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In the article, a basic mathematical model of new information dissemination in the society 
is constructed and studied. The suggested model has been described using the system of four 
ordinary differential equations with square nonlinearity in the right parts. Two stationary solu-
tions furnishing quite logical interpretation for this system were found. Two areas with various 
properties of stationary solutions were separated in the parameters’ space of the system. The 
global properties of a phase pattern of the constructed dynamic system were investigated by 
qualitative methods of the differential equations theory. The obtained results allowed finding 
several possible scenarios of new information dissemination in the society.
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В статье строится и исследуется базовая математическая модель распространения 
в обществе новой информации. Предлагаемая модель представлена системой четырех 
обыкновенных дифференциальных уравнений с квадратичной нелинейностью в правых 
частях. Для данной системы найдены два стационарных решения, допускающие 
вполне логичную интерпретацию. В пространстве параметров системы выделены две 
области, в которых стационарные решения обладают разными свойствами. С помощью 
качественных методов теории дифференциальных уравнений изучены глобальные 
свойства фазового портрета построенной динамической системы. Это позволило 
выделить несколько возможных сценариев распространения новой информации в 
обществе.
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Introduction

Mass media have a great influence on all 
spheres of society, playing a major role in shap-
ing the public opinion. Every day people receive 
huge amounts of new information affecting their 
choices and preferences, regardless of whether 
the media are perceived as a source of news, edu-
cational information, entertainment, or simply as 
a means to keep in touch with the external world.

There is clear movement towards the so-
called information society. For example, this 
phenomenon has already been given a definition 
within Russian legislation. According to Article 
3 of the Strategy of the Information Society 
Development in the Russian Federation for 
2017-2030, the information society is a society 
where information, its applications and access to 
it fundamentally affect the economic and socio-
cultural aspects of life1. Thus, information and 
knowledge are the main resources in this type of 
society [1]. The mass media play an increasingly 
pivotal role in shaping public opinion and con-
sciousness. They are the original source of news, 
providing the latest information from anywhere 
in the world, sometimes in real time. People are 
well within their right to trust or mistrust the in-
formation disseminated by journalists and their 
assessments of what is happening. In the age 
of advanced information technologies, any news 
can be distributed in the society or its segment. 
Modern technologies for influencing the public 
consciousness through mass media can be used 
with equal success for unifying and stabilizing 
the society or for alienating and destabilizing it. 
The decisive factors are the goals of those initi-
ating the information impact and the potential 
of the objects of this impact, either willing to 
accept these goals or to protect themselves from 
external pressure [2]. Success in introducing a 
new concept in society largely depends on the 
positions of influential mass media capable of 
shaping the public opinion (on the one hand), 
and the subjects of society, such as expert com-
munities or executive bodies, capable of using 
mass media to cover alternative viewpoints and 
promote their own concepts in society (on the 
other hand) [3]. This informational confronta-
tion is characterized by common factors; there-
fore, formalizing and studying the patterns gov-
erning this process is a challenging issue.

1 On the Strategy of the Information Society Development in 
the Russian Federation for 2017–2030. Decree of the President 
of the Russian Federation of May 9, 2017 No. 203 // Collected 
legislation of the Russian Federation. 2017. No. 20, Article 
2901.

Construction of the model

We have constructed and analyzed the basic 
mathematical model for dissemination of new 
information in society. We should note that the 
model proposed is fairly generalized and should 
be further refined. However, even in this form 
it allows to combine the factors required for 
promoting news information into a system and 
may be useful for studying the overall picture.

We assume that the main factors for 
dissemination of new information are the 
following quantities, depending on the 
time t: N(t), C(t), A (t) and i(t). They express 
the following concepts:

N(t) (News) is the amount of news 
information (different kinds of messages) 
contributing to dissemination of a new concept 
in society (or a segment of society);

C(t) (Censorship) is the number of entities with 
their own information resources in the structure 
of society (or a segment of society) interested in 
preserving previously adopted concepts;

A(t) (Alternative view) is the amount of 
information (different kinds of messages) 
hindering dissemination (including on behalf 
of agencies of censorship) of a new concept in 
society (or a segment of society);

i(t) (index) is a relative characteristic for 
acceptance of a new concept at time t,

*

1 ,Ii
I

= −

where I, %, is the characteristic of society fully 
accepting a certain idea, which is replaced by 
a new concept; I*, %, is the corresponding 
characteristic for acceptance of this idea in 
dissemination of a new concept.

Evidently, i = 0 before dissemination starts, 
and i = 1 as the new concept is fully accepted.

Let us construct the corresponding relations 
for the model. The first equation describes the 
dynamics of the number of messages N(t) in 
mass media:

.dN Ndt ANdt= β − γ

The expression dN on the left-hand side 
corresponds to the numerical change in news 
information promoting dissemination of a new 
concept in society over the time interval dt. 
Non-negative parameters β, γ characterize the 
intensity of information dissemination through 
mass media and the likelihood that the impact 
of the message is neutralized by an alternative 
point of view presented, respectively. Dividing 
the ratio by dt, we ultimately obtain the equation
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.dN N AN
dt

= β − γ (1)

The next equation describes the response of 
different censorship agencies to new information 
emerging, related to dissemination of new ideas 
in society. It is assumed that the administrative 
resource in the amount of C* is always used 
to support concepts in the social environment. 
Therefore, as new information is disseminated, 
the activity of information protection agencies 
C and, accordingly, the numerical value of the 
resource may change compared with C*:

* *( ) ( ) .d C C ANdt C C dt− = α −µ −

The non-negative coefficient α characterizes 
the reaction to the intensity of the confrontation 
of alternative viewpoints; the positive parameter 
µ is the coefficient equal to the reciprocal of the 
time that the additionally established agencies 
operate. 

