Приборы и техника физического эксперимента

DOI: 10.18721/JPM.12407

УДК 544.582

ПРОБОПОДГОТОВКА ДЛЯ МАСС-СПЕКТРОМЕТРИЧЕСКОГО АНАЛИЗА ФРАКЦИОНИРОВАНИЯ ИЗОТОПОВ ¹³С/¹²С ИЗ ОКРУЖАЮЩЕЙ СРЕДЫ В УГЛЕРОДНЫЙ ПУЛ РАСТЕНИЙ

Т.Э. Кулешова¹, Е.С. Павлова¹, Ю.А.Титов², А.Г. Кузьмин², Н.Р. Галль¹

¹ Физико-технический институт им. А.Ф. Иоффе РАН, Санкт-Петербург, Российская Федерация; ² Институт аналитического приборостроения РАН, Санкт-Петербург, Российская Федерация

С целью изучения различий в степени ассимиляции изотопов 13 С и 12 С в ходе жизнедеятельности растений (различия связаны со скоростью протекания фотосинтетических реакций), разработан ряд методик и создан аппаратный комплекс для сбора и подготовки пробы, предшествующих масс-спектрометрическому изотопному анализу углерода. Спроектирована и изготовлена установка для концентрирования углекислого газа, находящегося вокруг растения, с каталитическим дожиганием органических микропримесей, позволяющая повысить его относительное содержание более чем в 100 раз. Предложена методика проведения реакции окисления глюкозы листьев растений дрожжами с образованием углекислого газа, подобраны концентрации реагентов. Полученные пробы свободны от интерферирующих примесей, доля которых не превышала 10^{-5} . Разработанная методика пробоподготовки использована для изучения влияния спектральных характеристик световой среды на взаимообмен изотопов углерода между атмосферным воздухом и углеродным пулом растений.

Ключевые слова: изотопы углерода, растение, пробоподготовка, массспектрометрический анализ, концентрирование углекислоты, окисление дрожжами

Ссылка при цитировании: Кулешова Т.Э., Павлова Е.С., Титов Ю.А., Кузьмин А.Г., Галль Н.Р. Пробоподготовка для масс-спектрометрического анализа фракционирования изотопов 13 С/ 12 С из окружающей среды в углеродный пул растений // Научнотехнические ведомости СПбГПУ. Физико-математические науки. 2019. Т. 12. № 4. С. 69—78. DOI: 10.18721/JPM.12407

Статья открытого доступа, распространяемая по лицензии СС BY-NC 4.0 (https://creativecommons.org/licenses/by-nc/4.0/)

SAMPLE PREPARATION FOR A MASS-SPECTROMETRIC ANALYSIS OF ¹³C/¹²C ISOTOPE FRACTIONATION FROM ENVIRONMENT TO THE PLANT CARBON POOL

T.E. Kuleshova¹, E.S. Pavlova¹,

Yu.A. Titov², A.G. Kuzmin², N.R. Gall¹

¹ The Ioffe Institute of the Russian Academy of Sciences, St. Petersburg, Russian Federation

² Institute for Analytical Instrumentation, St. Petersburg, Russian Federation

In order to study the differences in the ¹³C and ¹²C isotopes assimilation degree related to the rate of photosynthetic reactions, we have developed a number of procedures of sample gasification and a hardware experimental complex for sample preparation before a mass-spectrometric isotope analysis of carbon involved in a plant life. A setup for concentrating the carbon dioxide located around the plant was designed and made. The setup makes catalytic

afterburning of organic microimpurities available for increasing the carbon content more than a hundred times. A reaction procedure for oxidation of leaf glucose by yeast generating carbon dioxide was suggested, reagent concentrations selected. The collected samples were free from impurities (not exceeding 10^{-5}). The developed sample preparation technique was used to study the effect of the light exposure characteristics on the carbon isotope interchange between atmospheric CO_2 and the plant carbon pool.

