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In the paper, an economical integration scheme of a differential equation system has been 
proposed for the model of multiphase medium with a common pressure in liquids. The algorithm 
allows someone to consider various cases of multiphase medium flows with formation of any struc-
ture by the number of liquids under study and admits an asymptotic transition to a single-fluid 
model. The algebraic balance relation of the fluid volume fraction was stated through the form of 
a differential equation in pressure. The correctness of the Cauchy problem for an equation system 
was remade using repeated derivatives of the sought-for functions with respect to a spatial coordi-
nate.The Riemann problem in the varying-area channel at various values of liquid pressure and its 
volume fraction on the different sides of a diaphragm in the three-fluid version was solved.
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Для модели многофазной среды с общим давлением в жидкостях предложена 
экономичная схема интегрирования системы дифференциальных уравнений. Алгоритм 
позволяет рассматривать варианты потока многофазной среды с формированием любой 
структуры по количеству рассматриваемых жидкостей и допускает асимптотический 
переход к одножидкостной модели. Алгебраическое соотношение баланса объемной доли 
жидкостей сформулировано в виде дифференциального уравнения относительно давления. 
Корректность задачи Коши для системы уравнений, описывающих поведение многофазной 
среды с общим давлением, восстанавливается путем использования повторных производных 
по пространственной координате от разыскиваемых функций. В качестве примера работы 
алгоритма рассмотрен вариант течения для трех жидкостей. Решена задача Римана о распаде 
разрыва в канале переменного сечения при различных значениях давления и объемной 
доли жидкостей по разные стороны диафрагмы. 
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Introduction

A range of mathematical models have 
been formulated to describe the phenomena 
occurring in heterogeneous media; these models 
can be organized hierarchically depending on 
how complete they are and how satisfactorily 
they describe the given processes. The simplest 
models represent multiphase flow as a mixture 
described by a single equation for the balance 
of mass, momentum and energy. Rakhmatulin 
[1] introduced a fuller description, using the 
concept of interpenetrating continua, with a 
region of space characterized by the volume 
fractions of a substance in different aggregate 
states. The number of balance ratios used to 
determine the remaining thermal and gas-
dynamic functions of the state of multiphase 
flow is chosen depending on the assumptions 
about the equilibrium of the processes. The 
concept of liquids can be involved if a broader 
interpretation of interpenetrating continua is 
adopted, assuming that the composition, level 
of velocities, temperatures, and pressures vary 
for the same state of aggregation. A model 
based on the assumption of equal pressures 
in liquids has gained wide recognition in this 
problem statement. These models are typically 
classified as pressure-balanced. 

The mathematical model can be further 
simplified by considering barotropic processes 
in the class of flows where thermal processes 
do not play the governing role. In this case, 
the multi-fluid model consists of continuity 
equations, momentum equations, equations 
relating density and pressure for each of the 
liquids, and the algebraic balance ratio of 
the volume fraction of liquids. The system of 
equations written in a quasi-one-dimensional 
statement for a channel of variable cross-
section has the form
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where αk is the volume fraction of the kth liquid; 
ρk, kg/m3 and uk, m/s, are its density and ve-
locity ( k = 1, 2,..., K; K is the total number of 
liquids); p, Pa, is the pressure in the channel 

cross-section that is the same for all liquids; A, 
m2, is the area of the channel cross-section; t, 
s, is the time; x, m, is the coordinate along the 
generatrix of the channel.

System of differential equations (1) consists of 
terms in the form of first derivatives with respect 
to space and time. The source terms describing 
mass transfer in liquids and momentum change 
due to interaction of phases on the interface 
surface or to interaction of liquids with the 
channel wall are not included. It is uncommon to 
use differential relations to construct these terms 
and, therefore, such terms do not affect the type 
and properties of system of equations (1).

It was established within the framework of 
the two-fluid approach (K = 2) that system of 
equations (1) is always non-hyperbolic if the 
velocities in the liquids are not equal in magnitude 
and the Cauchy problem is incorrect for the 
system of equations. In other words, formally 
speaking, such a system of equations cannot 
describe the state of a heterogeneous medium 
[2]. Several techniques are known to solve this 
problem. 