Given that d(C – C*) = dC, we obtain:

*( ).dC AN C C
dt

= α −µ − (2)

The third equation is used to calculate the 
balance of the number of alternative news as 
an opportunity for society to influence the 
dissemination of a new, unfamiliar concept 
through mass media. It is proposed to rely on 
the following ratio:

,dA Cdt ANdt Adt= ρ −ηγ −λ (3)

where dA is the number of current news ap-
pearing in the information environment as an 
alternative to news N in the time interval dt; 
the first term ρCdt on the right-hand side de-
scribes the news produced in dt, while ρ ≥ 0 is 
the average rate of news from one information 
agency C; the second term ηγANdt describes 
the decrease in the number of current news due 
to targeted impact on news N for dt, η ≥ 0 is 
the average amount of news information A for 
neutralizing the effect of message N; the third 
term λAdt describes how the news information 
is forgotten in dt, λ > 0 is the coefficient in-
versely proportional to the time in which infor-
mation is forgotten.

Dividing the ratio (3) by dt, we obtain the 
equation

.dA C AN A
dt

= ρ −ηγ −λ

To characterize the acceptance of a 
new concept, let us consider the following 
equation:

.di N i
dt

= σ −ω (4)

Eq. (4) indicates that the rate by which the 
acceptance of a new idea changes is proportional 
to the amount of new information N with a 
proportionality coefficient σ > 0 given the 
inertia and suspicion towards new information 
with the corresponding coefficient describing 
how the acceptance of the old concept is 
restored, ω ≥ 0.

As a result, we obtain the following system 
of nonlinear ordinary differential equations:

*

,

( ),

,

.

dN N AN
dt

dC AN C C
dt
dA C AN A
dt

di N i
dt

= β − γ

= α −µ −

= ρ −ηγ −λ

= σ −ω

(5)

From now on, we shall write system (5) in a 
form that is more convenient for analysis:

*( ),

( ) ,

( ) ,

.

dC AN C C
dt
dA C N A
dt

dN A N
dt
di N i
dt

= α −µ −

= ρ − λ +ηγ

= β− γ

= σ −ω

(6)

Let us combine this system of equations (6) 
with the initial data at t = t0:

0 0 0 0

0 0 0 0

( ) 0, ( ) 0,
( ) 0, ( ) 0,

C t C A t A
N t N i t i

= ≥ = ≥
= ≥ = ≥

(7)

We shall define the system of equations 
(6) with initial conditions (7) as the basic 
mathematical model of propagation of new 
information in society.

Since system (6) is autonomous, we take 
t0 = 0; the functions C(t), A(t), N(t), i(t) are 
assumed to be continuous in their domain.
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Analysis of the model

Statement 1. If for all t ≥ 0 there exists a 
solution to system (6) with initial conditions (7), 
then the set

{
}

4

4

( , , , )

: 0, 0, 0, 0

R C A N i

R C A N i
+ = ∈

∈ ≥ ≥ ≥ ≥

is invariant for this system.
P roo f . Indeed, it follows from the third 

equation of system (6) that the following 
condition holds true for t ≥ 0

0
0

( ) exp[ ( ) ] 0.
t

N t N A dt= β− γ ≥∫

This condition preserves the function i(t) 
non-negative with t ≥ 0. In fact, if N(t) = 0, 
then

0( ) exp[ ] 0.i t i t= −ω ≥

If N(t) ≥ 0, then i(t) > 0 near the point t = 
0. Indeed, if i0 = 0,

0 0,t
di N
dt = = σ >

i(t) increases in the vicinity of t = 0.b
Then, due to continuity, i(t) becomes 

negative if there exists a point t = t1 > 0, where

11( ) 0, 0.t t
dii t
dt == <

But this is impossible, since

1 1 1 1( ) ( ) ( ) 0.t t
di N t i t N t
dt = = σ −ω = σ >

Similarly, it is easy to prove that functions 
C(t) and A(t) are non-negative with initial 
conditions (7).

Statement 1 is proved.
Corollary 1. If C0 ≥ C* for the conditions of 

Statement 1, then the inequality C(t) ≥ C* is 
satisfied for all t ≥ 0. 

The solution of system (6) is non-negative, 
which corresponds to the meaning of the 
described process, since the variables of the 
model are interpreted as quantities whose 
values cannot be negative.

Similarly, it is easy to prove [4–7] that system 
(6) has unique, infinitely extendable solutions, 
continuously depending on parameters.

