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Problem statement

This study continues the investigations
started in [1—3], pursuing the subject of
Thomson transforms and Donkin operators for
three-dimensional harmonic (that is, satisfying
the Laplace equation) functions that are Euler-
homogeneous.

An electric or magnetic field is called Euler-
homogeneous with a degree of homogeneity
equal to k if the electric field strength E and/
or magnetic flux density B satisfy the identities

VYA>0: E(ﬂx, ﬂy,/iz) = ﬂk_lE(x, y,z),
VA>0: B(lx, iy,lz) = /VHB(x,y,z),

at every point in space.

As a rule, such fields are characterized by
scalar potentials U(x,y,z), which are Euler-
-homogeneous (or, more precisely, positively
homogeneous, i.e., with A > 0) in the sense
given to this term in classical mathematical
analysis [4, 5]:

VA>0: U(/lx, ﬂy,/lz) = ﬂkU(x,y,z).

Homogeneous scalar and/or vector poten-
tials for Euler-homogeneous fields are explored
in detail in [6]. Importantly, the Euler differ-
ential relation for homogeneous functions is
satisfied at each point in space for differentia-
ble functions U that are Euler-homogeneous of
degree k [4, 5]:

xa—U+ya—U+za—U—kU:O. (1)
ox oy 0z
This relation is both necessary and sufficient.
This includes the following statements:

a) if the function is homogeneous with a
degree of homogeneity k£ and at the same time
differentiable everywhere, then equality (1) is
satisfied for it at each point in space;

b) if equality (1) is satisfied for a function
that is differentiable everywhere at each
point in space, then this function is Euler-
homogeneous, with a degree of homogeneity 4.

Elegant proof of statement b) can be found,
for example, in [4].

Strict definitions of the terms “Thomson
transform” and “Donkin operator” have been
already given in [3] (also published in this issue)
and are therefore not repeated here. However,
we should stress that there is a fundamental
difference between the Thomson transforms and
the Donkin operators: the Thomson transforms
preserve the function obtained harmonic and
homogeneous, but, unlike Donkin operators,
they do not guarantee that the transformation

is invertible. Donkin operators, on the other
hand, are invertible in the sense that there is
a prototype function for any homogeneous
harmonic function (this prototype is also
homogeneous and harmonic), from which
the given homogeneous harmonic function is
obtained using this operator.

The term “Thomson transform” is used
to avoid confusion with the linear differential
operators of the general form considered here
with the original algebraic Thomson formula
(Kelvin transform) [9—16]. The Thomson
formula transforms three-dimensional
harmonic functions into new three-dimensional
harmonic functions in accordance with the rule

]
V(x,y,2)=—U(iz,rlz,rizj, )

r r

where 7 =+/x" +y2 +z° (from now on).

Eq. (2) not only transforms three-dimen-
sional harmonic functions U of a general form
into new three-dimensional harmonic functions
V' (this can be verified by direct substitution)
but also transforms homogeneous functions U
of degree k to new homogeneous functions V
of degree (—k —1). The common factor 1/7
for homogeneous functions can be taken out of
the function sign in Eq. (2), so that it can be
written in simplified form as

V(x,y,z) = r’ZHU(x, y,z). (3)

It is clear that the mathematical expression
(3) is homogeneous, and it follows that it is
harmonic for homogeneous harmonic functions
U from the equality (see [17, 18 (Appendix B
to Chapter 1)]):

VotV +V.=r" (U, +U, +U_)+
+2mr"? (xe +yU, +zU, —kU) + @
+m (m +2k+ 1) U,
which is satisfied for any functions of the form
Nx.y,2) = rmUx,y,2)

with an arbitrary exponent m, for an arbitrary
parameter k£ and an arbitrary function U.

However, transformation (3) no longer
converts harmonic functions of a general form
into new harmonic functions; expression (3) is
preserved harmonic only for those harmonic
functions that are Euler-homogeneous with a
degree of homogeneity k (i.e., which satisfy
Euler differential relation (1)).