Keywords: carbon isotopes, plant, sample preparation, mass spectrometric analysis, CO_2 concentration

Citation: Kuleshova T.E., Pavlova E.S., Titov Yu.A., Kuzmin A.G., Gall N.R., Sample preparation for a mass-spectrometric analysis of ¹³C/¹²C isotope fractionation from environment to the plant carbon pool, St. Petersburg Polytechnical State University Journal. Physics and Mathematics. 12 (4) (2019) 69–78. DOI: 10.18721/JPM.12407

This is an open access article under the CC BY-NC 4.0 license (https://creativecommons. org/licenses/by-nc/4.0/)

Введение

При фотосинтезе наблюдается эффект фракционирования изотопов элементов, составляющих органические продукты, в частности, растения избирательно поглощают стабильные изотопы углерода ¹²С и 13 С [1 - 5]. Распределение изотопов между углекислым газом воздуха и продуктами фотосинтеза определяется реакционной способностью молекул различного изотопного состава, причем в продуктах реакции накапливается изотоп, с участием которого реакция протекает быстрее. Растения интенсивно накапливают изотоп 12С, и его относительное содержание в их тканях на 15 - 25 ‰ выше, чем в атмосфере. Предположительно, дифференциация изотопов в процессе фотосинтеза проходит в два этапа: на первом происходит предпочтительное поглощение из атмосферного воздуха углекислого газа ¹²CO₂ и его растворение в цитоплазме растений, что обусловлено кинетическим эффектом; на втором этапе в процессе синтеза органических соединений из растворенной в цитоплазме углекислоты СО, извлекается фракция, обогащенная в свою очередь изотопом 12С [6]. Анализ изотопного состава представляет большой интерес для исследований распределения углерода в системе почва - растение - атмосфера [7, 8], а также реакции растительных организмов на изменение внешних условий [9].

В настоящее время для мониторинга информации о процессах газообмена в системе растение — корнеобитаемая среда применяют электрохимические газовые сенсоры; при анализе потоков углекислого газа в закрытых камерах используют алгоритмы обработки и моделирования [10]; для изучения темнового газообмена растительных

объектов используют манометрический аппарат Варбурга [11]. Широкое распространение в качестве индикатора метаболизма, передвижения углерода и образования продуктов фотосинтеза нашло применение радиоактивного изотопа ¹⁴С [11, 12]. Однако данные методы не применимы для анализа изотопных процессов при конверсии углекислого газа из воздушной среды в углеродный пул растения в процессе его развития.

Наиболее распространенным и эффективным методом для измерения изотопного отношения ¹³C/¹²C является масс-спектрометрия. Однако стандартные методы и аппаратные комплексы забора и подготовки пробы для такого измерения не пригодны для проведения исследования непосредственно в зоне жизнедеятельности растений.

Таким образом, цель данной работы заключалась в разработке методики сбора и подготовки пробы, пригодной для исследования взаимообмена изотопов углерода между растением и атмосферой путем проведения изотопного масс-спектрометрического анализа отношения ¹³C/¹²C одновременно как в атмосферном углекислом газе около растения, так и в тканях растения в ходе его жизнедеятельности.

Методика и аппаратный комплекс пробоподготовки для масс-спектрометрического изотопного анализа углерода, участвующего в жизнедеятельности растений

С целью изучения изотопного состава углерода в тканях растений и степени его фракционирования из воздушной среды, нами была предложена методика и создан аппаратный комплекс, позволяющие осу-

ществлять пробоподготовку для масс-спектрометрического изотопного анализа углерода, участвующего в жизнедеятельности растений.

Измеряемое отличие отношения изотопов углерода образца от стандарта принято выражать в значениях $\delta^{13}C$:

$$\delta^{13}C = \left[\left({^{13}C}/{^{12}C} \right)_{smn} / \left({^{13}C}/{^{12}C} \right)_{stnd} - 1 \right] \cdot 10^3 \%_0,$$

где ${}^{13}\text{C}/{}^{12}\text{C}$ — изотопное отношение углерода; нижние индексы *smp* и *stnd* относятся к образцу и стандарту соответственно.

Для сопоставимости данных при изотопном анализе углерода введен общепринятый стандарт Belemnitella Americana (PDB) из формации Пи-Ди (PD) мелового возраста (Южная Каролина) с изотопным отношением углерода 13 C/ 12 C = $1123,72\cdot10^{-5}$.

Отношение 13 C/ 12 C определяется в газе 13 CO₂, концентрация которого в пробе должна быть достаточно высока (более 2 – 3 %) и постоянна. При работе с растениями мы сталкиваемся со следующими проблемами:

малая концентрация углекислого газа в воздушной среде вокруг растений ($\sim 3 \cdot 10^{-4} \% \, ^{13} CO_2$);

необходимость перевода органического вещества тканей растительных организмов в газообразное состояние.

Следовательно, для проведения изотопного масс-спектрометрического анализа необходимо обогащение газовой смеси, которое мы реализовали путем вымораживания в парах азота (см. далее). А для перевода твердого вещества в газообразное состояние мы предложили и реализовали метод, альтернативный термическому разложению, который заключается в использовании дрожжей в качестве окислителей углеродсодержащих соединений.