System (6) admits two stationary solutions:

*
1 1 1 1 1 *

2 2 2 2 2

( , , , ) ( , ,0,0);

( , , , ),

st st st st st

st st st st st

CX C A N i C

X C A N i

ρ
= =

λ
=

where
2

*
2 2

* *
2 2

, ,
( )

( ) ( ), .
( ) ( )

st st

st st

CC A

C CN i

αλβ−ηµγ β
= =

γ αρ−µηγ γ
µ λβ− γρ σµ λβ− γρ

= =
β αρ−µηγ ωβ αρ−µηγ

Let us select two regions in the system pa-
rameter space, where Xist ∈ R4

+, i = 1, 2:

* *
1 2

, ,
: :

, .
C Cγρ > λβ γρ < λβ 

Ω Ω µηγ > αρ µηγ < αρ 

Interpretation: Here X1st can be defined as 
the state of society in which a certain concept 
dominates. The administrative resource C* with 
the necessary amount of information ρC*/λ in 
mass media is used to support the concept in 
society. X2st is characterized as a state of society 
where the familiar old concept and the new 
concept (represented by their shares) coexist, 
and the relative characteristic of acceptance of 
new ideas i2st has a positive value.

To study the stability of stationary solutions 
of system (6), we linearize it in the vicinity of 
stationary points Xist, i = 1, 2, and analyze the 
characteristic equation of the system of its first 
approximation:

11

22

33

44

0
0

( ) 0,
0 0
0 0

ist ist

ist

ist

a k N A
a k A

W k
N a k

a k

− α α
ρ − −ηγ

= =
−γ −

σ −

where

11 22

33 44

, ,
, .

ist

ist

a a N
a A a
= −µ = −ηγ −λ
= β− γ = −ω

For X1st = (C1st, A1st, N1st, i1st), we have:

*
1( ) ( )( )( ) 0.CW k k k k kρ = β− − λ + µ + ω+ = λ 

For X2st = (C2st, A2st, N2st, i2st), respectively,

3 2
2 ( ) ( )( ) 0,W k k k ak bk c= ω+ + + + =

where
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2

2 2

2

,
( ) ( ) ,

( ).

st

st st

st

a N
b N N

c N

= µ +ηγ + λ
= µ ηγ + λ − αρ+ηγβ

= β αρ−µηγ
(8)

Statement 2. The stationary solution X1st of 
system (6) is asymptotically stable in the param-
eter domain Ω1, and the solution X2st is unstable.

Proo f . The roots of the characteristic 
equation for the stationary solution X1st have the 
following form:

1 2

*
3 4

0, 0,

0, .

k k
Ck k

= −ω< = −µ <
γρ

= −λ < = β−
λ

However, k4 < 0 in the parameter domain 
Ω1. Therefore, the roots of W1(k) are negative, 
which actually means that the solution X1st is 
asymptotically stable in the linearized system 
and, therefore, in system (6).

For W2(k) in the parameter domain Ω1, the 
free term

2 ( ) 0,stc N= β αρ−µηγ <

which means there is a positive root for 
the corresponding characteristic equation. 
Consequently, the stationary solution X2st of 
system (6) is unstable.

Statement 2 is proved.
Statement 3. The stationary solution X1st of 

system (6) is unstable in the parameter domain 
Ω2, and the solution X2st is asymptotically stable 
under the additional condition ba – c > 0.

Proo f . The roots of the characteristic 
equation for the stationary solution X1st have the 
following form:

1 2

*
3 4

0, 0,

0, .

k k
Ck k

= −ω< = −µ <
γρ

= −λ < = β−
λ

However, k4 > 0 in the parameter domain Ω2. 
Thus, there is a positive root for W1(k), and, 
therefore, the stationary solution X1st of system 
(6) is unstable.

We have k1 = –ω < 0 for W2(k). To study the 
remaining roots of the characteristic equation, 
let us consider the polynomial

3 2( )P k k ak bk c= + + +

with coefficients from expressions (8).
Since

2

2

0,
( ) 0

st

st

a N
c N
= µ +ηγ + λ >
= β αρ−µηγ >

in the parameter domain Ω2, then the condition 

0ba c− > (9)

of Statement 3 implies that b > 0. Along with 
condition (9) itself satisfied, the Hurwitz 
criterion [8] can be used to conclude that 
all real roots and real parts of complex roots 
of the polynomial P(k), and, therefore, 
the characteristic equation W2(k) = 0, are 
negative. Thus, the stationary solution X2st is 
asymptotically stable in the linearized system 
and, therefore, in system (6).

Statement 3 is proved.
Remark 1. Notably, the variable i(t) 

appears only in the last equation of system (6), 
therefore, it makes sense to carry out analysis 
only for the system

*( ),

( ) ,

dC AN C C
dt
dA C N A
dt

= α −µ −

= ρ − λ +ηγ
(10)

0 0 0 0

0 0

( ) ,

( ) 0, ( ) 0,
( ) 0,

dN A N
dt

C t C A t A
N t N

= β− γ

= ≥ = ≥
= ≥

(11)

extending the conclusions and results to the 
variable i(t).

Stationary solutions of system (10), (11) 
have the form:

*
1 1 1 1 *

2 2 2 2

2
* *

( , , ) ( , ,0),

( , , )

( ), , .
( ) ( )

st st st st

st st st st

CX C A N C

X C A N

C C

ρ
= =

λ
= =

 αλβ−ηµγ µ λβ− γρβ
=  γ αρ−µηγ γ β αρ−µηγ 

Analysis of model (10), (11)  
in the parameter domain Ω1.