The results published in [1—3] indicate
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| _
that the complete list of elementary Thomson y
transforms for homogeneous  harmonic V(x Y,z ) 2k U, (x,y .Z)-
functions of degree k (the Thomson transform (22)
is a linear differential operator of the first order) X U ( X,y Z)
includes the following expressions: pHet Ty AT
Vix,yv,z)=U(x,y,2), 5 z
Cer) =02 O e () -
V(x.y,2)=U,(x..2), (6) 4 (23)
X
V(x.y.2)=U,(x,9.2), (7) ~—m U (x2:2)
V(x,y,2)=U_(x,5,2), (3) -
V(x Y,z ) 2k+1U (x,y,z)—
(X 24 ) (9) r (24)
(2k+1)xU(x,y,z) r Ux (x,y,z), 2J/:+1 U. (x,y,z)
V (x, ¥, z) = r
2 (10)  where the subscripts x, y, and z denote the par-
B (2k+1)y U(x,y ,z)—r U, (x,y ’Z)’ tial derivatives with respect to the correspond-
Vv ( X, ¥, z) = ing variables.
(11) It was established in [3] that each of
=(2k+1)zU (x,,2)—-r’U,(x,y,2), the elementary transformations (5)—(24),
considered separately, is invertible on the set of
V(x,y,2)=yU, (x,3,2)-xU, (x,y,2), (12) homogeneous harmonic functions, i.e., it is a
basic Donkin operator.
V(x Y,z ) x (x, oz ) xU (x, Y,z )’ (13) Evidently, any linear combination with
constant coefficients, composed of basic Egs.
V(x Y>2 ) y (x, :2 ) U (x, y,z), (14 (5)—(24) corresponding to the same degree
of homogeneity, transforms homogeneous
(x,y oz p 2k U(x Y,z )’ (15) harmonic functions into new homogeneous
1 harmonic functions and, therefore, belongs to
_ the class of Thomson transforms. However, the
V(x,y ’ Z) 2k U (x,y ’Z)’ (16) invertibility of such transformations on a subset
1 of homogeneous harmonic functions with a
V(x,y,2)===U,(x,y,2z),  (17) given degree of homogeneity is not obvious and
r should be further investigated.
1 The goal of this study is to establish whether
V(x,y,2)==5=U.(x,,2z),  (18) linear superpositions with constant coefficients
r composed of elementary Donkin operators
(Zk +l)x (5)—(24) are composite Donkin operators in
V(x,y Z ) ERE U(x, Y,z )_ the sense of the definitions given earlier.
(19)
_LU ( X,V z) Relationship between three-dimensional
Rl TR AT homogeneous harmonic functions
and two-dimensional elliptic equations
(Zk + 1) y . .
V( X, v, z) = TU( X, ¥, z) - Now we are going to make a transition from
r (20) three-dimensional homogeneous harmonic
1 functions to two-dimensional functions that
= U, (x,y,z ), satisfy some auxiliary two-dimensional elliptic
r equations. This technique is of particular
_ (2k +1)Z scientific interest, so let us consider it in more
V(x,y,z)— 2k U(x,y,z)— detail.
21) There are Donkin formulas for three-

1
—WUZ(X,)},Z),
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dimensional harmonic functions of degree zero
and degree —1 [7, 8, 19—24]:



x oy
Vo(x,y,z)=H(Z+r,Z+rj, (25)

1 X

Vo(x,y,2) =—H( Lj (26)
r Z+r z+r

which establish a one-to-one correspondence

between the solutions H(p,q) of the two-di-
mensional Laplace equation

H +H =0
p @

and three-dimensional homogeneous harmonic
functions with homogeneity degrees 0 and

—1. Similarly, by substituting the Donkin
coordinates
b= X
PR O
q= 2 <
ZHX+y + 20
F=yxX"+y +2%,
(27)
2pr
X= f 22
1+p°+¢q
2qr
& =
Y l+p2 +q2
” 1_ 2_ 2
I+p +gq

any homogeneous function U(x,y,z) of degree
m can be expressed as

U(x,y,z):r'”F( *r Y ) (28)
zZ+r z+r

This formulation is a slightly modified form
of the universal representation

F(xx,..x,) =xth(x, /x,...x, /X))

for homogeneous functions of degree k [4, 5].

The necessary and sufficient condition for
function (28) to be harmonic (satisfying the
three-dimensional Laplace equation) is that
the function F(p,q) satisfy the two-dimensional
elliptic partial differential equation:

2 2
0 F(p,c1)+a F(p,q)Jr

op* oq*
P q (29
4m(m+1)
o F(p,q)zO.
(1+p2+q2)
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Substitution (28), (34) is one-to-one, which
is to say that:

a) if U(x,y,z) is a homogeneous harmonic
function of degree m, then there exists a
function F(p,q) that can be used to represent
the function U in form (28), while the function
F should obey Eq. (34);

b) if the function F(p,q) obeys Eq. (34),
then the function U(x,y,z), calculated by rule
(28), is a homogeneous harmonic function of
degree m;

c¢) different functions U(x,y,z) correspond to
different functions F(p,q) and vice versa. For
example, if we analyze the differential rela-
tion between a homogeneous harmonic func-
tion U(x,y,z) of degree m and a homogeneous
harmonic function W(x,y,z) of degree k, the
substitution

U(x,y,z)=r’"F(L, J j (30)
zZ+r zZ+r

V(x,y,z)=r"G[i, yj 31
zZ+r z+r

allows, without loss of generality, to reduce the
problem to analysis of the differential relation
between the functions of two variables F(p,q)
and G(p,q), which obey the equations

2 2
0 F(p,q)Jra F(p,q)+

op° oq° )
Am(m+1
+%F(paq)=0»
(1+p +q )
’G(p.q) 9°G(p.q
(p9), 76(p.a),
P oq 53
Ak (k+1
+%G(P»q)=0-
(1+p +q )

Substitution (28) is not the only one possible.
We can equally use the substitutions

m X y
Ulx,y,z)=(z+r) F , ,
( 4 ) ( ) (z+r z+rj
O°F O'F
1+ p*+q° + -~ 34
(1+p q)(ap2 aqzj (34)
—4mp oF _ 4mgq or +4m’F =0,
op oq
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(35)

(36)

—2(m—l)qa—F+m(m—1)F:0
oq
and so on.

