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YUCNEHHOE PELLEHUE TPEXMEPHOM 3AAYU
OBTEKAHUA YCTAHOBJIEHHOIO HA NNACTUHE
LUWMJTMHAPUYECKOTIO TEJIA CBEPX3BYKOBbBIM NMNOTOKOM
BA3KOIo ra3AnPuU m = 2,95

E.B. KonecHuk, E.M. CmupHoG, A.A. CMupHoBcKuu

CaHkT-MeTepbyprckuii NONUMTEXHUYECKUit yHuBepeuTeT MNeTpa Benukoro,
CaHkT-lMeTepbypr, Poccuiickas ®eaepauus

IMpexncraBiieHbl pe3yabTaThl YMCIEHHOIO MOIEIMPOBAHUS YIAPHO-BOJTHOBBIX U BUXPEBBIX
CTPYKTYpP, KOTOpble (hOPMUPYIOTCS TPU OOTEKAHWM CBEPX3BYKOBBIM ITOTOKOM VIJIMHEHHOTO
LUJIMHAPUUYECKOTrO Tejla, KOTOpOe MPUMBIKAET K MJIAaCTUHE M MPOHU3bIBAET pPa3BUBAIOLLIMIAICS
Ha TJTJACTMHE TIOTPAaHWYHBIN clioii. PaccMOTpeH JTaMUHApHBIA pEeXUM TEUCHUSI TPU UYKCIE
Maxa HaberaroIiero IoToka, paBHoM 2,95, m umcie PeitHombaca, paBHoMm 4000. Pemrenus
MOJIy4eHbl C MCIIOJIb30BAaHMEM [BYX CXeM [JIsI pacyeTa KOHBeKTMBHbIX mnotokoB (HLL wu
AUSM). I1poBeneHO cpaBHEHUE TOJIe TeUEHMSI, PACCUMTAHHBIX C MPUMEHEHUEM yKa3aHHBIX
YUCJIEHHBIX CXEM TTEPBOTO M BTOPOTO MOPSIAKOB TOUHOCTH. OOCYKIAaI0TCS BOITPOCHI CXOTUMOCTH
YUCJICHHOTO PEIICHUS IO CETKE.

KxroueBbie ¢10Ba: BEICOKOCKOPOCTHOE TEUCHHUE, BI3KO-HEBSI3KOE B3aMMOICIICTBIE, YUCICHHOE
MonenupoBaHue, cxema AUSM, cxema HLL
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Introduction

Practical problems of the aerospace industry
and turbomachinery often involve studies
on the structure of subsonic and supersonic
flows around structural elements fixed on the
streamlined surface. This includes, in particular,
design of connections between wings, fuselage,
tail and other elements, and optimization of
interaction of supersonic flow with injected gas
jets used in control elements.

Keen interest in this type of problems was
instigated by development of supersonic and
hypersonic aircraft construction started in the
mid-20th century. One of the challenging tasks
here is three-dimensional flow with a complex
shock-wave structure, a wide separation region
and a system of horseshoe-shaped vortices
that takes place in supersonic viscous gas flow
around the junction of a blunt body with a plate.
In other words, the effects of viscous-inviscid
interaction in supersonic flow of viscous gas
can be clearly observed in this problem.

On the whole, sufficient detailed information
has been collected obtained in recent years
for the case of the interaction of a separating
boundary layer with a bow shock. Reviews
of literature on this topic can be found, for
example, in [1, 2].

A case of a separation region forming
in front of the body in subsonic flow is also
of interest. For instance, this applies to
problems of turbomachine engineering, where
understanding the complex vortex structure
of the flow near the leading edge of the
blade is important for taking into account
the heat transfer patterns in the region of
the blade/endwall junction in disks vanes of
high-temperature gas turbines. Many studies,
both experimental and computational, have
been dedicated to studying the flow structure
in subsonic regime (see, for example, [3—6]).