The properties of the auxiliary two-
dimensional system of differential equations are 
largely used for analysis of three-dimensional 
system (10), (11) 

( ) ,

( ) ,

dA C N A
dt

dN A N
dt

= ρ − λ +ηγ

= β− γ
(12)

obtained from subsystem (10) at α = 0 and 
C(t) = C* at t ≥ 0.
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Interpretation. This system (12) simulates 
a situation when the information protection 
agency do not respond to new information 
introduced, assuming the previously required 
amount of administrative resource to be 
sufficient for supporting familiar concepts and 
neutralizing the reaction to new information 
appearing in mass media.

Evidently, system (12) has unique, infinitely 
extendable solutions continuously dependent 
on parameters, and the set

( ){ }2 2, : 0, 0R A N R A N+ = ∈ ≥ ≥

is invariant for system (12).
System (12) has the following stationary 

solutions in the parameter domain Ω1:

( )

( )

*
1 1 1

*
2 2 2

, ,0 ,

, , ,

st st st

st st st

CX A N

CX A N

ρ = =  λ 
 γρ −λββ

= =  γ βηγ 
lying in R2

+, where X1st is a stable node, and X2st 
is a saddle.

Using well-known techniques for qualitative 
analysis of two-dimensional systems of differential 
equations [9] and the result of Theorem 4.1 given 
in [10], we constructed and studied the phase por-
trait for the trajectories of system (12) (Fig. 1).

Based on construction and the studied 
properties of the trajectories, we can identify 
for this phase portrait the following areas of the 
subspace R2:

2
1 2

2
2 2

2
3 2

2
4 2

( , ) : , 0 ,

( , ) : 0 , 0 ,

( , ) : 0 , ,

( , ) : , .

st

st

st

st

Q A N R A N N

Q A N R A N N

Q A N R A N N

Q A N R A N N

+

+

+

+

 β
= ∈ ≤ < ∞ ≤ ≤ γ 
 β

= ∈ ≤ < ≤ ≤ γ 
 β

= ∈ ≤ < ≤ < ∞ γ 
 β

= ∈ ≤ < ∞ ≤ < ∞ γ 

Four separatrices adjoin the saddle point X2st 
of system (12) in the parameter domain Ω1: sta-
ble p(t), q(t) and unstable r(t), s(t); in this case, 
p ϵ (t) ϵ Q2, q(t) ϵ Q4 with t ≥ 0, and p(t), q(t) → 
X2st with t → + ∞, r(t) ϵ Q3, s(t) ϵ Q1 and r(t), s(t) 
→ X2st with t → – ∞. Q1, Q3 are invariant sets 
with respect to system (12). The curve com-
posed of stable separatrices p, q of the saddle 
X2st is the boundary of the domain of attraction 
of the stable node X1st.

Since analytical description of the curves 
representing the separatrices p(t) and q(t) is 
difficult, the proposed statement gives the fol-
lowing estimate of the domain of attraction X1st, 
whose equivalent is given below for system (10).

Statement 4. Let us give the sets

{ }*
1 1 2

*
2 2

2

2
* *

\ ,

( , ) : 0 ,

0 exp exp .

st

st

Q Q X

Q A N Q A

AN N
C C

=

 β
= ∈ ≤ < γ

   −β β ≤ ≤    ρ γ ρ    

The set Q = Q*
1 ∪ Q*

2 in the parameter domain 
Ω1 is the estimate of the domain of attraction of 
the asymptotically stable stationary solution X1st 
of system (12).

Proo f . Since Q*
1 is an invariant set of sys-

tem (12) lying in the domain of attraction of 
the stable node X1st, it follows from the fact 
that X0 = (A0, N0) ϵ Q

*
1 that X(t, X0) ϵ Q

*
1 for all 

t ≥ 0, and X(t, X0) → X1st at t → +∞.
Let us prove that if

( ) *
0 0 0 2, ,X A N Q= ∈

then there is a point in time t when
*

* 0 1( , ) .X t X Q∈

Let N = N(A) be the integral curve of the 
differential equation obtained from system (12):

*

( ) ( , ),
( )

dN A N f A N
dA C N A

β− γ
= =
ρ − λ +ηγ

(13)

and G = G(A) the solution of the equation

* 2 *

( ) .
( )st

dG A G G
dA C N A C

β− γ β
= ≡
ρ − λ +ηγ ρ

(14)

Obviously, for any point (A, N) ϵ Q2,

*

( , ) ,Nf A N
C
β

≤
ρ

therefore, in accordance with the Chaplygin 
theorem on differential inequalities [11], if

0 0

0 0 2

0 0 2

( ) ( ),
( , ( )) ,
( , ( )) ,

N A G A
A N A Q
A G A Q

≤
∈
∈

then,

N(A) ≤ G(A)
for those A > A0, for which (A, N, (A)) ϵ Q.
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Let G(0) be a point on the axis ON, starting 
from which the curve G(A) passes through the 
point (A2st, N2st). It follows from Eq. (14) that

*

( ) (0)exp ,AG A G
C

 β
=  ρ 

therefore, if G(A 2st) = N 2st, then
2

2
*

(0) exp .stG N
C

 −β
=  ρ γ 

Based on the Chaplygin theorem, any 
integral curve of equation (13) falls into the 
set Q*

1 with increasing A if N(0) ≤ G(0), and, 
therefore, tends to the stationary solution X1st. 
Thus, each point of the set Q*

2 belongs to the 
domain of attraction X1st, and the set Q = Q*

1 ∪ 
Q*

2 is its estimate.
Statement 4 is proved.
Interpretation. Fig. 1 is a clear illustration of 

the situation evolving in the absence of proper 
attention to information leaks. If there are few 
messages about the new concept in mass media 
or the reaction of society to them is weak, the 
initial administrative resource may be sufficient 
to prevent new ideas from entering the public 
consciousness. However, if there is a substantial 
amount of new information, the traditional 
activity of information protection agencies 
may not be insufficient for neutralizing the 
public reaction. Without coordinated response 
from mass media, the new concept becomes 
dominant in society, because, as evident from 

Fig. 1, not every reaction to suppression of a 
new idea leads to success.

