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Introduction

Practical problems of the aerospace industry 
and turbomachinery often involve studies 
on the structure of subsonic and supersonic 
flows around structural elements fixed on the 
streamlined surface. This includes, in particular, 
design of connections between wings, fuselage, 
tail and other elements, and optimization of 
interaction of supersonic flow with injected gas 
jets used in control elements.

Keen interest in this type of problems was 
instigated by development of supersonic and 
hypersonic aircraft construction started in the 
mid-20th century. One of the challenging tasks 
here is three-dimensional flow with a complex 
shock-wave structure, a wide separation region 
and a system of horseshoe-shaped vortices 
that takes place in supersonic viscous gas flow 
around the junction of a blunt body with a plate. 
In other words, the effects of viscous-inviscid 
interaction in supersonic flow of viscous gas 
can be clearly observed in this problem.

On the whole, sufficient detailed information 
has been collected obtained in recent years 
for the case of the interaction of a separating 
boundary layer with a bow shock. Reviews 
of literature on this topic can be found, for 
example, in [1, 2]. 

A case of a separation region forming 
in front of the body in subsonic flow is also 
of interest. For instance, this applies to 
problems of turbomachine engineering, where 
understanding the complex vortex structure 
of the flow near the leading edge of the 
blade is important for taking into account 
the heat transfer patterns in the region of 
the blade/endwall junction in disks vanes of 
high-temperature gas turbines. Many studies, 
both experimental and computational, have 
been dedicated to studying the flow structure 
in subsonic regime (see, for example, [3–6]).

The subject of this study is one of the model 
problems simulating the complex structure of 
three-dimensional flow. We have considered 
supersonic flow around an elongated cylindrical 
body mounted on a plate along which the 
boundary layer evolves (Fig. 1). A fairly large 
number of experimental works [7–13] addressed 
this problem. Some of the earliest studies of 
the flow structure in this configuration [7–9] 
revealed that local supersonic regions and bow 
shocks, inducing a secondary separation region 
inside the main zone, evolve in front of the 
cylindrical body.

One of the most important characteristic 
for high-speed aircraft is the intensity of heat 

transfer in front of the streamlined body; studies 
indicate strong intensification of heat transfer in 
this region. In particular, a recently published 
paper [13] considered local heat transfer on a 
plate with flow around a cylindrical body at a 
Mach number of 5.

It is rather problematic to experimentally 
obtain sufficient data on the detailed structure 
of three-dimensional supersonic flow in 
the entire region where it develops. For this 
reason, it would be of great interest to be 
able to predict the flow structure in the given 
model configuration based on computational 
fluid dynamics, providing high quality of 
resolution for the regions with viscous-inviscid 
interaction. The first studies on numerical 
simulation of laminar and turbulent flows 
in the given configuration [14, 15] used 
computational meshes that could not provide 
sufficient resolution of all flow features. A 
relatively recent work [16], detailing extensive 
study (both experimental and numerical) of the 
flow around a blunt body at Mach number M 
= 6.7 was performed, established, for example, 
that a sufficiently accurate resolution of the 
flow structure is obtained with a mesh size of 
about 15 million cells. 

Numerical simulation of supersonic flow 
under given conditions may be complicated 
by the so-called carbuncle instability [17, 18], 
which leads to strong distortion of bow shock 
in the numerical solution. This instability may 
occur when using several well-known numerical 
schemes; different approaches (in particular, 

Fig. 1. Schematic representation 
of problem statement:

viscous gas flow around elongated cylindrical body 
with diameter D of blunt part, 

mounted on plate; boundary layer 
develops along the plate

(δ is the thickness of this layer)
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hybrid schemes [18, 16] and introduction of 
additional artificial viscosity [19]) have been 
devised to suppress it. There are also schemes 
where the carbuncle instability is usually not 
observed. These include the Harten–Lax–van 
Leer (HLL) scheme [20], which is characterized 
by high dissipativity, and a family of schemes 
based on s flux vector splitting, proposed 
by Liou and Steffen (Advection Upstream 
Splitting Method (AUSM)) [21], which many 
authors have found to be stable to non-physical 
oscillations on the bow shock. 

