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In the paper, an economical integration scheme of a differential equation system has been
proposed for the model of multiphase medium with a common pressure in liquids. The algorithm
allows someone to consider various cases of multiphase medium flows with formation of any struc-
ture by the number of liquids under study and admits an asymptotic transition to a single-fluid
model. The algebraic balance relation of the fluid volume fraction was stated through the form of
a differential equation in pressure. The correctness of the Cauchy problem for an equation system
was remade using repeated derivatives of the sought-for functions with respect to a spatial coordi-
nate.The Riemann problem in the varying-area channel at various values of liquid pressure and its
volume fraction on the different sides of a diaphragm in the three-fluid version was solved.
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CXEMA YUCJTEHHOTO UHTETPUPOBAHUA CUCTEMDI
YPABHEHUMA MHOTO®A3HbIX MOTOKOB B PABHOBECHOM
BAPOTPOINMHOM NMPUBJIUXKEHUU

C.B. bynoBuy
CaHkT-TNeTepbyprckuin nonnTeXHMYecknin yHuBepcuteT MeTpa Benvkoro,
CaHkT-MeTepbypr, Poccuiickas deaepauus

HOns momenmn MHOroda3HOM cpembl ¢ OOIIMM JaBICHUWEM B KMIKOCTSIX IIpemIOXKeHa
SKOHOMMYHASI CXeMa WHTCTPUPOBAHUST CUCTEMBI Iu(pPepeHINATbHBIX YPaBHEHUN. AJITOPUTM
ITO3BOJISIET pacCMaTpUBaTh BapUaHTbI IIOTOKA MHOrodasHoi cpeibl ¢ (GopMUpOBaHUEM J1H00O0M
CTPYKTYpbl TI0 KOJIMYECTBY pacCMaTpUMBAaEMbIX >KMAKOCTEM M JOIYyCKAaeT aCHUMIOTOTUYECKUIA
nepexojl K OAHOXUIKOCTHON Momenn. AJredpandeckKoe COOTHOIIeHUE OajlaHca 00BeMHOM IO
SKUIKOCTEN c(hOpMYTMPOBAaHO B BHIe TUddepeHIINATEHOTO YpaBHEHUST OTHOCUTETEHO JaBJICHMS.
KoppekTHOCTh 3amaun Kol a1 cucTeMbl ypaBHEHMIA, OTTMCHIBAIOIIMX TTOBEACHE MHOTO(a3HOM
CpeInbl ¢ OOIINM JaBICHUEM, BOCCTAHABIMBACTCS IyTeM UCIIOIb30BaHUS IIOBTOPHBIX ITPON3BOIHBIX
10 MMPOCTPAHCTBEHHOI KOOpAMHATE OT pa3bICKMBaeMbIX (yHKIMiI1. B KauecTBe nmpuMepa pabOThI
aJIrOPUTMa PaCCMOTPEH BapuaHT TeUEHMs UIsl TpeX KuaKocTeil. PeleHa 3amaya Pumana o pacnane
pa3pbiBa B KaHaJle TEPEeMEHHOTO CEUeHUs NP Pa3IMYHbIX 3HAYEHUSX NABICHUSI M OOBEMHOM
JTOJIN SKUAKOCTEH TT0 pa3HbIe CTOPOHBI TadparMsl.
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Introduction

A range of mathematical models have
been formulated to describe the phenomena
occurring in heterogeneous media; these models
can be organized hierarchically depending on
how complete they are and how satisfactorily
they describe the given processes. The simplest
models represent multiphase flow as a mixture
described by a single equation for the balance
of mass, momentum and energy. Rakhmatulin
[1] introduced a fuller description, using the
concept of interpenetrating continua, with a
region of space characterized by the volume
fractions of a substance in different aggregate
states. The number of balance ratios used to
determine the remaining thermal and gas-
dynamic functions of the state of multiphase
flow is chosen depending on the assumptions
about the equilibrium of the processes. The
concept of liquids can be involved if a broader
interpretation of interpenetrating continua is
adopted, assuming that the composition, level
of velocities, temperatures, and pressures vary
for the same state of aggregation. A model
based on the assumption of equal pressures
in liquids has gained wide recognition in this
problem statement. These models are typically
classified as pressure-balanced.