The substitution used to solve a specific
problem can be chosen depending on
how convenient it is to manipulate a two-
dimensional elliptic partial differential equation
for the given problem, as well as on aesthetic
preferences of the researcher.

Complete systems of first-order
partial differential equations

The theorem considered in this section is
used as auxiliary (lemma) to prove the main
theorem on invertibility of linear superpositions
of basic Donkin operators with the same degree
of homogeneity; it is given in the next section.

Let there be m functions f,, f,...., f, depend-
ing on n variables x,, x,, ..., x . Let us consider
a system of mn partial differential equations;
all possible first-order partial derivatives of the
functions f,, ..., f with respect to the vari-
ables x,, x,, ..., x_are used on the left-hand side
of these equations, and continuously differ-
entiable functions ®* depending on unknown
functions f,, f,,..., f, and independent variables
X,, X,,..., X are used on the right-hand side:

i=1...n, k=1,...m:

Ui _ ak

a—x":d)l. (froeeefroXpsennX,).
Let us assume that both the functions f,,

Jyse-es f, and the functions @}, ®l,..., ®” are
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continuously differentiable as many times as
necessary to safely carry out subsequent differ-
entiation and for the corresponding theorems
on existence and uniqueness of a solution to a
system of equations to hold true. Mixed partial
derivatives of continuously differentiable func-
tions f,, f,..., f, with respect to the variables
X,, X,, ..., x, are independent of the order of
differentiation:

i=l...n, k=1,...m:

i(%} i(ij

ox, 6xj axj ox;,
The conditions that the right-hand sides

of Egs. (37) should satisfy and that should be

fulfilled if system of Eqs. (37) has a non-empty
set of solutions follow from identity (38):

k 6®]; 1 00" ot
Li‘: . q)z++_]q)zm+ J |
LY o, o,

m

k k k
- &i®3+---+a®i CI>7+aq)f =0.
o, o, ox,

(3%)

(39)

The following cases are possible:

a) all conditions expressed by Eq. (39) are
identically equal to zero;

b) there is one or more algebraic equations
with respect to unknown f,, f,..., f, among
conditions (39), which are not identically
equal to zero and are compatible with each
other, so some of the functions f, f,...., [,
can be algebraically expressed in terms of the
remaining functions and independent variables
X5 Xyy ooy X3

¢) there is one or more algebraic equations
among conditions (39) with respect to
unknown functions f,, f,..., f, which are not
identically equal to zero and are compatible
with each other, so that a// functions f,, ..., f,
can be algebraically expressed in terms of the
independent variables x,, x,, ..., x ;

d) there are algebraic equations among
conditions (39) with respect to unknown
functions f,, f,.,..., f,, which are not compatible
with each other;

e) there is an algebraic equation among
conditions (39), which is not identically
equal to zero and does not contain unknown
functions /', f,..., f . establishing an algebraic
relationship between the independent variables
X5 Xyy ooy X,

Conditions d) and e) can actually be



\

Mathematical physics
pny. >

combined into one class of cases. Conditions
(39) are incompatible with each other, which
means that by using a subset of conditions (39)
that are compatible with each other, some or all
of the functions f,, f,,..., f, can be algebraically
expressed in terms of the remaining functions
and independent variables x, x,, ..., x, and
substituted into the remaining equations, with
at least one algebraic equation which is not
identically equal to zero formed, establishing an
algebraic relationship between the independent
variables x,, x,, ..., x,. Similarly, an algebraic
equation which does not contain unknown
functions f, f,,..., f, and establishes an algebraic
relationship between the independent variables
X,, X,, ..., X, can be regarded as an algebraic
equation for unknown functions f, f£,..., f,
incompatible with other algebraic equations.

Obviously, system of Eqgs. (37) cannot have
solutions in cases d) or e).

In case ¢), unknown functions f, f,...., f,
can be found from the obtained algebraic equa-
tions; substituting them in system (37), we can
verify either that the functions f,, f,,..., f, found
actually satisfy Eqgs. (37), or that system of Egs.
(37) has no solutions.

The situation is the same in case b). Af-
ter some of the functions f,, ..., f, are alge-
braically expressed in terms of the remaining
functions and independent variables x,, x,, ...,
x , they can be substituted into Egs. (37); then
we obtain either a complete system of differ-
ential equations of the form (37) with respect
to a smaller number of unknown functions, or,
in addition to differential equations, new al-
gebraic relations for unknown functions. The
process of algebraically excluding the functions
Js Jos-ers f, from system of Eqgs. (37) can then be
continued. In particular, if a non-zero algebra-
ic expression that does not contain unknown
functions /|, f,,..., f, but only independent vari-
ables x, x,, ..., x_ 1is obtained, this means that
system of Egs. (37) has no solutions.