Анализ отношения ¹³C/¹²C проводили на специализированном изотопном статическом магнитном масс-спектрометре «Хеликомасс», разработанном в Физико-техническом институте им. А.Ф. Иоффе РАН, Санкт-Петербург [13]. Мы использовали лабораторный стандарт, откалиброванный по отношению к PDB с помощью масс-спектрометра Thermo Scientific Delta (США).

Трехколлекторная система детектирования, работающая в режиме спектрографа, позволяет регистрировать молекулярные ионы двуокиси углерода CO_2^+ со следующими отношениями массы к заряду:

m/z = 44 — значение соответствует основной изотопной модификации ¹²C¹⁶O¹⁶O;

m/z = 45 — сумме изотопных модификаший ¹³C¹⁶O¹⁶O и ¹²C¹⁷O¹⁶O:

m/z = 46 — сумме изотопных модификаций $^{12}\mathrm{C}^{18}\mathrm{O}^{16}\mathrm{O}$ и практически незначимым добавкам $^{13}\mathrm{C}^{17}\mathrm{O}^{16}\mathrm{O}$.

В работе использовали только значения m/z, равные 44 и 45, в качестве носителей аналитической информации об изотопном отношении 13 C/ 12 C.

С учетом изотопной распространенности углерода

$${}^{13}\text{C}/{}^{12}\text{C} = 0.01123 : 1.000$$

и кислорода

$${}^{18}O: {}^{17}O: {}^{16}O =$$

= 2,0048 · 10⁻³: 3,9093 · 10⁻⁴: 1,000

а также характеристик детектора, расчет величины δ^{13} С производился по следующему алгоритму:

Шаг 1. Определение интенсивности сигнала для изотопов 13 С и 12 С с учетом вклада изотопов кислорода

$$^{13}C = (I_{45}/33) - 2 I_{44} \cdot 3,9093 \cdot 10^{-4};$$

$$^{12}C = I_{44} + 2 I_{44} \cdot 2,0048 \cdot 10^{-3} + 2 I_{44} \cdot 3,9093 \cdot 10^{-4},$$

где I_{45} , I_{44} — интенсивности сигнала для значений m/z=45 и 44, соответственно.

Шаг 2. Расчет нормировочного коэффициента k по формуле

$$k = 0.0106956/R_{e}$$

где R_e — среднее значение 13 C/ 12 C для лабораторного эталонного газа, нормированное на коэффициент 0,0106956, являющийся абсолютным содержанием изотопа 13 C в лабораторном стандарте и измеренный по отношению к международному стандарту PDB.

где R_s — измеренное отношение 13 C/ 12 C для образца; $R_{\rm PDB}$ — отношение 13 C/ 12 C для стандарта PDB, равное 0,0112372.

Для молекулярного анализа состава газовых смесей, получаемых в ходе пробоподготовки образцов, определения концентраций отдельных компонентов и их идентификации в динамическом режиме, использовали квадрупольный масс-спектрометр ТЕХМАС МС7-100, разработанный в Институте аналитического приборостроения

РАН, Санкт-Петербург. В приборе предусмотрена возможность определять состав газовой смеси в диапазоне массовых чисел 2-100 а.е.м., что позволяет устанавливать наличие в пробе веществ и осколков молекул, интерферирующих с углекислым газом.

Установка для обогащения углекислого газа и определения изотопного отношения углерода в воздушной среде, окружающей растение

Для реализации изотопного масс-спектрометрического анализа углерода в атмосферной среде около растений, необходимо обогатить газовую смесь углекислым газом воздуха. Одним из способов концентрирования углекислого газа является его вымораживание. При абсолютном давлении 760 мм рт. ст. и температуре -78.9 °C, углекислота переходит в твердое состояние. Процесс вымораживания осуществляется в тепловом режиме, обеспечивающем кристаллизацию углекислоты на стенках накопительного сосуда, и в отсутствие снега в потоке воздуха. При этом разность температур между воздухом и стенками не должна превышать 30 °C, а скорость потока газа (во избежание срыва и уноса осажденных кристаллов) должна быть не выше 3 м/с.

С учетом описанных условий нами была

реализована методика обогащения газовой смеси углекислым газом. Схема установки для концентрирования углекислого газа представлена на рис. 1. В теплоизоляционный сосуд 4, наполненный примерно на треть жидким азотом, помещали пробирку 3, через которую прокачивали малые потоки атмосферного воздуха. Пробирка располагалась в парах азота таким образом, чтобы температура ее дна составляла около $-100\,^{\circ}\mathrm{C}$. В качестве герметичной камеры для тестируемого растения использовали эксикатор I.