The majority of published works on 
numerical solution to the problem of high- 
speed flow of viscous gas around a blunt body 
mounted on a plate considered a case of 
hypersonic flow. However, little attention has 
been paid in literature to flows with moderate 
free-stream Mach numbers and the quality of 
numerical prediction of the effects of viscous-
inviscid interaction.

In this paper, we present the results of a 
numerical solution to the problem of flow past 
an elongated blunt body mounted on a plate, 
with the free-stream Mach number equal to 
2.95, and the Reynolds number based on the 
diameter of the blunt part equal to 4000. A 
moderate Reynolds number, ensuring laminar 
flow in the given region, was chosen because we 
focused on obtaining an accurate, almost grid-
converged solution, with detailed resolution 
of both the complex structure of the flow in 
the viscous separation region with a system 
of horseshoe-shaped vortices, and the gas-
dynamic structure characterized by detached 
shock and a system of oblique compression 
waves generated by flow around the separation 
region.

Numerical solutions were obtained by two 
schemes, HLL and AUSM; both of them 
allowed to avoid the carbuncle instability. 
Additionally, we have carried out comparative 
analysis of the solutions.

Numerical method for solving the problem 

General formulation. The following 
numerical solutions for viscous gas flow were 
obtained using the finite volume method 
(FVM), based on integral formulation of the 
laws of conservation of mass, momentum 
and energy, as applied to computational cell 
(control volume):

 0,
mM S

d dSΣ

Ω

∂ Ω + =∑∫ ∫∂τ
w F (1)

where Ω is the control volume; M is the number 
of its faces; Sm is the area of the current face, m 
= 1,M, FΣ is the vector of the fluxes on the face 
of the control volume; w = [ρ,ρu,ρv,ρw,ρE] is 
the vector of conservative variables (u ≡ u1, v 
≡ u2, w ≡ u3 are the components of the velocity 
vector V in the Cartesian coordinate system; E 
is the total energy; ρ is the density).

The vector FΣ is the sum of vectors of invis-
cid and viscous fluxes FΣ = F + Fvisc, defined by 
the expressions:
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where p is the pressure; H is the total enthalpy; 
n is the normal to the face; i, j, k are the unit 
vectors of the Cartesian coordinate system (x ≡ 
x1, y ≡ x2, z ≡ x3).

The components of the viscous stress tensor τ 
and the heat flux density vector q are written as
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 ( ) ,j jq T x= −λ ∂ ∂ (4)

where T is the temperature; µ is the dynamic 
viscosity of the gas whose dependence on tem-
perature is determined by the Sutherland for-
mula; λ is the thermal conductivity of the gas.

The total energy and enthalpy are determined 
by the expressions:

 2 22, 2,v pE c T V H c T V= + = +

where cv, cp are the specific heat capacities 
at constant volume and constant pressure, 
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respectively; they are assumed to be constant.
Pressure p, density ρ and internal energy e are 

related by the equation of state of a perfect gas:

p = (γ −1)ρe,
where γ is the adiabatic index (γ = cp/cv).

Simulation schemes for convective flows. The 
method for inviscid fluxes F approximation is 
especially important in simulation of supersonic 
flows. The approximation scheme should provide 
sufficiently accurate resolution of gas dynamic 
discontinuities with a small number of internal 
points in the absence of flow field oscillations near 
the discontinuities. The methods with desired 
behavior, which are based on characteristic 
properties of the system of equations, have gained 
great popularity over the past decades [22]. These 
include flux vector splitting schemes (for example, 
the Steger–Warming splitting scheme, the AUSM 
method), and schemes based on the Riemann 
solver for the discontinuity problem (for example, 
Godunov, Roe, HLL and HLLC schemes). 
Below, we consider in detail only the AUSM and 
HLL schemes selected for our computations. 

Parameters for the “left” and “right” sides of 
a given face are widely used in flux computations 
(denoted by subscripts L and R below). If values 
from the centers of adjacent cells are used as such 
parameters, the numerical method is of the first 
order of accuracy. Special methods for evaluating 
the parameters to the left and right of the face 
(briefly discussed below) can be used to implement 
schemes with a higher order of accuracy.

AUSM scheme [21]. The flux vector F is 
represented as the sum of F(c) (convective 
component) and F(p) (component related to 
pressure):

 

( ) ( ).