Finally, in case a), when all conditions (39)
are identically equal to zero, the system of iden-
tically satisfied equalities (39) turns out to be
not only a necessary but also a sufficient con-
dition for system of Egs. (37) to have solutions.

Lemma 1. If all relations (39) are identically
equal to zero, then the complete system of Eqs. (37)
has solutions, and these solutions can be found up
fo m constants c,, c,,..., ¢,, chosen arbitrarily.

Proof of this lemma can be found in [25]
(see Chapter 1IV).

The case when the system of partial differ-
ential equations is not complete (the equations

are not given for some partial derivatives of
unknown functions) is much more compli-
cated for analysis. The theory can be found
in [26—29].

Invertibility of linear combinations
of basic Donkin operators

Let us consider invertible linear combinations
with constant coefficients composed of Eqgs.
(5)—(14) and (15)—(24) with the same degree
of homogeneity for the resulting function.
Groups of elementary transformations from
the list (5)—(24), given below, transform
homogeneous harmonic functions of degree m
into homogeneous harmonic functions of the
same degree:

1) Egs. (5), (12)—(14) transform one
homogeneous function of degree m into a new
homogeneous function of degree m;

2) Egs. (6)—(8) transform a homogeneous
function of degree m into a new homogeneous
function of degree m — 1;

3) Egs. (9)—(11) transform a homogeneous
function of degree m into a new homogeneous
function of degree m + 1;

4) Egs. (15), (22)—(24) transform a
homogeneous degree function m into a new
homogeneous function of degree —m — 1;

5) Egs. (16)—(18) transform a homogeneous
function of degree m into a new homogeneous
function of degree —m;

6) Egs. (19)—(21) transform a homogeneous
function of degree m into a new homogeneous
function of degree —m — 2.

These rules determine which formulas
from (5)—(24) can be combined in one linear
combination with constant coefficients, so that
a homogeneous harmonic function is obtained
as a result.

Theorem. Linear combinations with constant
coefficients, composed of either basic Donkin
operators (5), (12)—(14), or basic Donkin
operators (6)—(8), or basic Donkin operators
(9)—(11), or basic Donkin basis operators (15),
(22)—(24), or basic Donkin operators (16)—
(18), or basic Donkin operators (19)—(21) are
invertible on subsets of homogeneous harmonic
Sfunctions of the corresponding degrees.

The proof consists of a series of separate
independent proofs for each group of basic
Donkin operators.

Lemma 2. Linear combinations with constant
coefficients, composed of basic Donkin operators
(6)—(8) for the degree of homogeneity m — 1, are
invertible on a subset of homogeneous harmonic
Jfunctions of degree m — 1.
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Proof. A linear combination with constant
coefficients of Eqs. (6)—(8) has the form

LU} = aU,+ bU,+ cU,

and corresponds to differentiating the function
U with respect to a fixed direction (a,b,c). In
accordance with the definition given earlier,
this linear combination is a Donkin operator
for coefficients that are not simultaneously
equal to zero.

To prove Lemma 2, it is sufficient to apply
the rotation of the coordinate system relative
to the origin, so that the nonzero vector (a,b,c)
coincides with one of the coordinate axes,
and to use the theorem on differentiation of
homogeneous harmonic functions [23, 30]:

a) the rotation relative to the origin preserves
the given function ¥ both homogeneous and
harmonic;

b) the differentiation operator along
one of the new coordinate axes is the basic
Donkin operator; therefore, the transformed
homogeneous and harmonic function V has a
homogeneous and harmonic prototype U;

¢) the reverse rotation relative to the origin
returns the coordinate system and the function
V to the previous state, and also preserves the
transformed function U homogeneous and
harmonic, at the same time establishing a
relationship between these functions, i.e.,

V(x,y,z)=aU,(x,y,z)+
+bUy (x, y,z) +cU., (x, y,z)

Lemma 2 is proved.

Lemma 3. Linear combinations with constant
coefficients composed of basic Donkin operators
(9)—(11) for the degree of homogeneity m + 1,
or from basic Donkin operators (16)—(18)for the
degree of homogeneity —m, or from basic Donkin
operators (19)—(21) for the degree of homoge-
neity —m — 2 are invertible on subsets of homo-
geneous harmonic functions of the corresponding
degrees.

Proof. This statement follows from the
close relationship established by the Thomson
formula (3) between these operators and dif-
ferentiation operators (6)—(8), for which, as
we have just established, linear combinations
with constant coefficients are invertible
transformations of homogeneous harmonic
functions.