The subject of this study is one of the model
problems simulating the complex structure of
three-dimensional flow. We have considered
supersonic flow around an elongated cylindrical
body mounted on a plate along which the
boundary layer evolves (Fig. 1). A fairly large
number of experimental works [7—13] addressed
this problem. Some of the earliest studies of
the flow structure in this configuration [7—9]
revealed that local supersonic regions and bow
shocks, inducing a secondary separation region
inside the main zone, evolve in front of the
cylindrical body.

One of the most important characteristic
for high-speed aircraft is the intensity of heat
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transfer in front of the streamlined body; studies
indicate strong intensification of heat transfer in
this region. In particular, a recently published
paper [13] considered local heat transfer on a
plate with flow around a cylindrical body at a
Mach number of 5.

It is rather problematic to experimentally
obtain sufficient data on the detailed structure
of three-dimensional supersonic flow in
the entire region where it develops. For this
reason, it would be of great interest to be
able to predict the flow structure in the given
model configuration based on computational
fluid dynamics, providing high quality of
resolution for the regions with viscous-inviscid
interaction. The first studies on numerical
simulation of laminar and turbulent flows
in the given configuration [14, 15] wused
computational meshes that could not provide
sufficient resolution of all flow features. A
relatively recent work [16], detailing extensive
study (both experimental and numerical) of the
flow around a blunt body at Mach number M
= 6.7 was performed, established, for example,
that a sufficiently accurate resolution of the
flow structure is obtained with a mesh size of
about 15 million cells.

Numerical simulation of supersonic flow
under given conditions may be complicated
by the so-called carbuncle instability [17, 18],
which leads to strong distortion of bow shock
in the numerical solution. This instability may
occur when using several well-known numerical
schemes; different approaches (in particular,

Fig. 1. Schematic representation
of problem statement:
viscous gas flow around elongated cylindrical body
with diameter D of blunt part,
mounted on plate; boundary layer
develops along the plate
(8 is the thickness of this layer)
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hybrid schemes [18, 16] and introduction of
additional artificial viscosity [19]) have been
devised to suppress it. There are also schemes
where the carbuncle instability is usually not
observed. These include the Harten—Lax—van
Leer (HLL) scheme [20], which is characterized
by high dissipativity, and a family of schemes
based on s flux vector splitting, proposed
by Liou and Steffen (Advection Upstream
Splitting Method (AUSM)) [21], which many
authors have found to be stable to non-physical
oscillations on the bow shock.

The majority of published works on
numerical solution to the problem of high-
speed flow of viscous gas around a blunt body
mounted on a plate considered a case of
hypersonic flow. However, little attention has
been paid in literature to flows with moderate
free-stream Mach numbers and the quality of
numerical prediction of the effects of viscous-
inviscid interaction.

In this paper, we present the results of a
numerical solution to the problem of flow past
an elongated blunt body mounted on a plate,
with the free-stream Mach number equal to
2.95, and the Reynolds number based on the
diameter of the blunt part equal to 4000. A
moderate Reynolds number, ensuring laminar
flow in the given region, was chosen because we
focused on obtaining an accurate, almost grid-
converged solution, with detailed resolution
of both the complex structure of the flow in
the viscous separation region with a system
of horseshoe-shaped vortices, and the gas-
dynamic structure characterized by detached
shock and a system of oblique compression
waves generated by flow around the separation
region.

Numerical solutions were obtained by two
schemes, HLL and AUSM; both of them
allowed to avoid the carbuncle instability.
Additionally, we have carried out comparative
analysis of the solutions.

Numerical method for solving the problem

General formulation. The  following
numerical solutions for viscous gas flow were
obtained using the finite volume method
(FVM), based on integral formulation of the
laws of conservation of mass, momentum
and energy, as applied to computational cell
(control volume):

J)%V:dg +Y[FdS=0, ()

where Q is the control volume; M is the number
of its faces; S is the area of the current face, m
= 1,M, F* is the vector of the fluxes on the face
of the control volume; w = [p,pu,pv,pw,pE] is
the vector of conservative variables (v = u, v
= u,, w = u, are the components of the velocity
vector V in the Cartesian coordinate system; £
is the total energy; p is the density).