Система вымораживания состоит из двух контуров, в одном витке 2 которого поддерживается температура чуть ниже нуля и обеспечивается осаждение воды, а также осущение газовой смеси, в другом холодильнике-теплообменнике 3, выполненном в виде стеклянной пробирки объемом 235 см³, температура в области подачи газовой смеси — ниже -100 °C, что позволяет перевести углекислый газ в твердую фазу. Скорость потока не превышает 0,5 м³/ч, что позволяет десорбироваться твердой углекислоте на стенках пробирки. Система пневмотрубок, соединяющая все составляющие установки и побудитель расхода 5, обеспечивает циркуляцию газовой смеси от

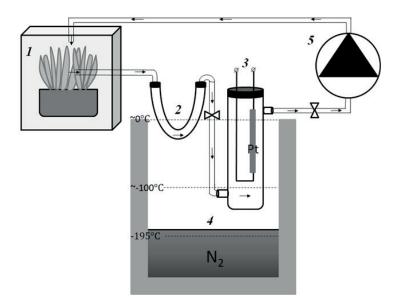


Рис. 1. Установка для обогащения углекислого газа из атмосферы, окружающей растение: I — герметичная фитокамера с трубками отвода и подвода воздуха, 2 — U-образная трубка для осущения газовой смеси, 3 — пробирка Вюрца для осаждения углекислого газа в парах азота с встроенным катализатором для дожигания органических примесей,

4- теплоизоляционный сосуд с жидким азотом, 5- побудитель расхода. Температура контролируется термопарой

растения через систему емкостей обратно в камеру с исследуемым объектом.

После цикла вымораживания, длящегося 15 мин, концентрированная двуокись углерода в пробирке переводится в газообразное состояние нагреванием при комнатной температуре. Пробирка оснащена платиновым катализатором 35×1 мм, обеспечивающим при токе накала 3,5 А температуру свыше 900 °С. После оттаивания в пробирке осуществляется каталитическое сжигание примесей за время $\tau \approx 600$ с. Согласно нашей оценке, общая концентрация примесей, способных интерферировать при изотопных измерениях углерода с целевыми ионами на массовых числах 44 и 45, не превышала уровня 10^{-5} .

Методика определения изотопного отношения для углерода глюкозы в тканях растений

Для того чтобы определять изотопный углерода глюкозы В тканях растительных основываясь организмов, разработанном методе изучения фракционирования изотопов углерода гетеротрофными микроорганизмами [14], было предложено использовать реакцию окисления дрожжами для перевода простых сахаров растений в газовую фазу с образованием углекислого газа.

Утилизация глюкозы дрожжами происходит в основном двумя путями:

гликолитическое расщепление, т. е. из молекулы глюкозы образуются две молекулы пирувата;

частичное окисление глюкозы в окислительном пентозофосфатном цикле, когда из молекулы глюкозы образуются три молекулы двуокиси углерода и пируват [14].

Пируват, синтезированный обоим указанным ПУТЯМ метаболизма глюкозы, затем может окисляться трикарбоновых цикле кислот отщеплением молекулы углекислого газа и присоединением кофермента А (СоА) с образованием ацетил-СоА:

$$CH_3$$
-CO-COOH + SH-CoA + NAD \rightarrow
 \rightarrow CO₂ + CH_3 -CO-S-CoA + NAD• H_2 .

В отсутствие кислорода далее протекает реакция спиртового брожения, суммарное уравнение которого имеет следующий вид:

$$C_6H_{12}O_6 \rightarrow 2CO_2 + 2C_2H_5OH.$$

Образующийся в ходе реакции ацетальдегид имеет молярную массу

44 г/моль, что не позволяет разделить его с целевым соединением — углекислым газом. Однако в связи с тем, что исходным веществом для углерода, составляющего ацетальдегид СН₃СОН, является глюкоза, погрешности в изотопном составе растения это вещество вносить не будет. Этиловый спирт с молярной массой 46 г/моль начинает образовываться примерно через сутки после начала реакции, после того, как дрожжи израсходуют питательные вещества, представленные в нашем случае глюкозой в растительных тканях.

Методика заключалась в следующем: в герметичную пробирку помещали измельченную растительную ткань, воду и сухие дрожжи (рис. 2); после 30-минутной реакции синтезированный углекислый газ отбирали для масс-спектрометрического анализа.