Indeed, the invertibility of linear combi-
nations composed of Egs. (16)—(18) follows
from the invertibility of linear combinations
composed of Egs. (6)—(8) and the fact that the

48

Thomson formula (3) is invertible (repeatedly
applying Egs. (2), (3) returns the function to its
original form). Similarly, linear combinations
composed of Egs. (19)—(21) are invertible if
and only if linear combinations composed of
Egs. (9)—(11) invertible. The latter are actually
the product of successively applying transfor-
mation (3), transformations (6)—(8) and once
again transformation (3). For example, the
proof that linear combinations composed of
Egs. (9)—(11) are invertible is as follows:

a) a homogeneous harmonic function WM(x-
1,2) of degree m + 1 has a homogeneous and
harmonic prototype V'(x,y,z) of degree —m —
2, such that this function is calculated from
this prototype in accordance with the Thomson
formula (3), in the form

V(x,y,z) =y (x,y,z)r2m+3;

b) a homogeneous harmonic function
V'(x,y,7) of degree —m — 2 has a homogeneous
and harmonic prototype U'(x,y,z) of degree —m
— 1, such that this function can be obtained
from this prototype by differentiating with
respect to a fixed direction (a,b,c):

|/ (x, y,z) = —aU: (x,y,z)—
—bU;k (x,y,z)—cU: (x,y,z),

where not all coefficients a, b, ¢ are equal to
Zero;

¢) a homogeneous harmonic function
U(x,y,7) of degree —m — 1 has a homogeneous
and harmonic prototype U(x,y,z) of degree m,
such that this function can be calculated from
this prototype in accordance with the Thomson
formula (3), in the form

U (x,y,z) = U(x,y,z)/rz’”“.

In this case, the homogeneous harmonic
function U(x,y,z) of degree m turns out to be a
prototype function; applying the transformation

V(x,y,2)=(2m+1)(ax+by +cz)x

><U(x,y,z)—r2 (aUx (x,y,z)+ (40)
+bU, (x,y,z)+cU, (x,y,z))
to this prototype, we obtain the initial

homogeneous harmonic function WMx,y,z) of
degree m + 1.

Notably, transformation (40) is a
superposition of transformations ¢) + b) + a),
which can be easily verified by direct calculation
of the given superposition.

Therefore, linear combination (40),
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composed of basic Donkin operators (9)—(11),
is again a Donkin operator, if not all coefficients
a, b, c are equal to zero.

Lemma 3 is proved.

Lemma 4. Linear combinations with constant
coefficients composed of basic Donkin operators
(5), (12)—(14) for the degree of homogeneity
m, or from basic Donkin operators (15), (22)—
(24) for the degree of homogeneity —m — 1 are
invertible on subsets of homogeneous harmonic
Sfunctions of the corresponding degrees.

Proof. Because Thomson formula (3) is
invertible, linear combinations composed of
Egs. (15), (22)—(24) are invertible if and only
if linear combinations composed of Egs. (5),
(12)—(14) are invertible.

Let us consider an invertible linear
combination with constant coefficients,
composed of Egs. (5), (12)—(14):

V(x,y,z)=a(yUz —zUy)+
41
+b(zU, —xUZ)+c(ny —yUx)+eU, @

where a, b, c, e are constants, not all of which
are equal to zero.

Without loss of generality, we can assume
that eithera#0,0orb#0,0orc£0 (ifa=b=c=
0, then combined operator (41) is transformed
into basic operator (5), which is obviously
invertible). This requirement imposed so that
the expression

2apq — b(1 + p* — @) + 2cq,

which is to be divided further, does not vanish
identically.

After substituting (30), (31) with £k = m into
linear combination (41) and into the Laplace
equations, we obtain an overdetermined system
of partial differential equations for the functions
Uand V-

2 2
0 F([Z,q)+6 F(]Z’Q)Jr
op oq
4m(m+1)2 F
(1+p2 +q2)
OF (p.q)
op

L OF(p.q)
oq

(42)
+

(b(l+p2 —qz)—Zapq—2cq)+
(43)

(—a(l—p2 +q2)+2bpq+20p)+

+2eF (p,q)=G(p.q),
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which should be checked for solutions for an
unknown function F, provided that the func-
tion G is known and satisfies the equation

’G(p.q) .\ ’G(p.q)

+
op’ oq°
(44)
4 +1
+%G(p,q) =0.
(1+p +q )

Let us introduce a new unknown function
R(p,q) using the substitution

f?i%g;@)ZZR(p,Q)F(lﬁq)'

We can use Eq. (43), taking into account
relation (45), to express the derivative

(45)

8F(p,q) _
op (46)
_=G(p.9)+ F(p,q)(2¢+R(P,q) A(P-9))
B(p.q) ’

where
A(p,q) :2bpq—a(1—p2 +q2)+20p,

B(p,q):2apq—b(l+p2 —q2)+20q.

The condition that mixed derivatives be
equal, i.e.,

6(8F/8p)/8q = 8(8F/8q)/8p,

yields an additional linear relation, which the
derivatives 0R/dp and 0R/0q should satisfy.