0

0
c p

u p
v p
w p

H

pu
v p
w p
H

 
 
 
 
 
 
 
  

  
  
  
  
  
  
  

      

ρ ⋅
ρ ⋅ + ⋅

= ρ ⋅ + ⋅ =
ρ ⋅ + ⋅

ρ ⋅

ρ ⋅
⋅ρ ⋅

= ρ ⋅ + ⋅ =
ρ ⋅ ⋅
ρ ⋅

= +

V n
V n n i

F V n n j
V n n k

V n
V n

n iV n
V n n j
V n n k
V n

F F

(5)

Accordingly, Ff 
(numerical flux on the face) 

is also found as the sum:

 ( ) ( ).c p
f f f= +F F F (6)

A specific splitting method is used for each 
of the components. 

The convective flux F(c) is expressed in terms 
of the Mach number M constructed from the 
normal velocity component:

M = V·n/a, 
where a = √γRT is the speed of sound ( R is the 
gas constant):
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Splitting of the convective flux is based on 
the sign of the Mach number at the face Mf in 
the following manner:
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The Mach number at the face is found as the 
sum of the positive and negative components:

 M M M ,f L R
+ −= +

where the splitting into components is carried 
out using the following relationship: 
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The component of the flux related to 
pressure is defined as
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where the splitting of pressure into the positive 
and the negative component is also carried out 
depending on the Mach number:
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HLL scheme [20]. The scheme is based 
on the approximate Riemann solver for the 
discontinuity problem. It is assumed that the 
solution consists of two main discontinuities 
describing the propagation only of strong 
waves such as shock waves; other waves, such 
as contact or tangential discontinuities, are not 
taken into account.

The velocities of the main discontinuities 
(characteristics) SL and SR comprising solution 
are defined by the following expressions [23]:

 ( ) ,min ,L L LS a a= ⋅ − ⋅ −V n V n  (12)

 ( ) ,min ,R R RS a a= ⋅ + ⋅ +V n V n  (13)

where aL and aR are the speeds of sound com-
puted by the parameters on the left and right 

sides of the face; the quantities ã and V  are 
the variables computed for the current face by 
means of Roe averaging [24].

According to the approximate Riemann 
solver [20], the characteristics of SL and SR are 
separated from each other by three regions with 
constant gas parameters on the x–t diagram: 
two regions with undisturbed gas parameters 
“left” and “right” from the face, and the third 
region between them.

Numerical flux on the face depends on the 
configuration corresponding to the current 
face:

 *

;
;

, 0
, 0
, 0 ,

L L

f L R

R R

S
S S

S







≤
= ≤ ≤

≥

F
F F

F
(14)

where the flux F* is found by the formula
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Increasing the order of accuracy. The order 
of accuracy of a numerical scheme can be 
increased with a technique for quasi-monotonic 
interpolation of mesh solutions: the MUSCL 
approach (Monotonic Upstream-Centered 
Scheme for Conservation Laws) [25], which is 
used for piecewise polynomial reconstruction 
of the solution in each control volume and 

Fig. 2. Scheme for constructing algorithm for quasi-one-dimensional computations 
in two-dimensional case;

left and right cells adjacent to the given face f are highlighted in dark gray, 
all stencil cells used for determining the values at additional points 

(notations are given for them) are highlighted in light gray; 
r, l are direct reconstructions for face f
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for reconstruction of the values on the face 
with increased accuracy. Total Variation 
Diminishing schemes (TVD) are applied to 
obtain monotonous solutions in computations 
by second-order accuracy schemes [26]. This 
approach can be generalized to the case of 
unstructured meshes by applying quasi-one-
dimensional computations with some suitable 
direction (similar to the coordinate direction 
initially present in structured meshes) selected 
locally for each face. In other words, aside 
from the values of the variables in the centers 
of the cells located on both sides of the face, 
at least two more virtual points to the left and 
right of the center points (points P+

L, P
-
L, P

+
R and 

P-
L in Fig. 2) are required, in which the values 

of variables can be reconstructed in some way.
The numerical solutions given below were 

obtained using the approach proposed in [27] 
and described in detail in [28]. Two straight 
lines (reconstruction beam) are drawn through 
the center of each face f and through the 
centers of the cells adjacent to the face (direct 
reconstructions are l and r in Fig. 2); two 
additional points are taken on each of these 
straight lines, with the values of the variables in 

these points found evaluated by interpolation 
based on the known values of the variables 
in certain neighboring centers of the cells 
(“interpolating triples”).