The vector F* is the sum of vectors of invis-
cid and viscous fluxes F* = F + F¥*, defined by
the expressions:

pV:-n
pV-nu+ pn-i
pV-nv+pn-j |, 2)
pV -nw+ pn-k
pV-nH
_ 0 B}
n-t-i
n-tj | (2)
n-t-k
n(t-V+q)]

F visc __

where p is the pressure; H is the total enthalpy;
n is the normal to the face; i, j, k are the unit
vectors of the Cartesian coordinate system (x =
Xp Y =X, 2= X)),

The components of the viscous stress tensor t
and the heat flux density vector q are written as

_|(ou, ou_ u,
T”_“[[G_)chra_xi] (2/3)%%}(3)

q; = (0T /ex;). 0

where 7T is the temperature; p is the dynamic
viscosity of the gas whose dependence on tem-
perature is determined by the Sutherland for-
mula; A is the thermal conductivity of the gas.

The total energy and enthalpy are determined
by the expressions:

E=cT+V?[2, H=c,T+V?/2,

where cv, cp are the specific heat capacities
at constant volume and constant pressure,
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respectively; they are assumed to be constant.
Pressure p, density p and internal energy e are
related by the equation of state of a perfect gas:

p=(y—1Dpe,

where vy is the adiabatic index (y = ¢p/cv).

Simulation schemes for convective flows. The
method for inviscid fluxes F approximation is
especially important in simulation of supersonic
flows. The approximation scheme should provide
sufficiently accurate resolution of gas dynamic
discontinuities with a small number of internal
points in the absence of flow field oscillations near
the discontinuities. The methods with desired
behavior, which are based on characteristic
properties of the system of equations, have gained
great popularity over the past decades [22]. These
include flux vector splitting schemes (for example,
the Steger—Warming splitting scheme, the AUSM
method), and schemes based on the Riemann
solver for the discontinuity problem (for example,
Godunov, Roe, HLL and HLLC schemes).
Below, we consider in-detail only the AUSM and
HLL schemes selected for our computations.

Parameters for the “left” and “right” sides of
a given face are widely used in flux computations
(denoted by subscripts L and R below). If values
from the centers of adjacent cells are used as such
parameters, the numerical method is of the first
order of accuracy. Special methods for evaluating
the parameters to the left and right of the face
(briefly discussed below) can be used to implement
schemes with a higher order of accuracy.

AUSM scheme [21]. The flux vector F is
represented as the sum of F© (convective
component) and F®» (component related to
pressure):

pV:-n
pV -nu+pn-i
pV-nv+pn-j |=
pV -nw+ pn-k
pV-nH

- pV-n | 0 (5)
pn-i

pnj (=
pn-k

pV -nu
= pV-nv |+
pV -nw
pV-nH | 0

:F(")+l;‘“’>.
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Accordingly, Ff (numerical flux on the face)
is also found as the sum:

F,=F9+F". (©6)

A specific splitting method is used for each
of the components.

The convective flux F© is expressed in terms
of the Mach number M constructed from the
normal velocity component:

M=V-n/a,

where a = VyRT is the speed of sound ( R is the
gas constant):

pa
pau
F“ =M| pav |= MF©. (7)
paw

| paH

Splitting of the convective flux is based on
the sign of the Mach number at the face M " in
the following manner:

M,|FO| M, >0,
g WLz

M, [F] M, <o

The Mach number at the face is found as the
sum of the positive and negative components:

M, =M; +M,,

where the splitting into components is carried
out using the following relationship:

1
. iZ(ML/Ri1)29ML/R|£1;
M; ;= 1 ©))
E(ML/R :I:|ML/R )9 ML/R| >1.