На квадрупольном масс-спектрометре МС 7-100 был зарегистрирован полный масс-спектр газовой смеси, которая образовывалась в реакционной пробирке в ходе реакции окисления дрожжами (рис. 3). Относительно газов в атмосферном воздухе, в ходе реакции (в течение 15 мин) наблюдался рост интенсивности пиков в масс-спектре, относящихся к значению m/z = 44 (CO₂) (в 53 раза) и в интервале значений m/z = 50 - 70 (в 5 – 10 раз).

Согласно данным работы [15], в области

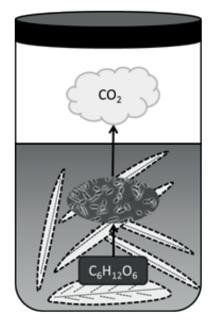


Рис. 2. Окисление глюкозы из листьев растений дрожжами до получения углекислого газа в реакционной пробирке

m/z = 50 - 70 лежат, в основном, сигналы от осколочных ионов, и нет данных о пиках, относящихся к интерференции осколков, при m/z = 45 (эта масса соответствует молекуле CO_2 с изотопом ^{13}C). Кроме того, отсутствие пика на m/z = 46 говорит об отсутствии в газовой смеси паров этилового спирта, который обычно является главным интерферирующим агентом при изотопных измерениях углерода. По нашей оценке, общая концентрация примесей, молекулярные или осклочные ионы которых способны интерферировать с целевыми ионами, используемыми при изотопных измерениях на массовых числах 44 и 45, не превышала уровня 10-5, что обеспечивало необходимую точность измерений в 1 %.

Соотношение компонентов реакции для спиртового брожения должно быть следующим: 1 кг сахара, 4 — 5 л воды, 100 г прессованных дрожжей или 20 г сухих. В связи с тем, что концентрация сахаров в тестируемых тканях растения точно не

известна, нами был проведен эксперимент по подбору концентраций реагентов (см. таблицу). Существенных различий в значениях δ^{13} С листьев выявлено не было. Стандартное отклонение среди полученных значений равно 1,3 ‰. Значение δ^{13} С, например, для 1 мг растительной ткани на 1 мл воды (вторая строка таблицы) через

Таблица Зависимость δ^{13} С глюкозы листьев от концентрации реагентов в реакции окисления дрожжами

Количество реагента (мг) на 1 мл воды		2120 00
Растительная ткань	Дрожжи	δ ¹³ C, ‰
0,5	1,05	$-33,6 \pm 0,9$
1,0	1,04	$-33,6 \pm 0,9$
2,0	1,05	-31.8 ± 0.9

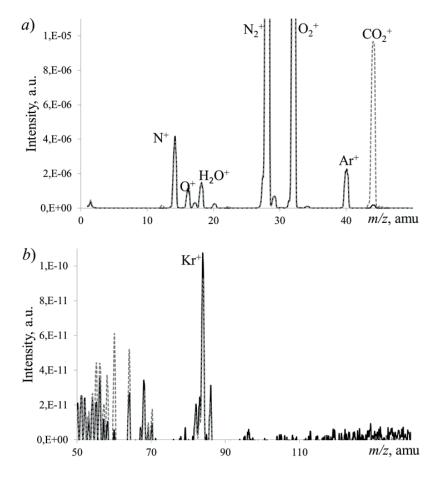


Рис. 3. Масс-спектры воздуха в реакционной пробирке (сплошная кривая) и в газовой смеси, образующейся в ходе окисления глюкозы листьев растений дрожжами (пунктирная кривая) в диапазонах m/z 0 - 45 а.е.м. (a) и 45 - 95 а.е.м. (b)

60 мин после начала реакции составило $-35,3\pm0,9$ ‰, а через 90 мин составило $-33,6\pm0.9$ ‰.

Помимо исследования растительных сахаров, был получен и проанализирован изотопный состав сахаров, относящихся к различным типам фотосинтеза и используемых в качестве субстрата для дрожжей.

При окислении дрожжами свекольного сахара, выделенного из С3-растений (фиксирующих углекислоту по С3-механизму фотосинтеза [16]), полученное отношение изотопов углерода составило

$$\delta^{13}C = -33.4 \pm 1.9 \%$$
.

Для тростникового сахара, синтезированного из C4-растения (высшие растения с C4-фотосинтезом [16]), значение

$$\delta^{13}C = -14.6 \pm 1.6 \%$$
.

Полученные нами значения согласуются с литературными данными для указанных типов фотосинтеза, что позволяет применять предложенную методику для широкого круга объектов.