A formal approach to system of equations 
(1) as a system of first-order equations assumes 
that it has hyperbolic properties as a set of 
transfer equations, observed upon limit passage 
to single-phase flow (single liquid). The complex 
eigenvalues (treated as the propagation velocities 
of disturbances) in the Jacobi matrix for this 
system in case of two or more liquids indicate 
the absence of characteristic directions and loss 
of hyperbolic properties. Understanding this 
allows to develop an approach to regularizing 
the properties of the matrix, eliminating complex 
eigenvalues of the Jacobi matrix by adding 
certain terms containing the first derivatives of 
the desired functions. 

Historically, added masses were taken into 
account in literature within this approach for 
reconstructing the hyperbolic properties of the 
system of Euler equations for multiphase problems 
in the formulation with total pressure. Adding the 
derivatives of the velocity components with respect 
to space and time to the momentum equations 
allows to determine the dimensions of the region 
without an unfavorable combination of the values 
of the desired functions [3–5]. Ultimately, by 
developing this direction, it proved sufficient to 
add only one term containing the volume fraction 
gradient as a factor for each liquids in the equation 
of momentum in system of equations (1). The 
physical interpretation of this term is associated 
with pressure at the boundary pi (the index i here 
denotes the given interface, i.e., the pressure on 
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the surface between contacting liquids). In this 
case, the pressure difference pi – p can be found 
in terms of the characteristics of the contacting 
liquids. Selecting a quantitative value for the 
difference pi – p provides real values of all the 
eigenvalues of the Jacobi matrix. In particular, by 
analyzing the roots of the characteristic equation 
for two-fluid models we find that the real values 
are provided in selecting a quantitative difference 
as a quantity proportional to the liquid velocity 
relative to the interface velocity, i.e., uki – uk. 
This technique was used for a two-fluid approach, 
for example, in [6–8]; the issue whether this 
technique is applicable to three or more liquids 
remains unexplored in literature. 

We should mention one more technique 
for numerically solving system of equations 
(1). It consists in using difference operators 
approximating derivatives of the first-order 
accuracy to represent derivatives with respect 
to space. In this case, the first differential 
approximation of the difference scheme contains 
the iterative derivative as the main term, which 
changes the type of system of differential equations 
from indefinite to parabolic. The influence of 
these derivatives in the system of equations of 
the first differential approximation depends on 
the coefficients of the highest derivatives, i.e., 
on the scheme viscosity. It was found that a 
numerical solution to system of equations (1) 
can be obtained with coarse discretization of 
the computational domain, i.e., with high values 
of the scheme viscosity. Unfortunately, it is 
impossible to establish the asymptotic behavior of 
the solution with decreasing grid spacing, since 
the oscillating solutions are exponential with 
decreasing scheme viscosity. 

There are two important considerations to be 
borne in mind in solving system of equations (1) 
in this study. 

Firstly, the type of the given system of equations 
was changed to parabolic by supplementing the 
momentum equations with iterative derivatives. 
This way, the stability of the computational process 
is not generally associated with approximating 
operators with first-order accuracy representing 
the derivatives with respect to space. The necessary 
transfer coefficient (similar to the interpretations 
adopted in computational mathematics, it should 
be called artificial viscosity) is determined by the 
parameters of the problem solved: the properties of 
the given liquids and the spatial discretization step. 

To formulate the given equation, let us use 
the continuity equation. Writing the value of the 
derivative of the product of functions with respect 
to time for each liquid, we obtain an equation of 
the following form:

 ( )1 0.k k kk k k

k k
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A A
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Using the equation of state for each of the 
liquids, replacing the derivative of density with 
the derivative of pressure and summing over 
all volume fractions taking into account the 
algebraic balance ratio of the volume fraction, 
we can obtain the evolution equation for 
pressure, which has a clear physical meaning 
as the resultant measure of imbalance of mass 
flows of different liquids.
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The factor in the form of the sum before the 
derivative of pressure with respect to time in 
the first term actually serves for calculating the 
speed of sound in a mixture of liquids by the 
Wood formula. 