Turning now to system (10), (11), we obtain 
a similar result. Let us prove the theorem.

Theorem 1. The set D = D1 ∪ D2 of the phase 
space {C, A, N} of system (10) in the parameter 
domain Ω1, where

{

{

1 *

*

2 *

2

*
* *

*
*

( , , ) : ,

, 0 ,

( , , ) : ,0 ,

0 exp exp ,

,

D C A N C C

A N N

D C A N C C A

AN N
C C

CN

= ≤ < ∞

β
≤ < ∞ ≤ ≤ γ 

β
= ≤ < ∞ ≤ <

γ

   −β β ≤ ≤    ρ γ ρ    
γρ −λβ

=
βηγ

is the estimate of the domain of attraction of an 
asymptotically stable stationary solution X1st of 
system (10), (11).

P r oo f . It follows from Statement 4, the 
first and third equations of system (10), (11) 
that the set D1 is invariant.

{ }1 1( , , ) : 0 ,D C A N D N= ∈∂ =

where ∂D1 is the boundary of the set D1, is also 
obviously invariant for the solution of system 
(10), (11), and if

Fig. 1. Phase portrait of system (12)
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( )0 0 0 0 1, , ,X C A N D= ∈

then X(t, X0) →X1st with t → +∞, since system 
(10) is given by linear equations on the set D1 

*

0

( ), ,

( , ) 0,

dC dAC C C A
dt dt

N t X

= −µ − = ρ −λ

≡
(15)

for which the singular point X1st is globally 
uniformly asymptotically stable.

Let 0 1 1\ ,X D D∈  aX(t, X0) be the solution 
to system (10), (11) starting at X0. According to 
the third equation, the inequality with t ≥ 0 for 
the component N(t, X0) of the vector X(t, X0), 
and only at an isolated point on the time semi-
axis [0, ∞), where

0 * 0

0 *

( , ) , ( , ) ,

( , ) .

C t X C A t X

N t X N

β
= =

γ
≡

Since the point * * 1, ,C N D β
∈ γ 

 

is not singular for system (10), (11), there exists 
such a point in time t1 ≥ 0, when we have N(t, 
X0) ≤ 0 for all t ≥ t1 ≥ 0 for the non-negative 
function N(t, X0). But then

0lim ( , ) 0,
t

N t X
→+∞

=

and, therefore,

 X(t, X0) → D1at t → +∞.
It follows from the theorem on continuous 

dependence of the solutions of system (10), 
(11) on the initial data (see [12]) that

X(t, X0) →X1st with t → +∞,
since every solution of system (15) has this 
property.

Let us consider the behavior of the trajectory 
of system (10), (11) on the set D2. According to 
the above, when

X0 ϵ D2 : C0 ≥ C*

we have C(t) ≥ C* for all t ≥ 0.
Let us consider a system of two equations:

1
1 1( ) ,dN A N

dt
= β− γ (16)

1
1 1( ) ( ) ,dA C t N A

dt
= ρ − λ +ηγ

which is equivalent to the equation

1 1 1

1 1 1

( ) .
( ) ( )

dN A N
dA C t N A

β− γ
=
ρ − λ +ηγ

(17)

It follows from Eqs. (17) and (13) in the 
region D2 that

*

( )
( ) ( )

( ) .
( )

A N
C t N A

A N
C N A

β− γ
≤

ρ − λ +ηγ
β− γ

≤
ρ − λ +ηγ

It follows from the Chaplygin theorem 
on differential inequalities [11] that if only 
N1(0) ≤ N(0), then the inequality N1(t) ≤ N(t) 
holds true for all t ≥ 0 in the set D2 for systems 
(16) and (12). Therefore, if X0 ϵ D2 for system 
(10), (11), then the solution X(t, X0) ϵ D2 for all

A β
<
γ

. However, since the derivative A(t) > 0

in the set D2, and the variable C(t) is bounded, 
then X(t, X0) falls into the region D1 in a finite 
period of time. Therefore, if X0 ϵ D, then any 
solution

X(t, X0) →X1st with t → +∞,
if only X0 ϵ D.

Theorem 1 is completely proved.
The following stronger theorem holds true.
Theorem 2. Let system (10) be given, whose 

parameters belong to the domain Ω1. Then for the 
unstable stationary solution X2st there is a sepa-
ratrix surface Ws, which is the exact boundary 
of the domain of attraction of the asymptotically 
stable stationary solution X1st.

Proo f . Indeed, since the parameters of sys-
tem (10) belong to the region Ω1, a stable sep-
aratrix surface Ws(X2st) passes through the un-
stable stationary solution X2st. Then, confirming 
that conditions A1–A3 of Theorem 4.1 given in 
[10] hold true, we obtain the result formulated 
in the theorem.