The mathematical model can be further
simplified by considering barotropic processes
in the class of flows where thermal processes
do not play the governing role. In this case,
the multi-fluid model consists of continuity
equations, momentum equations, equations
relating density and pressure for each of the
liquids, and the algebraic balance ratio of
the volume fraction of liquids. The system of
equations written in a quasi-one-dimensional
statement for a channel of variable cross-
section has the form

a(Aakpk) N a(Aakpkuk)
ot ox
G(Acxkpkuk) . a(Aockpku,f + Aockp)

ot ox
(1)
)

3

k=K
Yo, =1p,=p(p)
k=1

where a, is the volume fraction of the kth liquid;
P kg/m’ and u,, m/s, are its density and ve-
locity ( k=1, 2,..., K; Kis the total number of
liquids); p, Pa, is the pressure in the channel
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cross-section that is the same for all liquids; A4,
m?, is the area of the channel cross-section; 7,
s, is the time; x, m, is the coordinate along the
generatrix of the channel.

System of differential equations (1) consists of
terms in the form of first derivatives with respect
to space and time. The source terms describing
mass transfer in liquids and momentum change
due to interaction of phases on the interface
surface or to interaction of liquids with the
channel wall are not included. It is uncommon to
use differential relations to construct these terms
and, therefore, such terms do not affect the type
and properties of system of equations (1).

It was established within the framework of
the two-fluid approach (K = 2) that system of
equations (1) is always non-hyperbolic if the
velocities in the liquids are not equal in magnitude
and the Cauchy problem is incorrect for the
system of equations. In other words, formally
speaking, such a system of equations cannot
describe the state of a heterogeneous medium
[2]. Several techniques are known to solve this
problem.

A formal approach to system of equations
(1) as a system of first-order equations assumes
that it has hyperbolic properties as a set of
transfer equations, observed upon limit passage
to single-phase flow (single liquid). The complex
eigenvalues (treated as the propagation velocities
of disturbances) in the Jacobi matrix for this
system in case of two or more liquids indicate
the absence of characteristic directions and loss
of hyperbolic properties. Understanding this
allows to develop an approach to regularizing
the properties of the matrix, eliminating complex
eigenvalues of the Jacobi matrix by adding
certain terms containing the first derivatives of
the desired functions.

Historically, added masses were taken into
account in literature within this approach for
reconstructing the hyperbolic properties of the
system of Euler equations for multiphase problems
in the formulation with total pressure. Adding the
derivatives of the velocity components with respect
to space and time to the momentum equations
allows to determine the dimensions of the region
without an unfavorable combination of the values
of the desired functions [3—5]. Ultimately, by
developing this direction, it proved sufficient to
add only one term containing the volume fraction
gradient as a factor for each liquids in the equation
of momentum in system of equations (1). The
physical interpretation of this term is associated
with pressure at the boundary p, (the index i here
denotes the given interface, i.e., the pressure on
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the surface between contacting liquids). In this
case, the pressure difference p, — p can be found
in terms of the characteristics of the contacting
liquids. Selecting a quantitative value for the
difference p, — p provides real values of all the
eigenvalues of the Jacobi matrix. In particular, by
analyzing the roots of the characteristic equation
for two-fluid models we find that the real values
are provided in selecting a quantitative difference
as a quantity proportional to the liquid velocity
relative to the interface velocity, ie., u, — u,.
This technique was used for a two-fluid approach,
for example, in [6—8]; the issue whether this
technique is applicable to three or more liquids
remains unexplored in literature.

We should mention one more technique
for numerically solving system of equations
(1). It consists in using difference operators
approximating derivatives of the first-order
accuracy to represent derivatives with respect
to space. In this case, the first differential
approximation of the difference scheme contains
the iterative derivative as the main term, which
changes the type of system of differential equations
from indefinite to parabolic. The influence of
these derivatives in the system of equations of
the first differential approximation depends on
the coefficients of the highest derivatives, i.e.,
on the scheme viscosity. It was found that a
numerical solution to system of equations (1)
can be obtained with coarse discretization of
the computational domain, i.e., with high values
of the scheme viscosity. Unfortunately, it is
impossible to establish the asymptotic behavior of
the solution with decreasing grid spacing, since
the oscillating solutions are exponential with
decreasing scheme viscosity.

There are two important considerations to be
borne in mind in solving system of equations (1)
in this study.

Firstly, the type of the given system of equations
was changed to parabolic by supplementing the
momentum equations with iterative derivatives.
This way, the stability of the computational process
is not generally associated with approximating
operators with first-order accuracy representing
the derivatives with respect to space. The necessary
transfer coefficient (similar to the interpretations
adopted in computational mathematics, it should
be called artificial viscosity) is determined by the
parameters of the problem solved: the properties of
the given liquids and the spatial discretization step.

Secondly, an evolutionary differential
equation of the parabolic type with respect to
pressure was formulated instead of the algebraic
balance equation of the volume fraction.