The component of the flux related to
pressure is defined as

0
n-i
nj |,
n-k
0

FP =(p; +p;) (10)
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where the splitting of pressure into the positive
and the negative component is also carried out
depending on the Mach number:

£ 2L (M, 17 2F M),
M, .| <1

Prr (ML/R i|ML/R|)
2 ML/R ’
M, | >1.

HLL scheme [20]. The scheme is based
on the approximate Riemann solver for the
discontinuity problem. It is assumed that the
solution consists of two main discontinuities
describing the propagation only of strong
waves such as shock waves; other waves, such
as contact or tangential discontinuities, are not
taken into account.

The velocities of the main discontinuities
(characteristics) S, and S, comprising solution
are defined by the following expressions [23]:

Pin = (11)

S, =min(VL -n—aL,Von—&), (12)

S, =min(VR -n+aR,V-n+&), (13)

where a, and a, are the speeds of sound com-
puted by the parameters on the left and right

sides of the face; the quantities ¢ and V are
the variables computed for the current face by
means of Roe averaging [24].

According to the approximate Riemann
solver [20], the characteristics of S, and §, are
separated from each other by three regions with
constant gas parameters on the x—¢ diagram:
two regions with undisturbed gas parameters
“left” and “right” from the face, and the third
region between them.

Numerical flux on the face depends on the
configuration corresponding to the current

face:
F, 0<S,;
F, =F, § <0<8,; (14)
F, 0>S,,
where the flux F* is found by the formula
F S:F, =S, F, +8,8,(w, —WL)' (15)

S-S,

Increasing the order of accuracy. The order
of accuracy of a numerical scheme can be
increased with a technique for quasi-monotonic
interpolation of mesh solutions: the MUSCL
approach (Monotonic  Upstream-Centered
Scheme for Conservation Laws) [25], which is
used for piecewise polynomial reconstruction
of the solution in each control volume and

Fig. 2. Scheme for constructing algorithm for quasi-one-dimensional computations
in two-dimensional case;
left and right cells adjacent to the given face f'are highlighted in dark gray,
all stencil cells used for determining the values at additional points
(notations are given for them) are highlighted in light gray;
r, [ are direct reconstructions for face f

11
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for reconstruction of the values on the face
with increased accuracy. Total Variation
Diminishing schemes (TVD) are applied to
obtain monotonous solutions in computations
by second-order accuracy schemes [26]. This
approach can be generalized to the case of
unstructured meshes by applying quasi-one-
dimensional computations with some suitable
direction (similar to the coordinate direction
initially present in structured meshes) selected
locally for each face. In other words, aside
from the values of the variables in the centers
of the cells located on both sides of the face,
at least two more virtual points to the left and
right of the center points (points P}, P;, P}, and
P; in Fig. 2) are required, in which the values
of variables can be reconstructed in some way.

The numerical solutions given below were
obtained using the approach proposed in [27]
and described in detail in [28]. Two straight
lines (reconstruction beam) are drawn through
the center of each face f and through the
centers of the cells adjacent to the face (direct
reconstructions are / and r in Fig. 2); two
additional points are taken on each of these
straight lines, with the values of the variables in

%\ R
)\ D/2

z
L
y

X

these points found evaluated by interpolation
based on the known values of the variables
in certain neighboring centers of the cells
(“interpolating triples”).

Such cells are found by the following
algorithm [28]: first, a set N, is established,
including all first-level neighbors for the
current cell, i.e., the set of cells that have at
least one common node with the current cell,
excluding the cell itself. Next, all cells from
the set N, are sorted by ascending cosine of
the angle between the reconstruction beam
emanating from the center of the current cell
and the vector of direction to the center of the
cell from this set. Next, an iterative search of
the cell triplets is performed in ascending order
of the sum of the indices of these cells in the
sorted array and the first of the “interpolating
triplets” found is wused. By interpolating
triplet we mean a triplet of cells whose
centers form a triangle and the straight line
of reconstruction intersects it.After the values
at additional points have been computed, the
values on the left and right sides of the face
are found in accordance with one-sided linear
extrapolation:

L

Fig. 3. Computational domain for problem of supersonic flow
around elongated cylindrical body (see Fig. 1).
The figure shows the geometrical parameters: D is the diameter of the blunt part of the body,
R, L, h are the dimensions of the computational domain,
the arrow indicates the direction of the flux

12



ul =u, +y, (uL —ug)/Z,

Uy =l =, (”1: _”R)/za

where u is any of the reconstructed variables;
y(r) is the limiter introduced to control oscil-
lations and computed as a function of the ratio
of two differences:

=i (n ) 1),

i =W ((ur —1e) /(e —22)). (19

We used Van Albada’s TVD-limiter [29] as
the function y in these computations.

(16)

(17)

(18)

Problem statement and computational tools

Fig. 3 shows the computational domain
for the given problem of supersonic flow
past an elongated cylindrical body mounted
on an adiabatic plate along which a laminar
boundary layer evolves. The flow is assumed to
be symmetrical, so the computational domain
covers only half of the initial configuration.
The dimensions of the region are: R = 15D,
h = 10D, L= 8D, where D is the diameter of
the blunt part of the body, also assumed to be
adiabatic.

The problem is governed by the following set

’/%

PP,

OC=NWHrOTIO N OO
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of dimensionless parameters: the free-stream
Mach number M, the Reynolds number Re,,
the Prandtl number Pr, the adiabatic index y
and the ratio D/§ of the body’s diameter to the
thickness of the incoming boundary layer. The
numerical solutions in this study were obtained
for M = 2.95, Re,, = 4000, Pr = 0.71, y = 1.4,
D/s,, = 1. Velocity and temperature profiles
for the boundary layer of a given thickness &,
were prescribed at the inlet boundary of the
computational domain.

We have implemented the above-described
numerical method in combination with the im-
plicit scheme in “increments” as one of the op-
tions of the finite-volume unstructured program
code SINF/Flag-S, which is under develop-
ment at the Hydroaerodynamics, Combustion
and Heat Transfer Department of Peter the
Great St. Petersburg Polytechnic University.

The resources of the  Polytechnic
Supercomputer Center (Www.scc.spbstu.ru)
were used for computations.

Computation results and discussion

Flow structure. The numerical solution
obtained by the AUSM scheme on the most
refined of the meshes used is shown in Figs.
4—6 (the issues of grid-converged solution are
discussed below). In general, the structure of the
computed flow field is similar to that described

Fig. 4. Surface streamlines and flow structure
in axial (XZ plane) and transverse (XY) cross-sections of flow.
Pressure distributions in these cross sections and on the surface
of the streamlined body are also shown

13
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Fig. 5. Density gradient field and streamlines in symmetry plane.
The figure shows values of the density gradient, computed by differentiation
from dimensionless coordinates and corresponding to free-stream densities p,,
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Fig. 6. Field of Mach number in symmetry plane;
dashed line indicates sonic line M = 1

earlier in studies carried out for higher Mach
and Reynolds numbers [15, 16]. A bow shock
that occurs in front of the body interacts with
the boundary layer, causing it to separate. The
separation region induces oblique compression
waves intersecting with the bow shock. Zones
with supersonic velocities and local compression
waves appear within the separation region,
inducing secondary separation of the near-wall
flow. As a result, an extended separation region
with a chain of vortices evolves in front of the
body, each of them becomes the “head” of a
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horseshoe-shaped vortex that surrounds the
body.

The surface streamlines in Fig. 4 indicate
the regions where the boundary layer separates
and reattaches. The figure also shows the
pressure distribution (related to the free-stream
pressure value P, ). In particular, it can be seen
that maximum pressure in the frontal part of
the streamlined body exceeds the inlet pressure
by about ten times.

More detailed visualization of the flow in the
symmetry plane is given in Fig. 5, illustrating the



Simulation of physical processes >

\\%ﬁ—ﬁ?’?’?ﬁﬁ’é////////

'oo—5’——————?ﬁﬁgﬁé
%?—5—5’—5??—?52

%,.9—————E—E—EE—EE///
,é.“?—————————————————;——Eﬁ%
%oo oo—————————————————5———5552
A
.....