Such cells are found by the following 
algorithm [28]: first, a set N1 is established, 
including all first-level neighbors for the 
current cell, i.e., the set of cells that have at 
least one common node with the current cell, 
excluding the cell itself. Next, all cells from 
the set N1 are sorted by ascending cosine of 
the angle between the reconstruction beam 
emanating from the center of the current cell 
and the vector of direction to the center of the 
cell from this set. Next, an iterative search of 
the cell triplets is performed in ascending order 
of the sum of the indices of these cells in the 
sorted array and the first of the “interpolating 
triplets” found is used. By interpolating 
triplet we mean a triplet of cells whose 
centers form a triangle and the straight line 
of reconstruction intersects it.After the values 
at additional points have been computed, the 
values on the left and right sides of the face 
are found in accordance with one-sided linear 
extrapolation:

Fig. 3. Computational domain for problem of supersonic flow 
around elongated cylindrical body (see Fig. 1).

The figure shows the geometrical parameters: D is the diameter of the blunt part of the body, 
R, L, h are the dimensions of the computational domain, 

the arrow indicates the direction of the flux
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 ( ) 2,f
L L L L Lu u u u−= +ψ − (16)

 ( ) 2,f
R R R R Ru u u u+= −ψ − (17)

where u is any of the reconstructed variables; 
ψ(r) is the limiter introduced to control oscil-
lations and computed as a function of the ratio 
of two differences:

 ( ) ( )( ) ,L L L L L Lu u u u+ −ψ = ψ − − (18)

 ( ) ( )( ).R R R R R Ru u u u− +ψ = ψ − − (19)

We used Van Albada’s TVD-limiter [29] as 
the function ψ in these computations. 

Problem statement and computational tools 

Fig. 3 shows the computational domain 
for the given problem of supersonic flow 
past an elongated cylindrical body mounted 
on an adiabatic plate along which a laminar 
boundary layer evolves. The flow is assumed to 
be symmetrical, so the computational domain 
covers only half of the initial configuration. 
The dimensions of the region are: R = 15D, 
h = 10D, L= 8D, where D is the diameter of 
the blunt part of the body, also assumed to be 
adiabatic.

The problem is governed by the following set 

of dimensionless parameters: the free-stream 
Mach number M, the Reynolds number ReD, 
the Prandtl number Pr, the adiabatic index γ 
and the ratio D/δ of the body’s diameter to the 
thickness of the incoming boundary layer. The 
numerical solutions in this study were obtained 
for M = 2.95, ReD = 4000, Pr = 0.71, γ = 1.4, 
D/δ95% = 1. Velocity and temperature profiles 
for the boundary layer of a given thickness δ95% 
were prescribed at the inlet boundary of the 
computational domain. 

We have implemented the above-described 
numerical method in combination with the im-
plicit scheme in “increments” as one of the op-
tions of the finite-volume unstructured program 
code SINF/Flag-S, which is under develop-
ment at the Hydroaerodynamics, Combustion 
and Heat Transfer Department of Peter the 
Great St. Petersburg Polytechnic University.

The resources of the Polytechnic 
Supercomputer Center (www.scc.spbstu.ru) 
were used for computations.

Computation results and discussion

Flow structure. The numerical solution 
obtained by the AUSM scheme on the most 
refined of the meshes used is shown in Figs. 
4–6 (the issues of grid-converged solution are 
discussed below). In general, the structure of the 
computed flow field is similar to that described 

Fig. 4. Surface streamlines and flow structure 
in axial (XZ plane) and transverse (XY) cross-sections of flow. 
Pressure distributions in these cross sections and on the surface 

of the streamlined body are also shown
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earlier in studies carried out for higher Mach 
and Reynolds numbers [15, 16]. A bow shock 
that occurs in front of the body interacts with 
the boundary layer, causing it to separate. The 
separation region induces oblique compression 
waves intersecting with the bow shock. Zones 
with supersonic velocities and local compression 
waves appear within the separation region, 
inducing secondary separation of the near-wall 
flow. As a result, an extended separation region 
with a chain of vortices evolves in front of the 
body, each of them becomes the “head” of a 

horseshoe-shaped vortex that surrounds the 
body.