To formulate the given equation, let us use
the continuity equation. Writing the value of the
derivative of the product of functions with respect
to time for each liquid, we obtain an equation of
the following form:

oo, oy 0p, , 1 O(Aoupus)
ot p, Ot p, Ox

Using the equation of state for each of the
liquids, replacing the derivative of density with
the derivative of pressure and summing over
all volume fractions taking into account the
algebraic balance ratio of the volume fraction,
we can obtain the evolution equation for
pressure, which has a clear physical meaning
as the resultant measure of imbalance of mass
flows of different liquids.

ol4
g1

2
k=1 PrCr k=1 Py Ox

A =0. (2)

=0. (3)

The factor in the form of the sum before the
derivative of pressure with respect to time in
the first term actually serves for calculating the
speed of sound in a mixture of liquids by the
Wood formula.

After these two modifications, system of
equations (1) takes the following form:

0 (A(x’kpk ) N a(Aakpkuk )

ot ox
G(A(xkpkuk) .\ 5(140‘/{01{“/3) 4 ap

ot ox " ox
0 0 (O'kpkuk )

=—|v4
ox Oox

2

“4)

b

where ¢, and ¢, m/s, are, respectively the speed
of sound in the kth liquid and that in a hetero-
geneous medium, found by the Wood formula;
p is the density of the mixture.

The artificial viscosity coefficient was cho-
sen based on the study conducted in [9].
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| _
Numerical method . "
Let us use the finite difference method to (Aakpkuk ),- :(Aakpkuk ),- h
numerically solve system of differential equa- (7)

tions (4). For this purpose, let us introduce a
uniform spatial grid with the discretization step
Ax and the integration time step Af; f7is the
function value given in the grid node with the
coordinates iAx and nAt. Let us use the simplest
difference relations to describe the algorithm:

N, =(f —f)/Ax

is the two-point directed difference opera-
tor approximating the derivative 06/0x with
first-order accuracy;

N, =(fu— 1) /Ax

is the directed difference operator conjugate to A.
The simplest algorithm for numerical inte-
gration of system of equations (4) is based on
the explicit-implicit approximation of its terms.
Finite-difference approximation for K mo-
mentum equations for each of the liquids with
(u)7> 0 has the form:

(Aakpkuk )M1

n

- (Aakpkuk )
At
+A(A0Lkpku,f ):« - ©)

i i

i

—A(Av/_\(ockpkuk )n ) + A(ock ):1 Apt=0.

The finite-difference approximation of the
evolution equation with respect to pressure can
be written in the form

4 prt—p
( Zj p-pl
pc At

i

(6)

=0.

K
+> ! - A(Aakpkuk)
k=1 (Pk ;

An important point is that an operator conju-
gate to the convective transfer operator is used to
approximate the pressure gradient. This leads, in
case of multidirectional motion of liquids, to cou-
pling of the pressure of the current point with two
neighboring ones. Notably, if (#,)7< 0, cyclic sub-
stitution of A to A is done in formulas (5) and (6).

The set (K equations (5) and equation (6))
forms a closed system, where the variable
(Ao,p,u, )™ can be excluded by direct substitu-
tion, and the equation with respect to pressure
P! can be formulated. If we introduce the no-
tation for a group of terms defined on a known
time layer »n by the formula

20
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—At(A(Aakpku,f )n —A(Av/_\(ockpkuk )n )),
then the pressure in the channel is found from
the solution of an equation of the form

ALY
p6’2 ipi

k=1 (pk ;
(3
=—Ati A(dop,) |+
k=1 (Pk ;

Notice that any sequence combinations of operators
A(Aaka';“) or K(AakAp';*‘),

which are essentially operators representing the
iterative derivative, are equivalent to each other.
The standard representation of the iterative de-
rivative generates a tridiagonal matrix of coeffi-
cients in front of unknown values p’*! To obtain
a unique solution to the problem, we should for-
mulate two boundary conditions with respect to
pressure at different ends of the channel.

Let us consider the formulation of boundary
conditions for a permeable and for an
impermeable boundary. The following values
are typically given for an inflow boundary, when
all liquids enter the computational domain:

inlet inlet  inlet
Oy 5P U

i.e., the flow rate is given for each liquid

inlet __ inlet _inlet , inlet
G = 4o, p; u," .