S sS
33355

==
——
S
S3SSsSs

Sos
335

S
RS

o

YOREERIIETRIIEIIIIIEIOIIIIIII)
v L T

11s

0n ce

0.3 mill

the text)

ining

Fig. 7. Computational mesh 1, conta

ions in

(see the explanat

6 —4-----------

P/P,,

0.8

0.4

X/D
=3 — 4 e 5

I — 2

(a)

me

ionless pressure along frontal |

mens

Fig. 8. Distributions of d

ine of symmetry (b)

t on plate along |

and skin friction coefficien
The figure shows computations by the AUSM scheme of second order of accuracy on meshes 1—4

(curve numbers coincide with mesh numbers) and first order of accuracy on mesh 4 (curve 5)

15



4St. Petersburg State Polytechnical University Journal. Physics and Mathematics 12 (2) 2019

>

shock wave structure with the density gradient
field, combined with streamline patterns for the
evolution of a vortex chain in the separation
region. Analysis of the figure shows that the
vortices filling the separation region induce
oblique compression waves interacting with
the bow shock. As a result of this interaction,
the bow shock bends in the direction of the
streamlined body, and a gas jet forms; as it
flows onto the body, a zone of local pressure
increasing arise. This effect is discussed in more
detail below.

Fig. 6 shows the Mach number distribution
in the symmetry plane; the dashed line
indicates the sonic line (M = 1). While the
flow is mainly subsonic in the separated
separation region, two zones with supersonic
flow are also observed. The flow moving from
the stagnation region along the surface of the
streamlined body towards the plate accelerates
to supersonic speeds and then turns into a
vortex, also reaching supersonic speed.

Mesh convergence. The study of mesh
convergence was carried out using several
quasi-structured meshes: mesh 1 contained 0.3
million cells, mesh 2 2.4 million cells, mesh 3
8.1 million cells and mesh 4 13.3 million cells.
Mesh 2 was constructed by refining mesh 1
twice in each coordinate direction, mesh 3 by
refining mesh 2 1.5 times, mesh 4 by refining
mesh 3 only near the leading edge of the body
(from 0 to 2.5 along the Z/D coordinate and
from 2 to 0 along the X/D coordinate). All
meshes had the same structure, with the mesh
lines clustered to the streamlined body and
to the surface of the plate. A general view of
computational mesh 1 is shown in Fig. 7.

Fig. 8 shows the results obtained by the
AUSM scheme using different meshes,
including the pressure distribution along a
front line on the surface of the body, and the
distribution of the skin friction on the plate
along a line of symmetry (the pressure was
taken as the total pressure P, behind a normal
shock wave, computed analytically). Notably, a
characteristic increase in pressure was observed
in the region at Z/D = 1.5, which is associated
with a gas jet forming during the interaction
of oblique compression waves with the bow
shock. It is also interesting that the scheme
with first-order accuracy does not reproduce
this characteristic pressure peak even on the
most refined mesh; this is primarily due to
insufficient resolution of oblique compression
waves. Moreover, a first-order scheme predicts
a substantially simpler vortex structure of the
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separation region in front of the body.

The solution obtained on mesh 3 is very
close to that obtained on mesh 4, both with
respect to the pressure distribution and skin
friction on the plate. This allows us to conclude
that if schemes with second-order accuracy are
used, mesh 4 is sufficiently refined for resolving
all the details of the vortex structure near the
junction between the body and the plate and
also provides high-quality resolution of the
shock-wave structure.

Comparison of solutions obtained
by different schemes

Comparative computations were carried out
on the most refined mesh (mesh 4) using the
HLL and AUSM schemes of the first and second
orders of accuracy. The most convenient way
to compare the results obtained using different
schemes is to analyze pressure distributions
along selected lines on the streamlined body,
as well as the predicted distributions of the
skin friction along individual lines on the plate
surface. The lines selected for analysis are
shown in Fig. 9, and the distributions compared
in Figs. 10 and 11.