Theorem 2 is proved.
Interpretation. The results obtained indicate 

that with the relations given for the system pa-
rameters in the space {C, A, N}, there is a re-
gion from which the system tends to the steady 
state X1st. In this state, the society (or its seg-
ment) is completely dominated by the familiar 
old concept. Therefore, a trajectory falling into 
the described domain can be achieved, theo-
retically, at any moment in time, by carefully 
controlling the system parameters.
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 Analysis of system (10), (11)  
in the parameter domain Ω2

According to Remark 1, system (10), (11) 
is a reduction of system (5), (6). Therefore, 
by virtue of expression (3), the stationary 
solution X1st st of system (10) is unstable in the 
parameter domain Ω2, and the solution X2st is 
asymptotically stable provided that additional 
condition (9) holds true. It is of interest to 
study the domain of attraction for the stationary 
solution X2st of system (10), (11). 

Let us consider a surface in the space 
{C, A, N}, where Ȧ(t) is equal to zero:

.CN
A

ρ λ
= −
ηγ ηγ

(18)

We introduce an additional relation:

*( ) ( ) 0Cρ ρα + ηβγ − ληβ µ +β ≥ (19)

and consider the following set (shown in Fig. 2):

{
}

*

1

( , , ) : 0 ( ),

,st

G C A N N C C

A A

= < < −

≤ < ∞

p
(20)

where

*

*

( )const: .C
C

µλ + λβ−ρ βγ ρ
− < <

ρ α ηβ
p p

Fig. 2. Set G (see Eq. (20)) in phase space 
of system (10), (11)

Statement 5. Let condition (19) be satisfied 
for system (10), (11) in the parameter domain 
Ω2. Then the set G is invariant for this system.

Proo f . Let us find the direction of the vec-
tor field on the surface N = p(C– C*), defined 
in relation (19).

Scalar product of vectors

; ; 1 ( ; 0; 1)N N
dC dA
∂ ∂ = − = − 

 
n p

and

; ;dX dC dA dN
dt dt dt dt

 =  
 

has the form

p(C – C*) [(αp + γ)A – (μ + β)].
This expression is greater than zero for

,A A
p
µ +β

> =
α + γ

which means that the trajectories of the system, 
given such A from the plane

N = p(C – C*),
fall in the set G. However, A1st ≤ A in this set.

In other words, condition A ≤ A1st should 
be satisfied for the set G to be invariant. But 
given p from expression (20), the condition 
holds true only if relation (19) is satisfied (see 
Remark 2 below). The vector field on some 
part of the plane A = A1st belonging to the set G 
is directed inside this set, since, given that N > 
0, the inequalities hold true

Fig. 2. Set G (see Eq. (20)) in phase space of system (10), (11)
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1

*
*( ) 0.

stA A
CdA C C

dt =

λβ−ρ γ
> ρ − >

λβ

Therefore, all trajectories of this system from 
the boundary A = A1st fall in the set G. Since 
the plane N = 0 is invariant, the trajectories 
cannot fall to this plane from the set G (the 
theorem on uniqueness is violated otherwise).

Statement 5 is proved.
Remark 2. The restriction that the 

parameter p be bounded from below follows 
from the fact that the inequality A ≤ A1st holds 
true only for

*

*

( ) .C
C

µλ + λβ−ρ βγ
<

ρ α
p

The restriction that the parameter p be 
bounded from above is required later in 
Statement 6.

If p, condition A ≤ A1st from expression (20) 
is indeed satisfied only with relation (19). The 
expression

*

*

( )(1 ) ,

(0;1)

Cq q
C

q

µλ + λβ−ρ βγρ
+ −

ηβ ρ α
∈

describes the interval 

*

*

( ) ; .C
C

 µλ + λβ−ρ βγ ρ
 ρ α ηβ 

Then, provided that condition A ≤ A1st 

*

*

( ) ;C
C

 µλ + λβ−ρ βγ ρ
∈ ρ α ηβ 

p

takes the form
2

* *

*

(1 ) [ ( )]
( ).

q C q C
C

ρ α + − ηβ µλ + λβ−ρ γ +
+ρ ηβγ > ληβ µ +β

This implies the inequality
2

* *
2

* *

( 1)[ ( )]
( ) 0,

q C C
C C
− ρ α −ηβ µλ + λβ−ρ γ +

+ρ ηβγ +ρ α −ληβ µ +β >

which is equivalent to the inequality satisfied

*[ ( ) ( )] 0.q Cρ ρα +ηβγ −ληβ µ +β >

Statement 6. Let condition (19) be satisfied for 
system (10), (11) in the parameter domain Ω2. 
Then the trajectories of this system are bounded 
on the set G. 

P r oo f . Let us prove the statement in two 
stages.

Stage 1. Let G1 be a subset of G, where

1 .stA A β
≤ ≤

γ
Let us confirm that the trajectories of the 

systems are limited in the subset G1.
For this purpose, let us consider the plane

аA – C + b =0 (21)

with the normal n1 = (− 1; a; 0). Let us select 
the coefficients a, b > 0 so that plane (21) in-
tersects the subset G1. Let us consider the vec-
tor field on this plane in G1 

; ;dX dC dA dN
dt dt dt dt

 =  
 

of system of equations (10). Namely, let us find 
the part of plane (21), where the scalar product 
of the vectors n1 and dX/dt is greater than zero. 
This product has the form:

*

*

( )

( )

.