After these two modifications, system of 
equations (1) takes the following form:
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where ck and c, m/s, are, respectively the speed 
of sound in the kth liquid and that in a hetero-
geneous medium, found by the Wood formula; 
ρ is the density of the mixture.

Secondly, an evolutionary differential 
equation of the parabolic type with respect to 
pressure was formulated instead of the algebraic 
balance equation of the volume fraction.

The artificial viscosity coefficient was cho-
sen based on the study conducted in [9].
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Numerical method 

Let us use the finite difference method to 
numerically solve system of differential equa-
tions (4). For this purpose, let us introduce a 
uniform spatial grid with the discretization step 
∆x and the integration time step ∆t; fni is the 
function value given in the grid node with the 
coordinates i∆x and n∆t. Let us use the simplest 
difference relations to describe the algorithm:

 ( )1i i if f f x−Λ = − ∆  

is the two-point directed difference opera-
tor approximating the derivative ∂/∂x with 
first-order accuracy;

 ( )1i i if f f x+Λ = − ∆  

is the directed difference operator conjugate to Λ.
The simplest algorithm for numerical inte-

gration of system of equations (4) is based on 
the explicit-implicit approximation of its terms. 

Finite-difference approximation for K mo-
mentum equations for each of the liquids with 
(uk)

n
i > 0 has the form:
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The finite-difference approximation of the 
evolution equation with respect to pressure can 
be written in the form
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then the pressure in the channel is found from 
the solution of an equation of the form
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Notice that any sequence combinations of operators 

Λ(AαkΛpn+1
i ) or Λ(AαkΛpn+1

i ), 

which are essentially operators representing the 
iterative derivative, are equivalent to each other. 
The standard representation of the iterative de-
rivative generates a tridiagonal matrix of coeffi-
cients in front of unknown values pn+1

i . To obtain 
a unique solution to the problem, we should for-
mulate two boundary conditions with respect to 
pressure at different ends of the channel.

Let us consider the formulation of boundary 
conditions for a permeable and for an 
impermeable boundary. The following values 
are typically given for an inflow boundary, when 
all liquids enter the computational domain:

 , , ,inlet inlet inlet
k k kuα ρ  

i.e., the flow rate is given for each liquid

 .inlet inlet inlet inlet
k k k kG A u= α ρ  

Assuming that variation in these values over 
time does not produce significant pressure 
gradients in the vicinity of the boundary, we can 
use a homogeneous boundary condition of the 
second kind

 0,p
x
∂

=
∂

(9)

which can be represented as a two-point relation 
in a difference form. The same boundary condition 
can be applied to a blind channel (impermeable 

An important point is that an operator conju-
gate to the convective transfer operator is used to 
approximate the pressure gradient. This leads, in 
case of multidirectional motion of liquids, to cou-
pling of the pressure of the current point with two 
neighboring ones. Notably, if (uk)

n
i < 0, cyclic sub-

stitution of Λ to Λ is done in formulas (5) and (6). 
The set (K equations (5) and equation (6)) 

forms a closed system, where the variable 
(Aαkρkuk)

n+1
i can be excluded by direct substitu-

tion, and the equation with respect to pressure 
pn+1

i can be formulated. If we introduce the no-
tation for a group of terms defined on a known 
time layer n by the formula
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end surface of the channel), which is immediate 
from the equation of momentum at zero flow rate.

The pressure level at the outlet boundary, when 
all liquids leave the computational domain, can be 
found by a boundary condition of the first kind:

 .outletp p= (10) 

The values of the remaining functions at 
the outlet boundary for the liquids leaving the 
computational domain are determined assuming 
their smooth behavior, i.e., by extrapolation.

The case with a permeable boundary when a 
number of liquids enter the computational domain 
with the remaining liquids simultaneously leaving 
it is not considered.