The surface streamlines in Fig. 4 indicate 
the regions where the boundary layer separates 
and reattaches. The figure also shows the 
pressure distribution (related to the free-stream 
pressure value Pin). In particular, it can be seen 
that maximum pressure in the frontal part of 
the streamlined body exceeds the inlet pressure 
by about ten times. 

More detailed visualization of the flow in the 
symmetry plane is given in Fig. 5, illustrating the 

Fig. 5. Density gradient field and streamlines in symmetry plane.
The figure shows values of the density gradient, computed by differentiation 
from dimensionless coordinates and corresponding to free-stream densities ρin

Fig. 6. Field of Mach number in symmetry plane; 
dashed line indicates sonic line M = 1
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Fig. 7. Computational mesh 1, containing 0.3 million cells
(see the explanations in the text) 

Fig. 8. Distributions of dimensionless pressure along frontal line (a) 
and skin friction coefficient on plate along line of symmetry (b)

The figure shows computations by the AUSM scheme of second order of accuracy on meshes 1–4 
(curve numbers coincide with mesh numbers) and first order of accuracy on mesh 4 (curve 5)
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shock wave structure with the density gradient 
field, combined with streamline patterns for the 
evolution of a vortex chain in the separation 
region. Analysis of the figure shows that the 
vortices filling the separation region induce 
oblique compression waves interacting with 
the bow shock. As a result of this interaction, 
the bow shock bends in the direction of the 
streamlined body, and a gas jet forms; as it 
flows onto the body, a zone of local pressure 
increasing arise. This effect is discussed in more 
detail below. 

Fig. 6 shows the Mach number distribution 
in the symmetry plane; the dashed line 
indicates the sonic line (M = 1). While the 
flow is mainly subsonic in the separated 
separation region, two zones with supersonic 
flow are also observed. The flow moving from 
the stagnation region along the surface of the 
streamlined body towards the plate accelerates 
to supersonic speeds and then turns into a 
vortex, also reaching supersonic speed. 

Mesh convergence. The study of mesh 
convergence was carried out using several 
quasi-structured meshes: mesh 1 contained 0.3 
million cells, mesh 2 2.4 million cells, mesh 3 
8.1 million cells and mesh 4 13.3 million cells. 
Mesh 2 was constructed by refining mesh 1 
twice in each coordinate direction, mesh 3 by 
refining mesh 2 1.5 times, mesh 4 by refining 
mesh 3 only near the leading edge of the body 
(from 0 to 2.5 along the Z/D coordinate and 
from 2 to 0 along the X/D coordinate). All 
meshes had the same structure, with the mesh 
lines clustered to the streamlined body and 
to the surface of the plate. A general view of 
computational mesh 1 is shown in Fig. 7. 

Fig. 8 shows the results obtained by the 
AUSM scheme using different meshes, 
including the pressure distribution along a 
front line on the surface of the body, and the 
distribution of the skin friction on the plate 
along a line of symmetry (the pressure was 
taken as the total pressure Pt2 behind a normal 
shock wave, computed analytically). Notably, a 
characteristic increase in pressure was observed 
in the region at Z/D ≈ 1.5, which is associated 
with a gas jet forming during the interaction 
of oblique compression waves with the bow 
shock. It is also interesting that the scheme 
with first-order accuracy does not reproduce 
this characteristic pressure peak even on the 
most refined mesh; this is primarily due to 
insufficient resolution of oblique compression 
waves. Moreover, a first-order scheme predicts 
a substantially simpler vortex structure of the 

separation region in front of the body.
The solution obtained on mesh 3 is very 

close to that obtained on mesh 4, both with 
respect to the pressure distribution and skin 
friction on the plate. This allows us to conclude 
that if schemes with second-order accuracy are 
used, mesh 4 is sufficiently refined for resolving 
all the details of the vortex structure near the 
junction between the body and the plate and 
also provides high-quality resolution of the 
shock-wave structure.

Comparison of solutions obtained 
by different schemes 

Comparative computations were carried out 
on the most refined mesh (mesh 4) using the 
HLL and AUSM schemes of the first and second 
orders of accuracy. The most convenient way 
to compare the results obtained using different 
schemes is to analyze pressure distributions 
along selected lines on the streamlined body, 
as well as the predicted distributions of the 
skin friction along individual lines on the plate 
surface. The lines selected for analysis are 
shown in Fig. 9, and the distributions compared 
in Figs. 10 and 11. 