The derivative 0°F/d¢* can be found from
condition (45) after differentiation with respect
to ¢, and the derivative ¢*F/dp* in the form
of algebraic expressions containing F, R, OR/dp
and 0R/dq can be found from condition (46),
after differentiation with respect to p. Eq. (42)
then allows to construct another independent
linear relation, which the derivatives 0R/dp and
O0R/0q should satisfy.

The derivatives 0R/op and 0R/dg can be
found from these relations as functions of F(p,q),
R(p,q), G(p,q), partial derivatives of the first
order 0G(p,q)/op and 0G(p,q)/dq, independent
variables p, ¢ and constants a, b, c, e.

As a result, we have obtained a complete
system of differential equations described in
the section “Complete systems of first-order
partial differential equations”, with unknown
functions Hp,q), R(p,q) and independent
variables p, g (the function G(p,q) is assumed
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to be known). We can verify that conditions
(39) for the solvability of the resulting complete
system of differential equations are identically
equal to zero, provided that the function G(p,q)
satisfies Eq. (44).

Consequently, the complete system of partial
differential equations obtained has a solution
(determined up to two arbitrary constants).
Therefore, the transformation of homogeneous
harmonic functions (41) is invertible on the
set of homogeneous harmonic functions, and
linear differential operator (41) turns out to be
the Donkin operator for any constants a, b, c, e
that are not simultaneously equal to zero.

Special case

We considered the degenerate case of the
Thomson transform U(x,y,z) — Wx,y,z) for
homogeneous harmonic functions when the
functions U(x,y,z) and W(x,y,z) have degrees
of homogeneity 0 or —1 [2]. This case is not
included in the list of elementary Thomson
transforms given above, and should be consid-
ered separately. In this section, we discuss the
invertibility of the Thomson transform corre-
sponding to this case.

According to Donkin equations (25), (260),
the functions U(x,y,z) and W(x,y,z) for the de-
generate case of the Thomson transform can be
represented as

U(x,y,z):F( *r Y J,
z+r z+r

(47)
X Y .
V(x’y,z):G(z+r’z+r)’
X Y
U(x’y’z):F(z+r’z+rj’
{ (48)
V(xayaz):_G( al s Y j)
r \z+r z+r
U(x,y,z)—lF( al , J j,
r \z+r z+r (49)
X Y
V(x’y’z):G(z+r’z+rj’
1 X y
U =—
(x.7.2) r (z+r’2+rj’
. . ) (50)
V s Vo = 5 )
(xyz) r [z+r z+rj
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where the functions F(p,q) and G(p,q) satisfy
the two-dimensional Laplace equation.

The relationship between the functions
F(p,q) and G(p,q) is established using a linear
differential equation of the first order

G(p,q)sz(p,q)+

OF (p,q) oF (p,q) (51
+v(p,g)——=+w(p,q)———=,

(pa)=—4 (pa)=—2
where A is an arbitrary real constant, and the
functions v(p,q) and w(p,q) satisfy the Cauchy—
Riemann equations

VEW, V=W,
that is, they are the real and the imaginary
part of some analytic function of a complex
variable [31—34] (and each of these functions
thus satisfies the two-dimensional Laplace
equation).

Linear combinations with constant coef-
ficients composed of expressions of the form
(51) with different constants A, and different
functions v (p,q) and w, (p,q) but with the same
harmonic function F(p,q) are obviously also
expressions of the form (51) for appropriate-
ly chosen constants A and the functions v(p,q)
and w(p,q) satisfying the Cauchy—Riemann
equations.

The physical meaning of Eq. (51) is quite
clear. If the function F(p,q) is harmonic, it
can be regarded the real part of the analytic
function of the complex variable s = p + ig:

As) = At ig) = Fp,q)+iF(p,q);

the functions F(p,q) and F(p,q) here are related
by the Cauchy—Riemann equations:

F=F,F=-F.
p q q p

Notably, in accordance with the theorem
in the section “Complete systems of first-order
partial differential equations”, the Cauchy—
Riemann equations, considered as a complete
system of partial differential equations with
respect to the unknown function F(p,q) (for a
given function F(p,q)) are guaranteed to have
a solution up to an arbitrary additive constant
when F(p,q) satisfies the Laplace equation.

Returning to discussion of the physical
meaning of Eq. (51), we can argue that the
analytic function of a complex variable is
similarly the function

u(s) = u(p + ig) = v(p,q) + iw(p,q),

with the functions v (p, ¢) and w (p, ¢) related
by the Cauchy — Riemann equations.
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In this case, the expression
M(s) + u(s) dfis)/ds

is an analytic function of a complex variable,
and its real part, coinciding with the right-
hand side of Eq. (51), is a harmonic function
(satisfying the two-dimensional Laplace
equation).

We can also verify by direct substitution that
function (51) is harmonic when the function F
is harmonic:

Gl’p +qu :/I(FPP +F;Iq)+

+(vpp +qu)Fp +(wpp +wqq)Fq +

)+w(F +F )+

prPq 999

(52)
+v(F +F

ppp Pqq

+2(v F +wkF

ppp 9 99

)+2(vq7 +WP)F

rq

0.