C C AN C
A AN

C C N

C A N

µ − −α +αρ −
− λ − ηγ >

β
> µ − −α +

γ
β

+αρ − λ − ηγ
γ

a a

a a

Given this estimate and equation of plane 
(21), the scalar product is guaranteed to be 
positive with

*( )( ) .
( ) ( )

CN A γ µ − ργ ρ+µ −λ
< −

β ηγ +α β ηγ +α
aba a

a a

Let us find the ratio for which this product 
is greater than zero at any point on plane (21) 
from the subset of the G1. For this purpose, let 
us find the intersection of the plane 

N = p (C – C*)
with plane (21). The equation of this straight 
line has the form:

N = paA + pb – pC*. (22)

If the coefficient at A in the equation for line 
(22) is less than the corresponding coefficient 
of the line

*( )( ) ,
( ) ( )

CN A γ µ − ργ ρ+µ −λ
= −

β ηγ +α β ηγ +α
aba a

a a
(23)
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then it is possible to find such a constant b 
in Eq. (21) that straight lines (22) (23) will 
intersect at point A 1st, and with the condition

1stA A β
≤ ≤

γ
(24)

the vector of system on the plane (21) in the subset 
G1 will be co-directed with the vector n1 from the 
plane (21). This will mean that for any trajectory 
from the set G with the condition (24) there is a 
“partition”, which does not make possible for it 
to extend to infinity on the subset G1. 

It remains to prove that it is always possible 
to select a such that for the the relationship 

( ) .
( )

γ ρ+µ −λ
<

β ηγ +α
ap
a

will hold true for the coefficients with A in 
equations (22), (23).

Qualitative behavior of the function

( )( )
( )

f γ ρ+µ −λ
=

β ηγ +α
aa
a

is shown schematically in Fig. 3. It is evident 
from its analysis that there exists any

0 < a < ∞ : f(a) > p
for p < ρ/ηβ.

Thus, after falling into the set G with the 
condition (24), the trajectory of system (10), 
can extend to infinity, if only it crosses the 
plane A = β/γ.

Stage 2. Beginning in the subset of set G, 
where A > β/γ, trajectory also cannot extend to 
infinity. Actually, with A > β/γ it follows from 
the third equation of system (10) that Ṅ(t) < 0. 
Therefore, if we rely on the reasoning similar 
to that used to prove Theorem 1, it is possible 
to confirm that the relationship 

0lim ( , ) 0
t

N t X
→+∞

=

holds true for the component N(t, X0) of the 
vector X (t, X 0) only if X0 belongs to this subset.

In other words, the trajectory of system for the 
final time interval falls into the sufficiently small 
neighborhood of the plane N = 0. However, 
there are no solutions which become infinite 
on this plane. Therefore, the theorem about the 
continuous dependence on the initial data (12) 
guarantees that the trajectory on this subset also 
cannot extend into infinity. Consequently, if we 
assume the existence of this trajectory, then it 
must fall in G1 via the plane A = β/γ.

Stage 3. The reasoning of the previous stages 
makes it possible to draw the conclusion that if a 
trajectory which becomes infinite is located in the 
set G, then it must intersect the plane A = β/γ an 
infinite number of times. Suppose that such a 
trajectory exists. Let us note in this case that in 
view of expression (18), the intersection of plane 
A = β/γ towards the decrease in A(t) occurs with

,CN ρ λ
> −
ηβ ηγ

because the straight line

Fig. 3. Plotted function f(a)
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CN ρ λ
= −
ηβ ηγ

is the intersection of surface (18) with the plane 
A = β/γ (see Fig. 2)) and with N < p (C – C*). 
Because p < ρ/ηβ, the straight lines

*, ( )CN N C Cρ λ
= − = −
ηβ ηγ

p

intersect at the endpoint of plane A = β/γ. In 
this case a precompact set

*

( , , ) : ,

( )

S C A N G A

C N C C

β= ∈ = λ
ρ λ

− < < − ηβ ηγ 
p

is formed in the set G.
Let us compose a sequence {xk}of such in-

tersection points of the trajectory of plane 
A = β/γ, from which let us isolate a converging 
subsequence. Let us denote its limit as x*. Then 
the trajectory falls from the point x* into the 
subset G1, where A < β/γ, from where, accord-
ing to what was proved during the first stage, 
it intersects the plane A = β/γ towards an in-
crease in A(t) at the endpoint.

As a result, there is contradiction with the 
assumption that the trajectory becomes infinite. 
Consequently, all given trajectories of the sys-
tem are limited in the set G. 

Statement 6 is proved.
Theorem 3. If condition (19) is satisfied for 

system (10), (11) in the parameter space Ω2, the 
set G, determined by expression (20), is the esti-
mate of the domain of attraction of the asymptot-
ically stationary solution X2st. 

Proo f . Let us give a Lyapunov function on 
the set G (recall that it is invariant according to 
Statement 5):

0

( , ) .
t

V X t AN N AN d= γ −β − γ τ∫ 

By virtue of system (10), (11), its derivative 
has the following form: 

2

( , )

( ) ( ) 0.