Применение разработанной методики пробоподготовки

Указанные методы использованы для того, чтобы изучить влияние спектральных характеристик освещения взаимообмена изотопов углерода между атмосферным воздухом И органами растений, осуществляющими фотосинтез. Оказалось, что изотопный состав листьев существенно зависит от спектра освещения, при котором растение выращивалось. Так, при изменении спектра от красной синей составляющих отношение 13 С/ 12 С изменялось в интервале от -35до -23 ‰, причем зависимость от длины волны носила немонотонный характер. Разница между изотопным составом углерода в воздухе около растений и в их листьях меняется в пределах от 7 до **%** в зависимости от спектрального освещения характеризует состава И скорость ассимиляции углерода за счет протекания фотосинтетических реакций и фотодыхания. Эта разница отражает степень фракционирования изотопов в ходе жизнедеятельности растений и может быть использована в качестве параметра фитомониторинга. Более детально результаты будут опубликованы позднее.

Краткие результаты и выводы

В результате проведенного исследования была разработана система для сбора и подготовки пробы для проведения масс-спектрометрического анализа фракционирования изотопов ¹³C/¹²C из окружающей среды в углеродный пул растений. Разработка системы включала следующие аспекты:

создание установки для сбора и обогащения пробы углекислого газа из воздуха, окружающего растения, *in vivo*, путем вымораживания углекислого газа при температуре паров жидкого азота;

разработку и применение методики получения пробы углекислого газа из содержащейся в листьях глюкозы путем их биохимического окисления дрожжами.

В результате экспериментальных исследований, проведенных на созданной установке по разработанной методике, установлено, что отношение изотопов углерода в углекислом газе, выделяемом при окислении растительной ткани дрожжами, в течение трех часов остается неизменным.

При окислении дрожжами полученные отношения изотопов углерода составили

$$\delta^{13}C = -33.6 \pm 0.9 \%$$

для листа С3-растения;

$$\delta^{13}C = -33.4 \pm 1.9 \%$$

для свекольного сахара, выделенного из C3-растений;

$$\delta^{13}C = -14.6 \pm 1.6 \%$$

для тростникового сахара, синтезированного из С4-растения.

Приведенные значения согласуются с литературными данными для этих типов фотосинтеза, что позволяет применять предложенную методику для широкого круга объектов.

Разработанная система сбора и подготовки проб обеспечила существенное повышение точности изотопных измерений благодаря концентрированию углекислого газа из пространства вокруг растения и устранению интерферирующих органических примесей.

Метод пробоподготовки был с успехом использован для измерения зависимости изотопного отношения углерода от спектрального состава светового воздействия на растения в процессе их роста. Показаны существенные различия в изотопном составе углекислого газа

атмосферы и листьев растений.

Таким образом, изотопное отношение ¹³С/¹²С рекомендуется использовать как важный показатель скорости протекания реакции фотосинтеза, а разница между значениями δ^{13} C ДЛЯ окружающего растение воздуха, вовлеченного в его метаболизм, и δ^{13} С углеродного пулатканей растительного организма потенциально отражает степень фракционирования изотопов ходе жизнедеятельности растений.

СПИСОК ЛИТЕРАТУРЫ

- 1. O'Leary M.H. Carbon isotope fractionation in plants // Phytochemistry. 1981. Vol. 20. No. 4. Pp. 553-567.
- 2. Brugnoli E., Farquhar G.D. Photosynthetic fractionation of carbon isotopes // Leegood R.C., Sharkey T.D., von Caemmerer S. (Eds.). Photosynthesis: Physiology and metabolism. Kluwer, Dordrecht: Springer, 2000. Pp. 399-434.
- 3. Gessler A., Ferrio J.P., Hommel R., Treydte K., Werner R.A., Monson R.K. Stable isotopes in tree rings: towards a mechanistic understanding of isotope fractionation and mixing processes from the leaves to the wood //Tree Physiology. 2014. Vol. 34. No. 8. Pp. 796-818.
- 4. Lehmann M.M., Ghiasi S., George G.M., Cormier M.A., Gessler A., Saurer M., Werner R.A. Influence of starch deficiency on photosynthetic and post-photosynthetic carbon isotope fractionations // Journal of Experimental Botany. 2019. Vol. 70. No. 6. Pp. 1829–1841.
- 5. Галимов Э.М. Геохимия стабильных изотопов углерода. М.: Изд-во «Недра», 1968. 226 c.
- 6. Park R., Epstein S. Carbon isotope fractionation during photosynthesis Geochimica et Cosmochimica Acta. 1960. Vol. 21. No. 1-2. Pp. 110-120.
- 7. Brüggemann N., Gessler A., Kayler Z., et al. Carbon allocation and carbon isotope fluxes in the plant-soil-atmosphere continuum: a review // Biogeosciences. 2011. Vol. 8. No. 11. Pp. 3457-3489.
- 8. Hagedorn F., Joseph J., Peter M., et al. Recovery of trees from drought depends on belowground sink control // Nature Plants. 2016. Vol. 2. No. 8. P. 16111.
- 9. Gessler A., Cailleret M., Joseph J., et al. Drought induced tree mortality - a tree ring isotope based conceptual model to assess