Linear combinations with constant coef-
ficients composed of expressions of the form
(51) are also obviously expressions of the form
(51) for the appropriately chosen constants A
and the functions v(p,q) and w(p,q) satisfying
the Cauchy—Riemann equations.

Since the partial derivatives of the function
Fwith respect to p and ¢ can be expressed using
Egs. (47)—(49) or (50) in terms of the partial
derivatives of the function U with respect to x
and y, Eq. (51) relating the functions Fand G
generates a linear differential equation relating
the functions U and V, which are therefore the
Thomson transform for the given homogeneous
functions U and V.

If relation (51) is invertible, the resulting
Thomson transform for homogeneous harmonic
functions is also invertible, i.e., it is a Donkin
operator.

As noted above, when the function F(p,q)
satisfies the two-dimensional Laplace equation,
it can be regarded as the real part of some
analytic function of a complex variable:

f(s)=f(p+iq)=F(p.q)+iF (p.q), (53)

where the real part F(p,q) and the imaginary
part F(p,q) are related by the Cauchy—Rie-
mann equations F = Fq, F= —F.

Accordingly, the function GCv,q) can also
be regarded as the real part of some analytic
function of a complex variable:

g(s):g(p+iq):G(p,q)Jrié(p,q), (54)

where the real part G(p,q) and the imaginary
part G(p,q) are calculated by the formulas
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+w(p.q)F,(p.q)-

We can verify that functions (55) are related
by the Cauchy—Riemann equations:

G=G,G=-G.
p q q P
Relations (55) for the real and the imaginary
part of the function g(s) are equivalent to an
ordinary first-order differential equation for
analytic functions of a complex variable [35]:

g(s)zzf(s)m(s)dfd—is), (56)

where
u(s) = u(p + iq) = v(p,q) + iw(p,q).

Eq. (56), considered on the complex plane
with respect to an unknown function f{s) for a
given function g(s), has a solution

ol o 120 ol 1297 || ae |«
o= e+ "[M]"
(57)

¢ Adt
cexp| [ 2L |
L 4 u(f)]
where ¢ is an arbitrary complex constant.

It is important for Eq. (57) that the integral
of the analytic function on the complex plane
does not depend on the integration path (cuts
eliminating the singular points of the inte-
grands and ensuring that the resulting domain
is simply connected may have to be added to
the complex plane for this purpose), and the
result of integration is analytic function [35].
For this reason, differential relation (51) is in-
vertible for a subset of two-dimensional har-
monic functions if u (s) # 0 (or for u(s) = 0
if A # 0).

Therefore, the Thomson transforms gen-
erated for homogeneous harmonic functions
(47)—(49) or (50) using relations (51) are
Donkin operators, unless all coefficients in
Eq. (51) vanish simultaneously.
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Degenerate linear combinations

Until now, we have considered Donkin
operators that can be applied to homogeneous
harmonic functions of any degree, even though
they explicitly contain the degree of homogeneity
as a parameter in some cases. In this section we
discuss whether degenerate cases exist that work
only for one degree of homogeneity and cannot be
generalized to an arbitrary degree of homogeneity.

Indeed, the degree of homogeneity of the
formulas from the lists (5)—(14) and (15)—(24)
can intersect for some values of m, and, therefore,
these formulas can be combined in the same
linear combination with constant coefficients.
Such combinations may differ from general linear
combinations considered in the section “Special
case”. Let us give such values of m.

1. If m = —1/2, operators (5), (12)—(15),
(22)—(24) have the same degree of homogeneity,
equal to —1/2, (this case does not interest us,
since groups of operators (5), (12)—(15), (22)—
(24) are identically equal for £k = —1/2).

2. If m = 0, operators (5), (12)—(14), (16)—
(18) have the same degree of homogeneity,
equal to zero, so that the linear combination of
operators takes the form

L[U]|=eU+U (cy—bz+ fir)+
+U, (az—cx+gr)+Uz (bx—ay+hr).

3. If m=—1, operators (5), (12)—(14), (19)—
(21) have the same degree of homogeneity,
equal to —1, so that the linear combination of
operators takes the form

L[U]=U(e+wj+

r

(38)

+U, (cy—bz+fr)+Uy (az—cx+gr)+ (59)

+U_(bx—ay+hr).

4. If m = 0, operators (6)—(8), (15), (22)—
(24) have the same degree of homogeneity,
equal to —1, so that the linear combination of
operators takes the form

L[U]:£+Ux(f+cy_sz+
r r (60)
+U, (g+az_cxj+UZ (}be—ay)

r r

5. If m = 1/2, operators (6)—(8), (16)—(18)
have the same degree of homogeneity, equal
to —1/2, (this case does not interest us, since
groups of operators (6)—(8) and (16)—(18) are
identically equal for £ = 1/2).
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6. If m = —1/2, operators (6)—(8), (19)—
(21) have the same degree of homogeneity,
equal to —3/2, (this case also does not
interest us, since groups of operators (6)—
(8) and (19)—(21) are identically equal for
k=-—1/2).