V X t N A A N N A N

N A A N

= γ + γ −β − γ =

= γ −β = − β− γ ≤

    



Let us prove that the function V(X, t) is 
bounded from below. The term γAN – βN is 
bounded from below because the trajectories 

of the system are limited on the set G. The last 
term of function V(X, t) on a set where Ȧ < 0 
is positive. On a set where Ȧ > 0 , the term can 
be estimated thus:

max
0 0

max

max max max

[ ( ) (0)]
(0).

t t

A N d A N d

N A t A
N A N A

−γ τ ≥ −γ τ =

= −γ − ≥
≥ −γ + γ

∫ ∫
 

Therefore, the function V(X, t) is bounded 
from below. Obviously, the derivative V̈(X, t) is 
also bounded from below. Thus, according to 
Statement VIII.4.7, given in (13), it is possible 
to claim that

V(X, t) with t → + ∞.
This means that the trajectory of the system 

tends to its ω-limit set

0 ( , , ) : .M M C A N G A β ∈ = ∈ = λ 

According to the property of ω-limit sets for 
autonomous systems, M0 is invariant by virtue 
of system (10), (11). However, M0 is only 
invariant on the plane A = β/γ when M0 = {X2st}. 
Therefore,

X(t, X0) → X2st with t → + ∞.
Thus, G is the estimate of the domain of 

attraction for X2st.
Theorem 3 is proved.
Theorem 4. Let the condition (19) and the 

relationship

.ρα−µηγ > βηγ (25)

be satisfied for system (10), (11) in the parameter 
space Ω2.

Then the entire space

{ }3( , , ) : 0, 0, 0R C A N R C A N+ = ∈ ≥ ≥ >

is part of the domain of attraction of the 
asymptotically steady stationary solution X2st.

P r oo f . Let us confirm that all trajectories 
which originate in R+, fall into the set G, from 
where, according to theorem 3, they tend to 
the stationary solution X2st. with t → +∞.

The right-hand side of the equation for C(t) 
of system (10) guarantees that a trajectory with 
the initial data from R+ falls into the invariant 
subspace, where C(t) ≥ C*. Therefore, let us 
consider in this subspace. Let us break it into 
two subsets:
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{ }
{ }

1 * 1

2 * 1

( , , ) : , ,

( , , ) : , 0 .

st

st

T C A N R C C A A

T C A N R C C A A

+

+

= ∈ ≥ ≥

= ∈ ≥ ≤ ≤

Let a point in the trajectory be located in T1\G. 
Then, for a certain number q > 0, this point, 
according to relation (21), lies on the plane 

N = p(C – C*) + q.
Consequently, trajectories from this plane 

fall into the set G, or into the subset T2. Let us 
prove now that all trajectories from T2 fall into 
the region where

,CN ρ λ
< −
ηβ ηγ

(see Fig. 2) and, therefore, Ȧ > 0. 
Let us give a function VT2 = Ȧ in the subset T2 

and consider the sign of its derivative, taking into 
account the properties of system (10) on the surface 
VT2(X) = 0. In view of expression (18), we have:

2

2

*

( )

.

TV A C N A

C A A

C A

= = ρ −ηγ =

 ρ −λ
= ρα −µηγ −βηγ + ηγ + ηγ 

+ρµ −λµ

   

If relationship (25) is fulfilled in the subset T2, 

2

2: ( ) 0

( ) 0.
T

T
X V X

V X
=

>


If VT2(X) < 0 in a certain part of the space 
T2, the study of the sign of the derivative of 
VT2(X) is reduced by virtue of system (10) to 
calculating the sign of the derivative on the sur-
face VT2(X) = 0, since 

2

2

2

2

: ( ) 0

: ( ) 0

( )

( ) 0.

T

T

T
X V X

T
X V X

V X A C A

N A A N

C N A V X

≤

=

= = ρ −λ −

−ηγ −ηγ ≥

≥ ρ −ηγ = >

   

 

  

This means that all trajectories from T2 fall 
into the region where Ȧ > 0 and, therefore, also 
into the region G, from which they tend to the 
asymptotically stationary solution X2st. 

Theorem 4 is proved.
Interpretation. In this section we have 

obtained the relations for the parameters of the 
systems characterizing the readiness of society 
together with the existing concept to accept 
new ideas. Therefore, any new idea which was 
appeared in the media finds response. Over 
time, old and new ideas come to co-exist with 
their shares of acceptance in the society.

Conclusion

The study carried out allows to formulate 
the following main results.

1. We have found the generalized factors 
and patterns describing how new information 
propagates in society, constructing a basic 
mathematical model for the dissemination of 
new information. The obtained model is the 
system of four ordinary differential equations 
with quadratic nonlinearity in the right-hand 
sides.

2. Using methods of qualitative analysis, we 
considered the global properties of the phase 
portrait of the constructed dynamic system.

3. We have given an interpretation of the 
key findings, allowing to isolate several possible 
scenarios of the course of events and to 
influence them.

The results obtained in this study continue 
the systemic studies started in [14] and further 
developed in [15–18]. Our focus was the 
study of media systems as one of the most 
important and high-speed dynamic systems. 
Mathematical methods are fundamental tools 
making it possible to carry out in-depth media 
studies with novel scientific value. Methods 
of nonlinear dynamics provide the means for 
comprehensive analysis of the structure and 
properties of processes in the mass media 
system.
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