to 1.5 orders
of magnitude for convection of water than for
a fluid with a small Prandtl number.

The integral Nusselt number obtained
for convection of water with Ra = 10% was
Nu = 33.0, which coincides with the results
of previous computations [28] performed using
the DNS method up to three significant digits.

Conclusion

Direct numerical simulation helped accu-
mulate a large amount of statistical data for
essentially three-dimensional turbulent con-
vection in a slightly tilted cylindrical container
heated from below, whose height equals the
diameter. Computations were carried out for
Ra = 10° at Pr = 0.025 (mercury), and for
Ra = 10% at Pr = 6.4 (water).

We have found that tilting the container axis
by 2° relative to the gravity vector allows to

reliably ‘lock’ the global vortex (large-scale cir-
culation (LSC)) in a certain azimuthal position.

The pattern of the averaged flow in the cen-
tral vertical plane of the container, coinciding
with the midplane of the LSC, is characterized
by a combination of LSC with corner vortex
structures, which are most pronounced for
convection of the medium with a small Prandtl
number.

We have computed three-dimensional fields
of all components of the Reynolds stress tensor
and the turbulent heat flux vector. These data
can serve, in particular, for assessing the ca-
pabilities of different second-order turbulence
models (Reynolds stress models) used to com-
pute convective flows based on the Reynolds-
averaged Navier—Stokes equations.

The values obtained for the Nusselt inte-
gral number are in good agreement with the
data given in literature for a container with a
vertical axis.

This study was supported by the Russian
Foundation for Basic Research (Grant for Vortex-
Resolving Numerical Modeling of Turbulent
Natural Convection under Conjugate Heat
Transfer Conditions no. 17-08-01543).

The computational data were obtained us-
ing the resources of the Supercomputer Center
at Peter the Great Polytechnic University (www.
scc.spbstu.ru).
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