- mechanisms and predispositions //New Phytologist. 2018. Vol. 219. No. 2. Pp. 485-490.
- 10. Hoffmann M., Jurisch N., Borraz E.A., Hagemann U., Drösler M., Sommer M., Augustin J. Automated modeling of ecosystem CO, fluxes based on periodic closed chamber measurements: A standardized conceptual and practical approach //Agricultural and Forest Meteorology. 2015. Vol. 200. January. Pp. 30-45.
- 11. Заленский О.В., Семихатова О.А., Вознесенский В.Л. Методы применения радиоактивного углерода С14 для изучения фотосинтеза. М.: Изд-во Академии наук СССР, 1955. 90 c.
- 12. Dieuaide-Noubhani M., Alonso A.P., Rolin D., Eisenreich W., Raymond P. Metabolic flux analysis: recent advances in carbon metabolism in plants // Plant Systems Biology. Birkhäuser Basel, 2007. Pp. 213-243.
- 13. Блашенков Н.М., Шешеня Е.С., Соловьев С.М., Галль Л.Н., Саченко В.М., Заруцкий И.В., Галль Н.Р. Разработка специализированного изотопного масс-спектрометра для неинвазивной диагностики инфицированности человека Helicobacter Pylori // Журнал технической физики. 2013. Т. 83. № 6. C. 60-65.
- 14. Зякун А.М. Теоретические основы изотопной масс-спектрометрии в биологии. Пущино: «Фотон-век», 2010. 224 с.
- 15. Ануфриев Г.С., Болтенков Б.С., Капитонов И.Н., Рябинков А.И. Исследование остаточного газа при помощи масс-спектрометра высокого разрешения. Ленинград: Изд-во ФТИ, 1990. 35 с.
- 16. Эдвардс Д., Уокер Д. Фотосинтез С3- и С4-растений: механизмы и регуляция: Пер. с англ. М.: Мир, 1986. 590 с.

Статья поступила в редакцию 26.08.2019, принята к публикации 09.09.2019.

СВЕДЕНИЯ ОБ АВТОРАХ

КУЛЕШОВА Татьяна Эдуардовна — младший научный сотрудник Физико-технического института им. А.Ф. Иоффе РАН, Санкт-Петербург, Российская Федерация.

194021, Российская Федерация, г. Санкт-Петербург, Политехническая ул., 26 76 www.piter.ru@bk.ru

ПАВЛОВА Екатерина Сергеевна — младший научный сотрудник Физико-технического института им. А.Ф. Иоффе РАН, Санкт-Петербург, Российская Федерация.

194021, Российская Федерация, г. Санкт-Петербург, Политехническая ул., 26 sheshenayket@gmail.com

ТИТОВ Юрий Алексеевич — младший научный сотрудник Института аналитического приборостроения РАН, Санкт-Петербург, Российская Федерация.

198095, Российская Федерация, г. Санкт-Петербург, ул. Ивана Черных, 31—33. titov.uriy@gmail.com

КУЗЬМИН Алексей Георгиевич — кандидат физико-математических наук, ведущий специалист Института аналитического приборостроения РАН, Санкт-Петербург, Российская Федерация.

198095, Российская Федерация, г. Санкт-Петербург, ул. Ивана Черных, 31—33. agqz55@rambler.ru

ГАЛЛЬ Николай Ростиславович — доктор физико-математических наук, ведущий научный сотрудник Института аналитического приборостроения РАН, Санкт-Петербург, Российская Федерация.