Assuming that variation in these values over
time does not produce significant pressure
gradients in the vicinity of the boundary, we can
use a homogeneous boundary condition of the
second kind

@,
ox

which can be represented as a two-point relation
in a difference form. The same boundary condition
can be applied to a blind channel (impermeable

O
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end surface of the channel), which is immediate
from the equation of momentum at zero flow rate.
The pressure level at the outlet boundary, when
all liquids leave the computational domain, can be
found by a boundary condition of the first kind:

p — poutlet. (10)

The values of the remaining functions at
the outlet boundary for the liquids leaving the
computational domain are determined assuming
their smooth behavior, i.e., by extrapolation.

The case with a permeable boundary when a
number of liquids enter the computational domain
with the remaining liquids simultaneously leaving
it is not considered.

After finding the pressure from equation (8)
using the standard scalar sweep procedure with
two-point boundary conditions, the remaining
values of the functions are calculated by explicit
formulas for all Kliquids in the following sequence:

n+l *

(Aa‘kpkuk )l. = (Aakpkuk )l. -
—Ato, AAp!™,
(Aap,)

—AtA(Aockpkuk)

i . 1
:(Aakpk) -

i

n+l

The scheme for discretization of variables
described in the paper and the difference operators
applied vyield a first-order  approximation
for the system of differential equations with
respect to time and space. The time limit for
the integration step, associated with the explicit
form for describing convective and diffusive
flows, is found by standard estimates:

2
AtSmin(g, ﬂ} (12)
c 2v

Judging from inequality (12), the time limit
imposed on the integration step for the given
method of determining the artificial viscosity
coefficient is twice as stringent for the explicit
approximation of the diffusion terms compared
to the condition resulting from the estimate
of the stability of the computational process
associated with convective transfer.

Notably, artificial “parabolization” of system
of equations (1) with respect to all variables
opens up wider possibilities than reconstruction
of hyperbolic properties of system of equations
(1). In particular, more variable functional
values are admissible for the equation of
state. For example, multiphase flows with
incompressible inclusions can be considered,
with the equation of state reduced to a density
constant (in this case, the speed of sound in
this component is equal to infinity).Passage to
the limit where all components of multiphase
flow are incompressible can be made. In this
boundary case, an unsteady term is absent in
equation (6) (the type of equation for pressure
changes to elliptic) and an asymptotic transition
to the classical model of incompressible liquid,
generalized to several components, occurs.

Example calculation

To illustrate the proposed algorithm,
we have carried out calculations of the flow
developing in a channel of variable cross-
section connecting two reservoirs in the three-
fluid approximation. The problem statement

Table
Quantitative values of thermodynamic functions
and their equations of state for three liquids
i Value of function or its equation
Thermodynamic - -
function Vapor Incompressible Weakly compressible
P liquid liquid
Pressure, MPa
in the left tank 2.0 2.0 2.0
in the right tank 0.2 0.2 0.2
Volume fraction
in the left tank 0.40 0.59 0.01
in the right tank 0.59 0.40 0.01
Material density, o 1.0e3 L0 e3[ p jwo
kg/m? 1.0e5 1.0e6
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Fig. 1. Calculated profiles of gas-dynamic pressure (a),
velocities of vapor (b) and incompressible liquid (c)
along the longitudinal coordinate at first (/),
100th (2), 200th (3) and 300th (4) time steps
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was taken from [10], where the solution was
obtained by the procedure implemented in
the KORSAR code [11] in the three-fluid
approximation. The solution and the graphs
given show the behavior of the functions
appearing upon instantaneous fracture of the
aperture located in the middle of the channel.

The quantitative values of thermodynamic
functions used and their equations of state for
liquids are summarized in Table.

Unsteady flow developing from a state of
rest in a conical channel with an area ratio of
4:1 and a length of 1 m composed of three
liquids (see Table) was simulated on a mesh
consisting of 256 nodes. The integration time
step chosen was 2.0e—6 s.

The result of numerical integration after 300
time steps is shown in Fig. 1, giving the profiles
of gas-dynamic functions of the first and each
100th time step. In particular, the figure shows
the pressure (a) and velocity of vapor (b) and
incompressible liquid (c) as functions of the
longitudinal coordinate at selected points in time.

Conclusion

Let us now summarize the key advantages
of the algorithm proposed.

Firstly, the algorithm does not place a
limit on the number of liquids.

Secondly, the characteristics of the flow
in the initial stages of fast processes can
be obtained by regularizing the Cauchy
problem using iterated derivatives without
distorting the propagation velocity of
acoustic disturbances.

Thirdly, the algorithm is more effective
than other existing algorithms for solving
systems of equations for the two-fluid
(multifluid) approach, since the calculations
are carried out by explicit formulas and by
one scalar sweep.

The study was carried out as part of State Task of
the Ministry of Education and Science of the Russian
Federation No. 3.3314.2017/4.6 (2017—2019).
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