After finding the pressure from equation (8) 
using the standard scalar sweep procedure with 
two-point boundary conditions, the remaining 
values of the functions are calculated by explicit 
formulas for all K liquids in the following sequence: 
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Judging from inequality (12), the time limit 
imposed on the integration step for the given 
method of determining the artificial viscosity 
coefficient is twice as stringent for the explicit 
approximation of the diffusion terms compared 
to the condition resulting from the estimate 
of the stability of the computational process 
associated with convective transfer. 

Notably, artificial “parabolization” of system 
of equations (1) with respect to all variables 
opens up wider possibilities than reconstruction 
of hyperbolic properties of system of equations 
(1). In particular, more variable functional 
values are admissible for the equation of 
state. For example, multiphase flows with 
incompressible inclusions can be considered, 
with the equation of state reduced to a density 
constant (in this case, the speed of sound in 
this component is equal to infinity).Passage to 
the limit where all components of multiphase 
flow are incompressible can be made. In this 
boundary case, an unsteady term is absent in 
equation (6) (the type of equation for pressure 
changes to elliptic) and an asymptotic transition 
to the classical model of incompressible liquid, 
generalized to several components, occurs.

Example calculation

To illustrate the proposed algorithm, 
we have carried out calculations of the flow 
developing in a channel of variable cross-
section connecting two reservoirs in the three-
fluid approximation. The problem statement 

The scheme for discretization of variables 
described in the paper and the difference operators 
applied yield a first-order  approximation 
for the system of differential equations with 
respect to time and space. The time limit for 
the integration step, associated with the explicit 
form for describing convective and diffusive 
flows, is found by standard estimates:

Tab l e 

Quantitative values of thermodynamic functions 
and their equations of state for three liquids 

 

Thermodynamic 
function 

Value of function or its equation

Vapor Incompressible 
liquid 

Weakly compressible 
liquid 

Pressure, MPa 
in the left tank 
in the right tank 

 
2.0 
0.2 

 
2.0 
0.2 

 
2.0 
0.2 

Volume fraction 
in the left tank 
in the right tank 

 
0.40 
0.59 

 
0.59 
0.40 

 
0.01 
0.01 

Material density,
kg/m3

0,714

1,0e5
p 

 
 

 1.0e3
0,130

1,0e3
1,0e6

p 
 
 .

.
.

..
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was taken from [10], where the solution was 
obtained by the procedure implemented in 
the KORSAR code [11] in the three-fluid 
approximation. The solution and the graphs 
given show the behavior of the functions 
appearing upon instantaneous fracture of the 
aperture located in the middle of the channel. 

The quantitative values of thermodynamic 
functions used and their equations of state for 
liquids are summarized in Table.

Unsteady flow developing from a state of 
rest in a conical channel with an area ratio of 
4:1 and a length of 1 m composed of three 
liquids (see Table) was simulated on a mesh 
consisting of 256 nodes. The integration time 
step chosen was 2.0e–6 s.

The result of numerical integration after 300 
time steps is shown in Fig. 1, giving the profiles 
of gas-dynamic functions of the first and each 
100th time step. In particular, the figure shows 
the pressure (a) and velocity of vapor (b) and 
incompressible liquid (c) as functions of the 
longitudinal coordinate at selected points in time.

Conclusion

Let us now summarize the key advantages 
of the algorithm proposed. 

Firstly, the algorithm does not place a 
limit on the number of liquids. 

Secondly, the characteristics of the flow 
in the initial stages of fast processes can 
be obtained by regularizing the Cauchy 
problem using iterated derivatives without 
distorting the propagation velocity of 
acoustic disturbances. 

Thirdly, the algorithm is more effective 
than other existing algorithms for solving 
systems of equations for the two-fluid 
(multifluid) approach, since the calculations 
are carried out by explicit formulas and by 
one scalar sweep.

The study was carried out as part of State Task of 
the Ministry of Education and Science of the Russian 
Federation No. 3.3314.2017/4.6 (2017–2019).
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