7. If m = —1, operators (9)—(11),
(15), (22)—(24) have the same degree of
homogeneity, equal to zero, so that the linear
combination of operators takes the form

A=e,
v(p,q):T_b—hp+cq+
+(a—g)pq—¥(p2—q2), 1)
w(p.q)="E—cp—hg-

a—
—(b+f)pq—Tg(p2 -q’)

8. If m = —1/2, operators (9)—(11), (16)—
(18) have the same degree of homogeneity,
equal to 1/2 (this case does not interest us,
since groups of operators (9)—(11) and (16)—
(18) are identically equal for k = —1/2).

9. If m = —3/2, operators (9)—(11), (19)—
(21) have the same degree of homogeneity,
equal to -1/2 (this case also does not interest
us, since the group of operators (9)—(11) and
(19)—(21) are identically equal for k = —3/2).

Expressions (58)—(61) correspond to the
special case considered above, if we choose

r=e,

-b
v(p,q):T—hp+cq+

b+
+(a—g)pq—Tf(P2 —qz), 62)
+
w(p.q)=" 2g —cp—hq -

—(b+f)pq—%(p2—qz)

(it is easy to verify that the functions v(p,q) and
w(p,q) satisfy the Cauchy—Riemann equations
v=w, v = —wp). Therefore, operators (58)—
(61) are Donkin operators with respect to
homogeneous harmonic functions of the
corresponding degrees for any choice of the
constants a, b, c, e, f, g, h.



Conclusion

Considering all possible forms of Thomson
differential transformations for three-dimensional
homogeneous harmonic functions, we have
found that any first-order Donkin operators are
linear combinations with constant coefficients
composed of basic Thomson differential formulas
of the first order for homogeneous functions [2].
Naturally, this is not to say that basic Thomson
differential formulas or their linear combinations
are indeed Donkin operators. However, it was
found in [3] that basic Thomson differential Egs.
(5)—(14), (15)—(24) are invertible, that is, they
are Donkin operators.

We have established that linear combinations
with constant coefficients, composed of
basic Donkin operators (5)—(14), (15)—(24)
corresponding to the same degree of homogeneity,
are also Donkin operators. There are apparently
no other first-order Donkin operators for three-
dimensional homogeneous harmonic functions.

This is perhaps a rather strong statement that
we should clarify. Adding Euler relation (S08)
multiplied by an arbitrary function to any of Egs.
(5)—(14), (15)—(24) or to their linear combina-
tion, we obtain a new transforming formula with
exactly the same properties. The reason for this is
that these formulas are completely equivalent to
basic Egs. (5)—(14) and (15)—(24) or their linear
combinations with constant coefficients in terms
of their effect on three-dimensional homoge-
neous harmonic functions of a given degree.

To maintain experimental integrity, this func-
tion should be Euler-homogeneous with the cor-
responding degree of homogeneity; otherwise,
the artificial additive would be too easy to iso-
late from the new expression. Such formulas may
differ quite considerably from the list obtained
earlier in the algebraic sense. For example, the
operator

L[U] =AU, (x,y,z)+

+BU,(x,y,2)+CU, (x,,2),
A:a(2m+1)xz+b(2m+1)yz+
+c(—mx2 —my’ +(m+1)22),

B=a(2m+1)xy+ (63)
+b(—mx2 Jr(erl)y2 —mzz)+
+c(2m+l)yz,
C=a((m+1)x2 —my’ —mzz)+

+b(2m+1)xy+c(2m+l)xz,
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with arbitrary constants a, b and c differs (in an
algebraic sense) both from any of the previous-
ly obtained basic Egs. (5)—(14) and (15)—(24)
and from their linear combination with con-
stant coefficients. However, this operator can
be represented as

L[U]=(a(2m+1)xz+b(2m+1) yz +
+c(—mx® —my’ +(m+1)zz))UX +
+(a(2m+1)xy+b(—mx2 +(m+1)y* —mzz)+
+e(2m+1)yz)U, +
+(a((m+l)x2 - my’ —mzz)+
+b(2m+1)xy +c(2m+1)xz)U, = (64)
=(2m+1)(cx+by +az)x
x(xU, +yU, +zU, —mU)+
+me((2m+1)xU -r°U, )+
+mb((2m+1)yU—r2Uy)+
+ma((2m+l)xU—r2Uz).

It follows from this identity that operator
(63) is actually no different from a linear
combination of operators (9)—(11) in its
effect on homogeneous harmonic functions of
degree m.

However, this relationship is not always
obvious. Similar situations, when actually
identical mathematical expressions are not
identical in an algebraic sense, are considered,
for example, in [36—39].

The calculations given in this paper were
carried out using the Wolfram Mathematica
software [40].
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