Because schemes with first-order accuracy 
are highly dissipative, the solutions obtained 
by first-order and second-order schemes differ 
quite considerably in individual regions of the 
flow, both in the case of AUSM and in the 
case of the HLL scheme. Notably, however, 
the first-order AUSM scheme is fairly adequate 
in reproducing the shock-wave structure of the 
flow on the most refined mesh. Fig. 10 shows, 
in particular, that the pressure distribution over 
the body surface, obtained by the first-order 
AUSM scheme, is close to that computed by 
the second-order scheme (except for certain 
local regions); on the other hand, solution 
obtained with first-order HLL scheme strongly 
differs in the form. 

Regarding the quality of viscous effects 
resolution of viscous effects, as noted above, 
the first-order AUSM scheme turns out to be 
too dissipative: using it results in a decreased 
number of resolved vortices that have reduced 
intensities even in case of the most refined mesh 
(see. Fig. 11). Using the first-order HLL scheme 
yields even less acceptable results: a completely 
different level of friction is predicted on a large 
part of the plate (see Fig. 11). While the results 
obtained by the AUSM and HLL schemes of the 
second order of accuracy are fairly close, there 
are also some local differences. In particular, 
it follows from analysis of the pressure 
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 Fig. 9. Position of streamlines on body, selected for analysis 
of computed pressure and skin friction distributions 

(see comparative analysis in Figs. 10, 11)

Fig. 10. Distributions of dimensionless pressure along vertical lines 
on surface of streamlined body (see Fig. 9): on frontal line (φ = 0°) (a), 

at the end of blunt part (φ = °90) (b), downstream (X/D) = 4.5 (c)
Computations were carried out by different schemes: 

1, 2 correspond to HLL of first and second orders of accuracy, respectively; 
3, 4 to AUSM of first and second orders of accuracy
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distribution along the front line (see Fig. 10) 
that the local pressure peak has a noticeably 
smaller width in the solution obtained by to the 
AUSM scheme. Conversely, analysis of the skin 
friction distribution on the plate (see Fig. 11) 
shows that the vortex intensity in the solution 
obtained by the HLL scheme is slightly lower 
than in the case of the AUSM scheme. 

Conclusion

We have obtained a family of numerical 
solutions for a model problem of interaction 
of supersonic viscous gas (air) flow with an 
elongated blunt body mounted on a plate 

along which a laminar boundary layer evolves. 
Solutions using two schemes (HLL and AUSM) 
for convective flux evaluation on meshes of 
different sizes were obtained with a free-stream 
Mach number of 2.95 and a Reynolds number 
of 4000.

The flow evolving in the given configuration 
is three-dimensional, with clear effects of 
viscous-inviscid interaction. The separation 
region in front of the body has a complex 
vortex structure, with a family of horseshoe-
shaped vortices that spread along the plate 
and expands around the body. Supersonic flow 
around the separation region induces oblique 

Fig. 11. Distributions of skin friction coefficient along several lines on plate surface: 
along line of symmetry (a) (Y/D = 0), at distances of two (Y/D = 2) 

and four (Y/D = 4) diameters from body, respectively (b, c).
Computations were carried out by different schemes: 

1, 2 correspond to HLL of first and second orders of accuracy, respectively; 
3, 4 to AUSM of first and second orders of accuracy
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compression waves; interacting with the bow 
shock, these waves generate a gas jet, which 
causes a local increase in pressure on the body.

According to the results of the mesh 
convergence study, we have found that if 
schemes with second order of accuracy are 
used, meshes containing 13–15 million 
hexagonal cells allow to resolve all the details of 
the vortex structure of the flow near the region 
where the body is connected to the plate, as 

well as to obtain high-quality resolution of the 
shock-wave structure. Schemes of the first-
order of accuracy do not allow to reproduce 
significant characteristics of the flow caused by 
viscous effects even on the most detailed mesh 
among those used. The solutions obtained by 
the AUSM and HLL schemes of the second-
order of accuracy are in good agreement, but 
on the whole, the HLL scheme proves to be 
more dissipative.
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