190103, Российская Федерация, г. Санкт-Петербург, Рижский пр., 26 gall@ms.ioffe.ru

REFERENCES

- 1. **O'Leary M.H.**, Carbon isotope fractionation in plants, Phytochemistry. 20 (4) (1981) 553–567.
- 2. **Brugnoli E., Farquhar G.D.,** Photosynthetic fractionation of carbon isotopes, In: Leegood R.C., Sharkey T.D., von Caemmerer S. (Eds.), Photosynthesis: Physiology and metabolism. Springer, Kluwer, Dordrecht (2000) 399–434.
- 3. **Gessler A., Ferrio J.P., Hommel R., et al.,** Stable isotopes in tree rings: towards a mechanistic understanding of isotope fractionation and mixing processes from the leaves to the wood, Tree Physiology. 34 (8) (2014) 796–818.
- 4. Lehmann M.M., Ghiasi S., George G.M., et al., Influence of starch deficiency on photosynthetic and post-photosynthetic carbon isotope fractionations, Journal of Experimental Botany. 70 (6) (2019) 1829–1841.
- 5. **Galimov E.M.,** Geokhimiya stabilnykh izotopov ugleroda [Geochemistry of stable carbon isotopes], "Nedra" Publishing, 1968.
- 6. **Park R., Epstein S.,** Carbon isotope fractionation during photosynthesis, Geochimica et Cosmochimica Acta. 21 (1–2) (1960) 110–120.
- 7. Brüggemann N., Gessler A., Kayler Z., et al., Carbon allocation and carbon isotope fluxes in the plant-soil-atmosphere continuum: a review, Biogeosciences. 8 (11) (2011) 3457–3489.
- 8. Hagedorn F., Joseph J., Peter M., et al., Recovery of trees from drought depends on belowground sink control, Nature plants. 2 (8) (2016) 16111.

- 9. Gessler A., Cailleret M., Joseph J., et al., Drought induced tree mortality a treering isotope based conceptual model to assess mechanisms and predispositions, New Phytologist. 219 (2) (2018) 485–490.
- 10. Hoffmann M., Jurisch N., Borraz E.A., et al., Automated modeling of ecosystem CO₂ fluxes based on periodic closed chamber measurements: a standardized conceptual and practical approach, Agricultural and Forest Meteorology. 200 (January) (2015) 30–45.
- 11. **Zalenskiy O.V., Semikhatova O.A., Voznesenskiy V.L.,** Metody primeneniya radioaktivnogo ugleroda C¹⁴ dlya izucheniya fotosinteza [Radioactive carbon-14 application method for a photosynthesis study], USSR Academy of Sciences Publishing House, Moscow, 1955.
- 12. **Dieuaide-Noubhani M., Alonso A.P., Rolin D., et al.,** Metabolic flux analysis: recent advances in carbon metabolism in plants, Plant Systems Biology, Birkhäuser Basel (2007) 213–243.
- 13. Blashenkov N.M., Sheshenya E.S., Solov'ev S.M., et al., Development of a dedicated isotope mass spectrometer for the noninvasive diagnostics of humans infected with *Helicobacter Pylory*, Technical Physics. 58 (6) (2013) 836–840.
- 14. **Zyakun A.M.,** Teoreticheskiye osnovy izotopnoy mass-spektrometrii v biologii [Theoretical basis for isotopic mass spectrometry in biology], «Foton-vek», Pushchino, 2010.

15. Anufriyev G.S., Boltenkov B.S., Kapitonov I.N., Ryabinkov A.I., Issledovaniye ostatochnogo gaza pri pomoshchi mass-spektrometra vysokogo razresheniya [Residual gas investigation using high-resolution mass spectrometer], Ioffe Physical Technical

Institute of the Russian Academy of Sciences, Leningrad, 1990.

16. **Edwards G., Walker D.,** C3, C4: mechanisms, and cellular and environmental regulation of photosynthesis, University of California Press, 1983.

Received 26.08.2019, accepted 09.09.2019.

THE AUTHORS

KULESHOVA Tatiana E.

The Ioffe Institute of the Russian Academy of Sciences 26 Polytekhnicheskaya St., St. Petersburg, 194021, Russian Federation www.piter.ru@bk.ru

PAVLOVA Ekatherina S.

The Ioffe Institute of the Russian Academy of Sciences 26 Polytekhnicheskaya St., St. Petersburg, 194021, Russian Federation sheshenayket@gmail.com

TITOV Yuriy A.

Institute for Analytical Instrumentation 31–33, Ivana Chernykh St., St. Petersburg, 198095, Russian Federation titov.uriy@gmail.com

KUZMIN Alexey G.

Institute for Analytical Instrumentation 31–33, Ivana Chernykh St., St. Petersburg, 198095, Russian Federation agqz55@rambler.ru

GALL Nicholas R.

The Ioffe Institute of the Russian Academy of Sciences 26 Polytekhnicheskaya St., St. Petersburg, 194021, Russian Federation gall@ms.ioffe.ru