Because schemes with first-order accuracy
are highly dissipative, the solutions obtained
by first-order and second-order schemes differ
quite considerably in individual regions of the
flow, both in the case of AUSM and in the
case of the HLL scheme. Notably, however,
the first-order AUSM scheme is fairly adequate
in reproducing the shock-wave structure of the
flow on the most refined mesh. Fig. 10 shows,
in particular, that the pressure distribution over
the body surface, obtained by the first-order
AUSM scheme, is close to that computed by
the second-order scheme (except for certain
local regions); on the other hand, solution
obtained with first-order HLL scheme strongly
differs in the form.

Regarding the quality of viscous effects
resolution of-viscous—effeets, as noted above,
the first-order AUSM scheme turns out to be
too dissipative: using it results in a decreased
number of resolved vortices that have reduced
intensities even in case of the most refined mesh
(see. Fig. 11). Using the first-order HLL scheme
yields even less acceptable results: a completely
different level of friction is predicted on a large
part of the plate (see Fig. 11). While the results
obtained by the AUSM and HLL schemes of the
second order of accuracy are fairly close, there
are also some local differences. In particular,
it follows from analysis of the pressure
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Fig. 9. Position of streamlines on body, selected for analysis
of computed pressure and skin friction distributions
(see comparative analysis in Figs. 10, 11)
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Fig. 10. Distributions of dimensionless pressure along vertical lines
on surface of streamlined body (see Fig. 9): on frontal line (¢ = 0°) (a),
at the end of blunt part (¢ = °90) (b), downstream (X/D) = 4.5 (c)
Computations were carried out by different schemes:

1, 2 correspond to HLL of first and second orders of accuracy, respectively;
3, 4to AUSM of first and second orders of accuracy
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Fig. 11. Distributions of skin friction coefficient along several lines on plate surface:
along line of symmetry (a) (Y/D = 0), at distances of two (Y/D = 2)
and four (Y/D = 4) diameters from body, respectively (b, c).
Computations were carried out by different schemes:
1, 2 correspond to HLL of first and second orders of accuracy, respectively;
3, 4to AUSM of first and second orders of accuracy

distribution along the front line (see Fig. 10)
that the local pressure peak has a noticeably
smaller width in the solution obtained by to the
AUSM scheme. Conversely, analysis of the skin
friction distribution on the plate (see Fig. 11)
shows that the vortex intensity in the solution
obtained by the HLL scheme is slightly lower
than in the case of the AUSM scheme.

Conclusion

We have obtained a family of numerical
solutions for a model problem of interaction
of supersonic viscous gas (air) flow with an
elongated blunt body mounted on a plate

18

along which a laminar boundary layer evolves.
Solutions using two schemes (HLL and AUSM)
for convective flux evaluation on meshes of
different sizes were obtained with a free-stream
Mach number of 2.95 and a Reynolds number
of 4000.

The flow evolving in the given configuration
is three-dimensional, with clear effects of
viscous-inviscid interaction. The separation
region in front of the body has a complex
vortex structure, with a family of horseshoe-
shaped vortices that spread along the plate
and expands around the body. Supersonic flow
around the separation region induces oblique
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compression waves; interacting with the bow
shock, these waves generate a gas jet, which
causes a local increase in pressure on the body.

According to the results of the mesh
convergence study, we have found that if
schemes with second order of accuracy are
used, meshes containing 13—15 million
hexagonal cells allow to resolve all the details of
the vortex structure ofthe-flow near the region
where the body is connected to the plate, as
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well as to obtain high-quality resolution of the
shock-wave structure. Schemes of the first-
order of accuracy do not allow to reproduce
significant characteristics of the flow caused by
viscous effects even on the most detailed mesh
among those used. The solutions obtained by
the AUSM and HLL schemes of the second-
order of accuracy are in good agreement, but
on the whole, the HLL scheme proves to be
more dissipative.
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